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1 Introduction
In this paper we consider the eigenvalue problem
Au+ AK(|z])u=0 inR" (1.1)

in the space
D = {u| u is measurable, /R K(|z|)u® dz < oo}, (1.2)

wheren >3 and A € Risa paraméter. We assume that the weight function
K(r), r = |z|, satisfies

K(r)>0 on (0,00);
(X) K(r) € C((0,0));
rK(r) € L'(0, 00).

In this paper, we are concerned with solutions of (1.1) in D and obtain a
complete orthogonal basis in D. This problem is analogous to that of the vi-
bration of a disklike membrane or of the linear Schrédinger equation, which is
a classical one and well-investigated. All the eigenfunctions can be expressed
as a product of the Bessel functions and functions of the argument 6 (see e.g.,
§30 of Farlow [3]). Moreover, they form a complete orthonormal basis. In
this context, our problem is the eigenvalue problem of the “oscillation of the
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whole space”. Compared to the case of bounded domains, there seems to be
very few results concerning the eigenvalue problem on unbounded domains.

Since the weight K is radially symmetric, (1.1) can have radial solutions
which is obtained as a solution of the initial value problem

n—1
Upr + - U, + )\I{(T’)U, = 0, r > O, : (13)
u(0) = 1.

We note that (1.3) has a unique global solution for any A > 0 under the
assumption (K). Under a stronger condition than (K), Naito [9] showed by
the shooting method that there exists a first “eigenvalue” Ao > 0 for which
(1.3) has a positive solution satisfying lim, . 7 *|u| < co. Later, Edelson
and Rumbos [2] showed that the first eigenvalue is simple in the class of ra-
dial solutions. Recently, Kabeya [6] obtained the following result concerning
radial eigenfunctions. | | a

Theorem A (Kabeya [6], Theorem 1)  Suppose that (K) holds and
n > 2. Then there exists a unique monotone increasing sequence {A;}32,
such that the solution of (1.8) has ezactly j zeros in (0,00) and satisfies
lim, oo 7" 2u| < 00.

We note here that the condition rK(r) € L'(0, c0) cannot be weakened in
Theorem A. Indeed, if rK(r) ¢ L*(0, 1), then (1.3) does not have a solution.
Also, if rK(r) ¢ L'(1,00), then any solution of (1.3) has infinitely many
zeros in (1, 00). | |

In order to investigate nonradial eigenfunctions for (1.1), let us put u(z) =
v(r)(z) with r = |z| and z € S™'. Substituting this in (1.1), we have

Au+qum“=@M+ﬁ7—w>¢+%Aw+AK@w¢:m

where A, is the Laplace-Beltrami operator on $™1. Hence

Ay
o

for some number o. Thus we are led to the following two eigenvalue problems:

2, _
r (v,, + z 1vr> + Ar?K(r) = o

v r

Ayjp+oh=0 inS"! | (1.4)
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and ’
: n—1

Urr +

v, — %v +AK(rw=0. r>0, (L5

It is known (see, e.g., Shimakura [10]) that all the eigenvalues of (1.4) are
expressed as :
op=4n—-2+4), £=0,1,2,---, (1.6)

and the multiplicity p, of o, is given by
pe=(n—2+20)(n—-3+0)!/{(n—2)}.

We denote by zﬁem (z), m = 1,2,---,ps, the normalized eigenfunctions as-
sociated with O'g which are orthogonal to each other. We note that the set
{{lb(m)( )}t 1}2 forms a complete orthonormal basis in LA(S™ ).

On the other hand, since u(z) = v(r)¢(z) € D, we must find a solution
of (1.5) satisfying |
| / r" 1K (r)v? dr < co.

The term —ov/r? in (1.5) does not allow a solution with v(0) > 0 unless
o = 0. So we seek a solution satisfying v(¢t) = r° + o(rf) at r = 0 with
suitable 8. In the next section, we will show in Lemma 2. 1 that (1 5) has a

unique solution if and only if 8 = £.
Now we give our main results of this paper.

Theorem 1.1 There exists a double sequence { Mg ¢ toy—o Such that (1.1) with

A = Ay has a solution of the form vk,e(r)gb}m)(z), where vy () is a solution
of (1.5) with k zeros in (0,00) such that vg,(r) = r* + o(rt) at r = 0 and
lim, e 72|k 4| < 00. Moreover the set {vk,g(r){ngm)(z)}p‘=1}§f£___0 forms
a complete orthogonal basis in D. .

Concerning an ordering of the eigenvalues, we have the following result.
Theorem 1.2 The eigenvalues of (1.1) satisfy
0 <Apo <Apr <App<--- =00
for each k >0, and
0 < Ao <A <Age<ir w00
for each £ > 0. |
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Remark. Here we only treat the case rK(r) € L'(0,00), however, we can
say more if r"t%#"1K(r) € L'(0, o) for some £.

In this case, we can find another complete orthogonal basis. We will not
give a proof of the following theorem here (see Kabeya and Yanagida [7]).

Theorem 1.3 In addition to (K), suppose that r" 'K (r) € L'(0,00). Then
there exists a complete orthogonal basis {v,‘f’é(r){wém)(z) o1 =0 Which is
uniquely determined by the following properties:

(1) v,f,e(r) is a solution to (1.5) with o = o and some A = AL

(ii) v,‘fie(r) satisfies v,‘f,e(r) =1t + o(r%) at r = 0 and has ezactly k zeros in
(0, 00).

(ii‘i) If r+2-1K (r) € L*(0, 00), then w,‘f’e(r) = r‘ev,‘f’e(r) satisﬁes

‘ _rn+2€—1(

lim -
r—00 wk ¢

wk,()r

=tan¢y,, k=0,1,2, -,

where ¢y € [0,7/2] is an arbitrarily given constant (¢, = /2 means
lim, eo w,‘f’f(r) =0).
(iv) If r"*%-1K(r) ¢ L'(0,00), then v,‘f’e(r) satisfies lim, o0 r"+£“2|v,f,e! <

.

2 Initial ‘Value Problems

In this section, we investigate the equation

-1
vrr-l-n vr~a—§v+)\K(r)v=O, r>0
T T (2.1)

o(r) =rf +o(rf) atr=0,

with some 3 > 0. First, we will choose a suitable 3 such that (2.1) has a
unique solution. '

Lemma 2.1 The problem (2.1) has a unique solution if and only if B = £
(£ e NU{0}). |
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Proof.  Put v(r) = rPw(r). Then we have

—ll—{r"_l(ﬂrﬁ"lw + rﬁwr)} — 0P 2w 4+ AK (r)rPw = 0.
T _ r

Hence w satisfies

Wy + f—l—_——l;—ni—z_—ﬂw, + {'B(ﬁ + nr; 2) — o + )\K(r)} w =0, (2.2)

w(0) = 1. | (2.3)
If B(8+n—2)— 0, #0, then
T{ﬂ(n‘l'ﬁ—m—ffe

P2

+ /\I((T)} g LY(0,1).

In this case, any solution of (2.2) has infinitely many zeros as r | 0. Con-
versely, if B(8+n—2) —o, =0, it is easy to show by using rK(r) € L}(0,1)
that (2.2)-(2.3) is solvable. By (1.6), the condition is rewritten as

BB+n—2)—bn—2+40)=(8-0)B+n—2+0)=0.

Thus = ¢ must hold, because we seek bounded solutions near r = 0. O

Lemma 2.2 For each £ > 0 and k > 0, there exists Ay, > 0 such that the
unique solution w(r;Axy) to (2.2)-(2.8) has ezactly k zeros in (0,00) with
im0 P2 |w| < o0, e rlw(r; Are) € D. Moreover, the inequalities

Mo < Mg < Aoy < cor 00
hold for each £.
Proof.  Since £(£ +n —}2) _ :: 0, we rewrite (2.2) as
| (r* =12, 4+ Arm 2K () w = 0. ' (2.4)

Since n — 1+ 2¢ > 1, we can apply Theorem A of Kabeya to show the
existence of an increasing sequence {,\f)} such that w(r; /\§f ) has exactly k

zeros in (0,00) with lim,_,o, r™ 2= 2|w(r; A}P)] < oo for k € N U {0}. O
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3 Existence of a Complete Basis

In this section, when £ € N'U {0} is arbitrarily fixed, we prove the complete-
ness of {w(r; \x¢)} in the class of radial functions. For simplicity of notation,
let D be a space of radial functions defined by |

= {u € C([0,00)) | limsupr®u| < o).

Proposition 3.1 Let £ € N U {0} be arbztmrzly fized. If functwn ¢ €
Drt+t-2 satisfies '

/oo r" LK (r)o(r)we(r; Aeye) dr =0
0 o
for all k € N U {0}, then cp = 0.

We will prove Proposition 3.1 by contradiction. To do so, we need sereval
preliminary lemmas. First, we take a pair of fundamental solutions U and V'
to (2.4) which satisfy certain asymptotic behaviors at r = 0.

Let U be a solution to (2.4) with U(0) = 1. It is easy to see that such a
solution exists for any A € R. Then we define V so that V is a solution to
(2.4) with max ) [V(r)] =1 and V;(1)/V(1) = U(1)/U(1). We agree that
V(1)=0if U.(1) = 0.

It is easy to see that the Wronskian W (r) := U(r)V,(r) — U.(r)V(r) # 0
at 7 = 1. Moreover, W satisfies

AW n+20—1
+ 25

dr r

W =0.

Hence W is given by
W(r)=W(L)r"t* 1 £ 0  on (0,00).

Thus, U and V are linearly independent of each other. This implies that V
is singular at r = 0 and that lim, o r" "1V # 0.

Lemma 3.1 Let £ € NU{0} be arbitrarily fized. If a function ¢(r) € Dr+¢=2
satisfies

/oo rP UL K (1) o(r)we(r; Mg ) dr = 0
0
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for all k € NU {0}, then

(rit2-ly,), + Art 2L () = ri 2l K () o(r) (3.1)
with : ‘
HJIE rr -1y, =0, Jlim ri 3y = O | (3.2)

has a solution u(r; X) € C*((0,00)) N C([0,0)) continuous with respect to \
for any A € R.

Proof.  We follow the idea of the proof of Theorem 1 in §42 of Yosida [11].
Auxiliarily, we utilize two solutions linearly independent of each other to

(), A = 33)

Let U(r; ) be a solution to (3.3) with U(0; A) =1 and V be that as above.
Let
w(r; A) —U/ (53 0) LK (8)p(s)V (s) ds

(3.4)
n / W(s; M) K (s)(s)U(s) ds
0
with SR o
W(s; A) = U(r; A)Vi(r; A) = Ur(r; )V (r; A).
Since W satisfies dW 51 |
+EEE T o,
dr T
W(r) is given by |
W(r)=cexr™*1 on (0, )
with some ¢y € R continuous with repsect to A\. Thus w(r;\) satisfies
w(r;A) = c}l{ — U/r s"TELK (8)p(s)V(s) ds
0
| (3.5)

+V /O " (Vo () U (s) ds}.

Now we see that w is a solution to (3.1). Indeed, from direct calculation,
we have

w, = —U. / "WlKoVds+ V. / "WK U ds
. 0 0
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and

(rH2-ly), = — (P2, /r WKV ds
0

+Hrmr ), [ WK U ds
0

+r”+2€_1W‘1(UV,. —U.V)Kep.
‘Thus we have

(Tn+2£—1wr)r + )\rn+2€—le

— ALY / "W KV ds
0
ArPTELRY / "W KU ds
0

+Arn il {——U/r WKpVds+V / W tKpU ds}
0 0
+rn+2£—11{(‘0 — Tn+2e_1.[{§0.
Thus any solution to (3.1) is expressed as
u(r; A) = w(r; A) + CLiiA)U(r; A) + Co(\)V (75 A) (3.6)

Since ¢ is bounded near r = 0 and rK(r) € L}(0, 00), we have s"+2%-1 KoV
and s"*¥*-1KpU € L'(0,1). Hence we have

liﬂ)lrn*'u'lw, = c;lligl{—r“+2e“1U/ sV (s)p(s)V () ds
r r 0

4ri2ety [ () H(s) ds |
0 |
= 0. ’
Thus we have Cy()\) = 0 for any X € R since lim, o r"t2-1V, £ 0.

If A # Mgy, then we have lim, o [U(r; A)| > 0. Using the fact that
UV, = U,V = c;r~("*2-1) we can show that w € L®(0, 00). Defining

Ci(\) = ¢t / T IR LY s,
0

we get
lim v = lim (w + C;(A\)U) = 0.

00 r—00
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This implies that C;()) is also expressed as

w(r; A)
A= —1i .
Cl( )= - lim U(r\)
Moreover, we have
rli_)xglo rt 3y = 0.

In case of A = Mg, UR)(r) := U(r; Agy) is an eigenfunction and V satisfies
lim, o0 |V'| > 0. If otherwise, V must satisfy lim, o, r"*2¢72|V| < co. Then
we come to a contradiction by applying the Kelvin transformation to (3.3)
because (3.3) has a unique solution for each A.

For a solution u(r; ) to (3.1) with X # Ag,, we have

o]

| 00 U(k) n+24—1 Dp— n+20—1 (k)r dr = n+2¢-1/77(k) -, (k) —
/o{ (r u) u(r Ur)}r [r (U up—u,U )] 0

0

because U®) ~ r? ~(n+26) U-r(k) ~ 1042y = O(r?=("+9) and because
up = O(r'=0+9) at r = co. At A = )y, since lim, oo V 7& 0 and since
lim, oo T T22|U| < 00, we have

r—=o0

lim U® / SHELK (5)pV ds = 0
0

and

lim V [ s”+2£‘1[{(s)goU ds =0

r—oo 0

by assumption. Thus we obtain lim,_,., w = 0.

Moreover, we have lim, o, ¥ 3u = 0 irrelevent to C;(A). .

To determine C;()), we need another expresion of C;(A). From (3.1) and
(3.3), we get

0 = ‘/Ooo {U(k)(r“*'%_‘lu,)r — u(r""'%'lU,fk))r} dr‘
= (Ak;;.— A) /0 Tl g,y gy /0 Tl Oy g
= (Mre—N) /0 T 2Ly, @) gy
by assumption. i—Ience we have

/ T -1 g g ®) g = o, (3.7)
0
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Substituting u = w(r; A) + C1(A)U(r; A) for (3.7), we obtain

Cy(
/ T =1 gy (s YU dr
Ci(2) = — 20 .
) / r”+2£'1KU(r;)\)U(k)dr
0

| Although we should be careful when letting A — Ak ¢, we manage to have

/oo rr 21 Ko (rs /\k,e)U(k) dr
)\hm Cl( ) Q ) ‘ 'L .
—+Ak,e / T‘n,—{_%'—lI((U(k))z dr
0

The right- hand side is the desired form of C} (X, g) This shows the continuity
of u(r; A) with respect to A. | B

Lemma 3.2 The P'roblem

(Tn+2€—1ur)r + )\rn-l-%—lK(r)u — rn+22f1‘[{(r)¢

3.8
lim "2ty (r) =0,  lim 7" 3|u(r)| = 0. 9.
r.LO r ’ r—+00

with ¢ # 0 cannot have a unique solution u(r; A) for all AER.

Proof.  Suppose to the contrary that (3.8) has a unique solution for any
A € R. We will show that the the linearized equation

(), UK (a4 () =0 (39)

with
lim "t 30, (r) =0 and lim FrH=3

r—0o0

has only a trivial solution @ = 0. Hence u must satisfy u = 0 and from (3.8),
we obtain ¢ = 0, which is a contradiction.
In case of A = 0, u(r;0) satisfies

(rm+2 =1y, (r;0)), = r" 21K (r)e,

© (3.10)

lim ™22y, (r;0) = 0, limsup 7" 2|u(r; 0)| < .
r—00 r—00 '
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Hence we have

/000 {u(r; 0)(r*+2=1ap,), — B(r" 21y, (r O))r} dr
= —A /Ooo r" P21 Kobu(r; 0) dr - /Ooo PP K (s N)u(r; 0) dr
- /Ooo r 2= Ko dr
The left-hand side yields
| e300 ), — b7 (r50)), ) dr
_ [u(r; 0)r™H2e=1yp ot =Ly (. O)]Z" (3.11)
. | |

by (3.10) and lim, e p+1 W, = 0 (smce lim, 4 "2, = 0 and n > 3).
Thus we obtain

/\/OO r 2l (e 0) dr + /Oo rP 21 Koy Mu(r; 0) dre
0 N . | (3.12)
- _ / 2L O
0

Similarly, we have

/ { w(r; \) ("t 1,), — t?)(r"“e“lur(r;/\))r}dr
. (3.13)
= Ju(r; Nr+2 1, — ety (n 4)] 7 = 0. |
From (3.8) and (3.9), the left-hand side yields
/ { (r; A)( "+2£ L), —w(r”+2€_1ur(r;)\))r}dr
= —/ rP 2L oy (e A dr — /Oo r" P2 Ko dr.
0 0
Thus we get

/oo PR (r)u(r; A)? dr = - /°° T K o dr. (3.14)
0 ‘ 0
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Let -~
o(A) == A / UL (0 OYu(r; ) dr (3.15)
0

Then
v'(A) = /Oo rP = Ky 0)u(r; A) dr + A /oo rP =1 Koy (e 0)a dr,
0 0 4

By (3.12), we have

v'(A) = — /oo r U1 Ko dr.

0

Combining this with (3.14), we obtain
v'(\) = /oo rP 2= Ky (e M) 2 dr > 0.
0

If v'(X) = 0, then we have u(r;\) = 0. Thus we get 1 = 0, the desired
assertion. So we consider the case v'(A) > 0. From the definition of v(A),
v(0) = 0 and hence we have

v(A) >0 for A >0,

v(A) <0 for A <O.
Applying the Schwarz inequality to (3.15),
v(A)? < EX'()) (3.16)

with ¢ = [¢° "2 K (r)u(r;0)? dr. The inequality (3.16) implies

d (1 @l 1, V)
a5 s = w2 10

Since v(\) is monotone increasing in A, we have

I . 1
— _ < - — < .
Y o S AR {/\ o) =0 (3.18)

lLe.,

v(A) < X for A > 0. | 0 (3.19).



131

Similarly, for A < 0, we have
v(\) > cix for A <0. (3.20)

We also get

.1 c
}\I—IE){X_‘— v()\)} =0

by (3.17). With some consideration, we obtain

v(X) =\ for A € R. (3.21)
From (3.21), we have

In view of the definitions of v(A) and 2, we get

/oo 8n+2€—ll{u(3; O)U(S, )\) dS _ /00 Sn+2f—1Ku(3; )\)2 dS
0 )

0
= /Oo s"TH-1 Ky (s;0)? ds.
0
Thus we obtain
~ ./oo s"TTK (u(s;0) — u(s; A))2ds = 0,
0

~ which implies that u(r;0) = u(r; A), i.e., @ = 0, a contradiction. 0

Proof of Proposition 8.1.  The statement of Lemma 3.2 cantradicts that of
Lemma 3.1.. Thus we see that ¢ = 0. O

4 Proof of Theorems
To prove Theorem 1.1, we need to show that

D = {u|u is measurable, / K(|z|)u? dz < oo}
_ R
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is a separable Hilbert space and that {vj g(r){dzem (2)}or_1}%0=o forms an
orthogonal basis, where vy, := r’“’wk(r Ake) With wg(r; Ag g) defined just below

the proof of Lemma 2.1 and 7,[)[ ( ) is an eigenfunction of —A corresponding
to the eigenvalue oy = £(n —2+£) with 1 <m < p;=(n —2+2{)(n -3 +
O/ {(n —2)l'}. |

Proposition 4.1 Under (K), D is a separable Hilbert spaée with its inner
product ‘

(u,v) = /Rn K([:vl)uv dz (u,v € D).

Moreover, D, ® L2(S™!) is dense in D and {vg(r ){¢(m)( Vo1 } = 5 @
complete orthogonal basis to D.
Proof. It is easy to see that D is a separable Hilbert space and D, ®
L*(S™ 1) is dense in D. Since it is well-known that L?(S"~!) has a complete
countable orthogonal basis {{1/)§m)(z) bt} (see,e.g. Shimakura [10]), we
have only to show the ortho-normality of {vge}. -

As for D,, it is easy to see that

/oo r" VK (r)vg e dr =0 (4.1)
0

for any £ =0,1,2,... and k # j. Indeed, since viy € D, with vge(r) ~ rf at
r = 0 is an eigenfunction for the eigenvalue A, we have -

0 1 0
[T Ko wiedr = =5 [0 ) e dr
0 k¢ J0

©© .
= ——————-/ Uk’g(T'n_l’U;',e)ldT

= J——/ r" VK (r)vgv; 0 dr.
Ak, Jo |
Since A, # Ag-e), (4.1) is proved. From Proposition 3.1, we see that {vg,}

forms a complete basis. Thus we see that {vk,g(r){z/)em)(z) D 1 fio=0 15 @
countable dense set in D. The proof is complete : O

Proof of Theorem 1.1 If £ 75 ¢’ then the orthogonality and the complete-
ness comes from those of {1/)27")} If ¢ = f’ then the conclusion is a direct
consequence of Proposition 4.1. : 0
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Proof of Theorem 1.2 The relation Aog <Arg < Agp < oo < Mg < Apy1p <
.. comes from Lemma 2.2 and Axo < Ap1 < Ak <o < Ape < Aoy < ..
is an easy consequence of Sturm’s comparison Theorem. a
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