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We present here some results obtained with C. Gérard about the Mourre theory for
a class of operators which contains among other examples matrix valued differential
operators with constant coeflicients an periodic Schrodinger operators. We refer the
reader to [5, 4] for further details

The framework is the one of a Hilbert space H equal to L? (M, ;1) = [®Hdu(k)
where H' is a separable Hilbert space and (M, ) is a o-finite measured space. In this
framework, the fibered operators are the self-adjoint direct integrals of the form

Ho= [ ’ Holk)du(h)

The class of operators which we are interested in is characterized by the three
conditions

i) the space M is a real-analytic'manifold and g is a C*™-1-density.

ii) the resolvent (Ho(k)+4)~" is analytic with respect to k and Hy(k) has only discrete
spectrum for k € M. '

iii) the projection pg: £ 3 (A, k) — X € R is a proper map.

The set & mentionned above is the so called Bloch variety in the case of periodic
Schrodinger operator. Under condition i) and ii) it is well defined in R x M as a real
analytic set (see [10]) by

S ={(\k) €R x M, € o(Ho(k))}.
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The main result states the existence of a conjugate operator for Hy in any energy
interval which avoids the discrete set of “thresholds” specified in the proof.

Theorem 1. There exists a discrete set T determined by HO so that for any interval
I CC R\ there ezists an operator Aj essentzally self-adjoint on D(A;) = Coomp (M;;
L(H')) satisfying the following properties:

i) For all x € C,,(I), there exists a constant ¢, > 0 so that

X(Ho) [Ho, iA1] x(Ho) = exx(Ho)*.

ii) The multi-commutators ad’jll (Hp) are bbunded for all k € N.

iii) The operator A is a first order differential operator in k whose coefficients belong
to C>°(M; , o
L(H) and there exists X € Ccamp(R \ 7) so that A = x(Hp)A = Ax(Ho).

Before giving the idea of the proof, let us recall some known consequences of this
property. These are results of Mourre theory which hold for some natural class of
perturbed Hamiltonians H = Ho+ V (the result are even more precise for V =0). For
details about Mourre theory, we refer the details to [1], [7] and [8]).

Proposition 2. Let A; be a conjugate operator for Ho associated with an arbitrary
compact interval I C R\ 7. Let V be a symmetric operator on H so that:

i) V(Hp +14)™* is compact,

i) (Ho + %) Y[V, 1A;)(Ho 4 4)7" is compact, | | |

iis) [) ||(Ho + z')’i (€A1 [V, iAfe=4 — [V,iA]) (Ho + 1) 7! < oo.
Then the following results hold:

i) There e:msts a constant ¢ > 0 and a compact operator K so that if x € Cop,(I)
X(H)[H,iA]x(H) > ex’*(H) + K.

Consequently opp(H) is of finite multiplicity in R\7 and has no accumulation

points in R\T.
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ii) For each A € I\oywp(H), there exist € > 0 and ¢ > 0 so that
Ip—exte (H)[H, 1Al px—ept (H) > clp_erte(H).
iii) The limiting absorption principle holds on I\o,,(H):

el—ifilo(l + |Ar]) T (H — A +i€) ™ (1 + |Af|)~° exists and is bounded for all s > —;—

Consequently }the singular continuous spectrum of H is empiy.

iv) If the operator (1 + |A;])°V (1 + |Af])® is bounded for some s > %, then for any
open interval A C I, the wave operators

. §tH —itH +
s-lim e eI A (Hy) =: 2
t—=+o00 A( 0) A

erist and are asymptotically complete,

1G(H)H = QFH.

Idea of the Proof : The proof is modeled on the case of dispersive hamiltonians
Hy = p(D) on L*(R?) with p € C*(R;R) and D = 10,. In such a case, the conjugate
operator A is defined in the Fourier variable by

A= %(afp(f)-Dg-l-h. c.).

Here the variable k € M plays the role of the Fourier variable while p has to be
replaced by the eigenvalues of Hy(k). Then one encounters the famous problem of the
singularities of the Bloch variety. This can be bypassed with the next construction.
First one makes a partition of ¥ according to the multiplicity

E; = {(\ k) € R x M,rank(1,(Ho(k))) =1}
and one notices that the ¥; are semi-analytic subsets of R x M locally giVen by
S\ k) =...=8726(\k) =0, (1)
A16(A k) = 0 and 856(), k) # 0, _ (2

where (), k) is some polynomial in )\ analytically parametrized by k. Then the an-
alyticity and properness assumptions ensure the existence of a stratification of the
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mapping pg : & — R compatible with the partition & = U;Z; (see [2, 3, 6]). The set
of thresholds is then given as the union of strata on R with dimension 0 (analogous to
critical values in the dispersive case). Out of the thresholds, a stratum S, of ¥ with
S, C ¥; can be written locally

SN (Io X Vo) = {(X(k’,o),k’,o) L (K,0) € Vo} ,

where ) is the solution to (2) given by implicit function theorem. This function is
smooth with respect to k' on S, and coincide with the eigenvalue which is noncritical.
The conjugate operator is then given in a neighbourhood I x Vg of (Ag, ko) € Sy €
by

A)to,ko = IIO(H()(I{I)) e} %Gk,X(k)Dk: + h.c.|o 110(Ho(k)). (3)

The operator coefficients depend analytically on k£ € V; and the positive commutator
estimate with Hy come from the coincidence with the eigenvalue and the fact that
pr has no critical point on S,. A compactness argument allowed by the properness
assumption leads to the global definition of A;. One then check the essential self-
adjointness with the help of Nelson’s commutator theorem [9]. O
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