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abstract*

The general utility-treatment of stopped decision processes with a countable state
space is considered.

Under reasonable conditions, the results of our previous paper[12] are extended
to the general case, including the characterization of an optimal policy in case of the

fixed stopping time.

For the case of the exponential utility functions, the optimal pair is sought con-
cretely using the idea of the one-step look ahead (OLA) policy. Also, a numerical
example is given.

1. Introduction

A combined model of the Markov decision process and the stopping problem, called
stopped decision processes, has been considered by Furukawa and Iwamoto[6] in which the
existence of an optimal pair of policy and stopping time associated with some optimality
criterions is discussed for the reward system of the additive type.

Hordijk[8] has considered this model from a standpoint of potential theory.

Also, Furukawa[7] has reformulated the stopped decision model in the fashion of gam-
bling theory and derived the optimality equation for the case of general recursive reward
system using the successive approximation method.

In this paper the general utility-treatment of stopped decision processes with a countable
state space is considered. Our previous paper[12] has already considered the optimization
probIefn of the expected utility of the total discounted reward random variable accumu-
lated until the stopping time and derived an optimality equation for the general utility
case, by which an optimal pair of policy and stopping time has been characterized.

However, the concrete method of seeking an optimal pair is not discussed there.

* Keywords : Stopped Decision Processes, General Utility, Optimal Pairs, Optimality Equation, Expo-
nential Utility.
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The objective of this paper is to give the functional characterization from points of view
of seeking an optimal pair. And we give further results concerning an optimality equation
for our model, which is useful in seeking an optimal pair.

Also, for the case of the exponential utility function (cf. [5, 14]), the optimal pair is
sought concretely using the idea of the one-step look ahead (OLA) policy(cf. [15]), giving
a numerical example. | ” ’

The optimality equations are described by the class of distribution functions. of the

present value, whose idea is appearing in Chung and Sobel[3], Sobel[16] and White[17].

In the remainder of this section, we shall formulate the problem to be examined. Also,
an optimal pair of policy and stopping time is defined. ' ’

We consider standard Markov decision processes (MDPs), specified by
(51 {A(Z)}ZGS) q, 7"),

where S = {1, 2, ---} denotes the set of the states of the processes, A(7) is the set of
actions available at each state i € S, ¢ = (g;;(a)) is the matrix of transition probabilities
satisfying that Y cs¢i;(a) = 1 for all i € S and a € A(i), and (4, a, j) is an immediate
reward function defined on {(i, a, j) | ¢ € S, a € A(3), j € S}.

Throughout this paper we assume that (i) for each i € S, A(¢) is a closed set of a
compact metric space, (ii) for each 4,5 € S, both ¢;;(-) and (¢, -, ) are continuous on
A(i) and (iii) (-, -, -) is uniformly bounded.

A sample space is the product space 2 = (S x A)* such that the projection X;, A; on
the t-th factors S, A describe the state and the action of time ¢ of the process (¢ > 0).
A policy 7 = (mg, 71, +) is a sequence of conditional probabilities 7; such that m(A(4;) |
49, @g, - -+,1;) = 1 for all histories (g, ag,---,%) € (S x A)* x S. The set of policies is
denoted by II.

Let H; = ( Xo, Do, -+, As1, Xy) for t > 0. We assume for each 7 = (mg, 71, -+) €11,

P"( X1 =7 | He-1, Doy, Xe =1, A = a) = gij(a),

forallt >0,4,7€ S, a€ A(%). For any Borel measurable set X, P(X) denotes the set of
all probability measures on X. Then, any initial probability measure v € P(S) and policy
7 € II determine the probability measure P] € P(§2) by a usual way.
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The total present value until time ¢ is defined by

t

(1.1) B(t) = > r( Xg-1, De-1, Xk, ) (£20),

k=0
where X_;, A_ are fictitious variables and 7( X_;, A_1, Xo, ) =0.
Note that for each v € P(S) and 7 € II, B() is a random variable from the probability
space ( 2, PT ).
Let g be a non-decreasing continuous function on the real spaée R.
Let v € P(S) and m € II. Then, we call a random variable o : Q@ — {0,1,2,---} a

stopping time with respect to (v, m) if the following conditions are satisfied:
(i) Foreacht >0, {0 =t} € F(Hy),
(ii) PT(oc <o00)=1 and
(ii) E7[g~(B(0))] < 00,

where F(H,) is the o-algebra induced by H; and g~ (x) = max{—g(z), 0}.
The set of such stopping times will be denoted by ¥, r).
For any v € P(S5), let '

A, = {(r,0)| 0 € T, n), €11}

Then, interpreting a ¢ as a utility function, our problem is to maximize the expected
utility E™[g(B(0))] over all (m, o) € A, for a fixed v € P(S).

The pair (7*,0*) € A, is called (v, g)-optimal or simply optimal (suppressing (v, g)) if
(1.2) E] [9(B(c*))] 2 E7[9(B(0))] for all (m,0) € A,

In Section 2, we give the characterization of an optimal policy in the case that the
‘stopping time is fixed, whose results are applied to obtain an optimal pair in the sequel.

In Section 3, we extend the results obtained in [12, 13] for the discount case to the
general case. The proofs are nearly analogous to those in [12, 13], so that the most part
of the proofs will be omitted.

The exponential utility case is treated in Section 4, where the optimal pair is sought by

using the idea of the one-step look ahead (OLA) stopping time.
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2. MDPs with the stopping region
For a subset K of S, let
ok = the first time ¢ > 0 such that X; € K.

Henceforth, we assume that ok is a stopping time with respect to any (v, ) € P(S) x II.

We say that 7* € I is (v, g)-optimal with respect to o if
Eg*[g(B(UK))] > E7[g(B(ok))] forall m eIl

When 7* is (v, g)-optimal for all v € P(S), n* is simply called g-optimal w.r.t. ok.
In order to analize the above problem, it is convenient to rewrite FJ[g(B(ox))] by using
the distribution function of B(ck) corresponding to P7. Suppressing K in the notation,

let for v € P(S) and 7 € 11,
Fr(z):= Pl (B(og) <z) and
O(v) :={F()| meIl}.

Then, it is obvious that E][g(B(ok))] = /g(z)F;r(dz)
For any « € II, the map v, : R X P(S) — R will be defined by

veld, v) = [ gld+ 2)F(d2).

We note that v,(0, v) = E}[9(B(ok))] and v(d, i) = g(d) if i € K, where v € P(S) is
simply denoted by ¢ when it is degenerate at {i}.
The value function for our model can be denoted by
(2.1) v(d, v) = supue(d, v),
well

which is depending on the present fortune d € R and state distribution v € P(S).

In the following lemma, it is shown that the supremum in (2.1) can be attainable.

Lemma 2.1. For any v € P(S), v(d, v) = maxpeop) /g(d—l— 2)F(dz).
Also, for each v € P(S), there exists (v, g)-optimal policy w.r.t. ox.

Proof. For each v € P(S), the set { P7(-) € P(Q) | = € [1} is known to be compact in
the weak topology(c.f. Borker[1]). Since the map B(ok) : & — R is continuous, ®(v) is
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weak-compact. Thus, from the assumption of the continuity of g4(z) = g(d+ 2), it follows
that

v(d, v) = Fselél()). 94(2)F(dz) = /gd(z)F*(dz) for some F* € ®(v).

This proves the first part of the results.
For F* € ®(v) with v(0, v) = /g(z)F*(dz), the policy 7* coresponding to F™* is clearly

(v, g)-optimal w.r.t. ok, as required. m]

Lemma 2.2. Foreacht > 0, d € R and w € 11,
E7lg(d+ B(ok)) | ok > t]

(22) < B7[ max > dxis(@o(d+ BO) +7(X 0, ), ) | o > t].

aeA(Xt)

Proof. For simplicity, denote EX by E. For any w = (i, aq, %1, a1, ) € Q, let O;(w) =
(i4, @z, 411, - +) be a shift operator for ¢ > 1.
The Markov property of the transition yields that
Elg(d+ B(ok)) | ok > ]
= E[E[g(d+ B(t + 1) + B(ox — (t + 1)) (0s+1(w))) | Hesa] | ok > 1]
Ev(d+ B(t) + r(Xe, Aty Xev1), Xew1) | ok > t]
< { the right-hand of the inequality (2.2) },
which completes the proof. 0O

For any d € R and i ¢ K, let

A(d, ©) —argmaqum v(d+r(4, a, §), J)-

aEA(z)

The value function v(d, 7) is shown to satisfy the optimality equation in the fillowing

theorem.

Theorem 2.1. The value function v satisfies the following equation.

{maqum v(d+r(i, a, §), j) for i ¢ K,

a€A(4)

(2.3) v(d, i) =
g(d) for i € K.

Proof. Let d € R. For any f € F such that f(i) € A(d, i) for i ¢ K and f(i) =
a(arbitrary)e A(3) for i € K, let 79 be a policy corresponding to F} € ®(j) satisfying

o(d+r(i, £(3), 5); ] /g (d+71(, fG), 1)+ 2)Fr(dz),
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whose existence is guaranteed by Lemma 2.1.
Let 7 be the policy that chooses the action A at time 0 according to f and use policy

7 from time 1 when X; = j. Then, clearly it holds"

E”[g(d-f—B (ok)) qu.] v(d + (i, f(), 4), 7)

JES

_JQE(X,)ZQ” v(d + (i, a, ), 7).

Together with (2.2), the above derives (2.3), as required. 4 .. D
In order to discuss the uniqueness of solutions of (2.3), we need the following assumption.

Assumption A. Ej[| g(d+ B(ok)) |] < oo for any v € P(S), 7 € [l and d € R.

Theorem 2.2. Suppose that Assumption A holds. Then,
(i) it follows that ' |

(24 Jim EZ[o(d+ B(0), X0)1ineony] = 0

fér any v € P(S), 7 € Il and d € R, where 1, is an indicator function of a set A.
(i) The map v: R x S — R satisfying (2.4) is uniquely determined by (2.3).

Proof. Let w € II. Let 7{X:} € II be such that v(d + B(t), X;) = Urix,(d + B(t), Xy).
Note that 7{X;} is depending on d + B(t) and X; and its existence is guaranteed by

Lemma 2.1.

We denote by 7} € II the policy that uses 7 until time ¢ and uses 7{X;} from time ¢.
Then,

Erlg(d+ B(ok))] = Exlg(d+ B(ok))iox<n]

(2.5)
+ E,’,r[v(d + B(t), Xt)1{0K>t}]-

Under Assumption A,

lim E7”[g(d + B(ok))] = E[g(d + B(ok))].

t—o0

So as t — oo in (2.5), we get (i).
The proof of (ii) is not particularly difficult, but tedious. So, we omit it. a

The following results can be proved as similarly as that of Theorem 3.3 in [10].
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Theorem 2.3. Let ©* = (w5, 7}, -+) be any policy satisfying that for all t > 0
m (A(B(t), X;) | Hi) =1 on {ox >t}.

Then 7* is g-optimal w.r.t. ok.

3. Optimal pairs

In this section we derive the optimality equation for the stopped decision model, by
which an optimal pair is characterized. Throughout this section, we assume the following

Conditions 1 and 2 are satisfied.

Condition 1. The utility function g is differential and for any compact subset D of R,

there exists a constant Lp such that

| ¢(z)|<Lp forallzeD.

Condition 2. ET[sup gt (B(t))] < oo for all v € P(S) and 7 € II.

t>0

For simplicity of the notations, let
®(v) ;= {F™) | (1,0) € A, },

where F(™)(z) = PT(B(0) < z) for (m,0) € A,.

In order to describe an optimality equation in the sequel, define:

(3.1) U{g}(d, i, o, /) = sup [ g(d-+r(i, a, ) +2)F(d2)
FG‘I?’ (9
and
(3.2) U{g}(d, i) = Iggchqm (@)U{g}(d, 1, a, j)

foreachd € R, i, j € S and a € A(7).
It is easily proved under Condition 1 that the maximum in (3.2) is attalnable

For v € P(S) and n > 1, let
At = {(m,nVo) | (m,0) € A}

where a V b = max{a, b} for a, b € R.
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Define a conditional maximum by
Vs = esSSUD oy 4 BE19(B(0)) | Ful (n > 0),

where F,, = F(H,).
Henceforth, for simplicity we write esssup by sup and suppress v in v}, if not specified
otherwise. The recursive relation concerning {v,} is described in the following, whose

proof is given in [13].

Lemma 3.1. ([12, 13]) For each n > 0, it holds

(i) yn = max{ g(B(n)), sup Ejyn+1 | Fal}

(i) sup B} fynsa 7] = U{gH(B(n), Xa).

In order to obtain an optimal pair, it is convenient to introduce the following notations:
R:={(d, 1) €Rx S| g(d) > U{ghd, )} and

A*(d, 9) := arg max Y q;;(a)U{g}(d, i, a, j)
a€A(%) jes

foreachde R and i € S.
Let o* is the first time ¢ > 0 such that

(3.3) (B:, X;) € R
and 7* = (7§, 7{,-- ) be any policy satisfying
(3.4) PT (A € AY(B(t), X)) =1 for all t> 0.

The following lemma is given in [12, 13].

Lemma 3.2. ([12, 13]) Let 0*(n) = min{o*, n}. Then, {Yoe(my, Fn, n > 0} is a
martingale.

Here, we can state the main theorem.
Theorem 3.1.
(i) If PT" (0" < o0) = 1, then the pair (7*,0*) is g-optimal.

(ii) If g(B(n)) — —oo (asn — o0) Pr -a.s. then P™ (0* < 00) = 1.
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Proof. From Lemma 3.2, ET [yo] = ET [Yo+(n)] for all n > 1. Now, as n — 0o in the

above, we get

EZ:* ['70* 1{a*<°°}] + E;’/T* [Lin_ln—»oo’yd*('n) 1{0*200}]

3.5 7],* 7r* 7r* 3.
( ) < EI/ [70] < Eu [70'*1{0*<00}] + EV [hmn_?oofya'*(n)]-{o'*:oo}]-'

If PT'(0* <o0) =1, EJ [y] = E [v0].

On the other hand, by the definition of o*, v,+ = g(B(c*)), which implies E7 [yo] =
E7"[9(B(0*))]-

Since E7[g(B(c))] < Ex[v] = E [y], it holds EJ[g(B(0))] < EJ [9(B(c"))] for all
(7, 0) € A,. This shows that the pair (7%, ¢*) is g-optimal.

(ii) follows obviously from the right inequality of (3.5). O

4. Exponential utility functions

In this section, we consider the case of the exponential utility function
(4.1) gr(z) = sign(—\) exp(—Az)

for a non-zero constant A and try to give the concrete characterization of the optimal pair
by the idea of the one-step look ahead (OLA) stopping time. For the OLA-stoppihg time,
refer to Ross[15] and Kadota et.al[11].
Let
m(i, a) ==Y gij(a) exp(=Ar (3, a, 7))

jes
We need the following Conditions.
Condition A. For any A > 0, fr),\l(z', a) is non-decreasing in ¢ € S for each a € A, and for
X < 0, (4, a) is non-increasing in i € S for each a € A.
Condition B. For each a € A, gij(a) =0, if i > j and gis(a) < 1.
We note that Condition B is satisfied for Markov deteriorating system.

Let Ky:={(d, i) eRx S| vx(d, i) — gr(d) <0},

where '
’U}\(d, Z) = max Z sz(a)gz\(d'i' ’I"(’Z:, a, .7))
a€A(%) jes

Then, the K, is characterized by the following.



22

Lemma 4.1. Under Condition A, for each A (A # 0), there exists an integer iy € S
such that K\ =R x{i€S|i>1}.

Proof.  We observe that vx(d, i) — ga(d) = e™*4(1 — mingeasy M@, @) if A > 0, =

e—)\d

(maxaecap) M (i, a) —1)if A <0. v

So that, if A > 0, va(d, 7) — gx(d) < 0 means min,cq (%, a) > 1.

Observing that min,ec 4 7 (4, a) is non-decreasing in i € S from Condition A, there exists
an 4y such that vx(d, ©) — ga(d) < 0 if and only if ¢ > 45. Similarly the case of A < 0 is

proved, as required. O
Lemma 4.2. Under Condition A and B, the following holds:

(i) Ifi > iy, then

(4.2) Y ai(@)U{ga}(d, i, a, ) =D gij(a)gr(d + (3, a, §))

JES jES

for all a € A(i) and d € R.

(ii) Ifi < iy, then gr(d) < U{gx}(d, 1) for all d € R.

Proof. Let i > iy, a € A(i), d € R and j € S with ¢;j(a) > 0. Then, for any
F € ®(j), from Condition B and Lemma 4.1 we see that { gx(d+r(i, a, j)+B(n)), Fn, n =
0, 1, 2,---} is a suppermartingale with respect to PT, where (7, o) is a pair corresponding
to F and F, = F(H,). ‘

Applying Theorem 2.2 of Chow, Robbins and Siegmund|2], we get

Bylox(d+7(i, a, )+ BO)] = [r(d-+7(i, a, j) +2)F(d2)
< g)\(d—i_ T(iv a, .7))7
which means U{gx}(d, i, a, 7) < gr(d + (i, a, j)). Thus (4.2) follows.
For (ii), let i < 5. Then, for any d € R, since (d, )¢ K there exists a; € A(%) such that
9(d) < Yjes q,J(al)g,\(d+r(z a1, j)). Thus, by the definition, clearly g(d) < U{g»}(d, %),

as required. ]

From Lemma 4.2, we find that the optimal stopping time o} defined by (3.3) in Section

3 becomes
oy = the first time £ > 0 with X; € .K’\’
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which is ok, with the stopping region K and discussed in Section 2. Thus, to seek the
optimal policy 7*, we can apply the results in Section 2.
Let
v1(4) = Opt, e Br[e B3]

where “Opt” means “Maximum” if A < 0 and “Minimum” if A > 0. Then, by Theorem

2.1 we have :
(4.3)
{OptaeA(i)[ > gi@)e Dl () + Y ‘Iz‘j(a)e_AT(i’a’j)], for @ <y,
vi(1) = i<g<in iy
1, for 1 > 1.

Let, for i (1 <14 < 1iy),
A*(i) = {a € A(4) | a realizes the opt on the right-hand side of (4.3) }

Then, the optimal pair (73}, o}) under exponential utility is given in the following theorem.

Theorem 4.1. Let o} = the first t such that X; > ix and 7} = (mg, 77, --) be such
that mi{A*(Xy) | Hy} =1for 1 < X; <in.

Then, the pair (7}, 0}) is g-optimal.

Proof. We can check that R and A*(d, 1) in Section 3 is equal to K and A*(t) respec-
tively. Thus, from Theorem 3.1, Theorem 4.1 follows. : O

Here we give a numerical example to illustrate the theoretical results.
Let S ={1,2,3,---}, A=1, 2] and
(%)j—i a
giila) =4 U= -

o
.
TAN
R

fori,j€ Sand a € A

For an inspection cost ¢ > 0, let r(4,a,5) = $—¢c (5, € S, a € A). Then,
(3, @) = e 2§79 which satisfies Condition A. Simple calculations yield the integer i
in Lemma 4.1 is given as iy = [2], which is independent of A, where [z] is the smallest

integer greater than or equal to z.
Also, by (4.3) we find A*(i) = {2}, so that the optimal policy 7% = 2%.
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As another example, let 7(4, a, j) = ¢ | j — i | —c. Then,

G o) = & ep{ S (ew(~2) ~ 1),

which satisfies Condition A. The numerical value of each integer iy is given in Table 1.
Observing Table 1, we know that a risk-averse decision maker (A > 0) has a tendency to

stop earlier than a risk-seeking one (A < 0).

A -25)-2-15|-11-0.5 061 (15] 2 (25
; c¢=0.1 8 | 8| 8 | 7| 7 7166
*e=001 22 |21 21 | 21| 21 20 12020 | 19| 19

(@)
(@]

Table 1: The value of 45 for ¢ = 0.1 and 0.01(\ # 0).
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