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Abstract

Constrained Markov decision processes with compact state and action spaces
are studied under long-run average reward or cost criteria. And introducing a
corresponding Lagrange function, a saddle-point theorem is given, by which the
existence of a constrained optimal pair of initial state distribution and policy is
shown. Also, under the hypothesis of Doeblin, the functional characterization of a
constrained optimal policy is obtained.
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1 Introduction And Notation
The linear programming $(\mathrm{L}\mathrm{P})$ formulation of unconstrained or constrained Markov de-
cision processes (MDPs) has been studied by many authors (for example, [2,5,7,9,13,14]
and their references). However, most of the related papers are concerned with the case of
denumerable (mainly finite) states. As for the general state space, the study of the LP
formulation of unconstrained MDPs has been done by Hern\’andez-Lerma and Lasserre [11]
and Hern\’andez-Lerma and Hern\’andez-Hern\’andez [12], in which it has been shown that
there is no duality gap between the corresponding LP and its dual LP and that strong
duality condition holds using the basic facts of LP in general vector space [1].

Kurano [15] has considered the case in which the state space is compact and Doeblin’s
condition [10] holds and proved the existence of an optimal stationary policy for uncon-
strained MDPs with average cost criterion by extracting a randomized stationary policy
from a limit point of empirical processes.

In this paper we consider constrained MDPs in the framework similar to [15]. Asso-
ciated with constrained MDPs with average criteria, a corresponding linear program (P)
and its dual $(\mathrm{P}^{*})$ are formulated by the approach of Anderson and Nash [1]. Introducing
the Lagrange function we will give a saddle-point theorem for constrained MDPs by use of
the absence of a duality gap between (P) and $(\mathrm{P}^{*})$ under compactness assumptions. The
saddle-point statement is applied to prove the existence of a constrained optimal pair of
initial state distribution and policy and obtain its functional characterization under the
hypohesis of Doeblin.

In the remainder of this section we shall establish the notation that will be used
throughout the paper and define the problem to be examined. Also, a constrained optimal
pair of state and policy and constrained optimal policy are defined.
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In Section 2 the saddle-point statements for constrained MDPs are given under a reg-
ularity condition, whose results are. applied to obtain the characterization of a constrained
optimal policy in Section 3.

A Borel set is a Borel subset of a complete separable metric space. For a Borel set
$X,$ $B_{X}$ denotes the $\sigma$-algebra of Borel subsets of X. A Markov decision process with
multiple constraints is a controlled dynamic system defined by the following objects:
$S,$ $\{A(X), x\in S\},$ $Q,$ $r,$ $C_{l}(l=1, \cdots, \dot{k})$ , where $S$ is any Borel set representing the state
space of some system and for each $x\in S$ , the admissable action space $A(x)$ is a non-empty
subset of some Borel set $A$ such that $\{(x, a) : x\in S, a\in A(x)\}$ is an element of $B_{S}\cross B_{A}$ ,
the immediate reward function $r$ and cost functions $c_{l}(l=1,2, \cdots, k)$ are real-valued
function on $S\cross A,$ $Q(\cdot|x, a)$ is the law of motion , which is taken to be a stochastic kernel
on $B_{S}\mathrm{x}S\cross A$ ; i.e., for each $(x, a)\in S\cross A,$ $Q(\cdot|x, a)$ is a probability measure on $e_{s;}$

and for each $D\in B_{S},$ $Q(D|\cdot)$ is a Borel measurable function on $S\cross A$ .
For any Borel set $X,$ we. denote by $C(X)$

,
the set $.\mathrm{o}\mathrm{f}$ all bounded continuous functions

on $X$.
Throughout this paper, the following assumptions will remain operative:
(i). $S$ and $I\mathrm{t}^{7}:=\{(x, a)|x\in S, a\in A(x)\}$ are compact;
(ii). $r\in C(S\cross A)$ and $c_{l}\in C(S\cross A)(l=1, \cdots, k)$ ;
(iii). wherever $x_{n}arrow x,$ $a_{n}arrow a,$ $Q(\cdot|x_{n}, a_{n})$ converges weakly to $Q(\cdot|x, a)$ .
The sample space is the product space $\Omega=(S\cross A)^{\infty}$ such that the projections $X_{t},$ $\triangle_{t}$

on the $t\mathrm{t}\mathrm{h}$ factors $S,$ $A$ describe the state and action of the $t\mathrm{t}\mathrm{h}$ time of the process $(t\geq 0)$ .
A policy is a sequence $\pi=(\pi_{0}, \pi_{1}, \cdots)$ such that, for each $t\geq 0,$ $\pi_{t}$ is a stochastic kernel

on $B_{A}\cross S\mathrm{x}(A\cross S)^{t}$ with $\pi_{t}(A(xt)|X0,a0, \cdots, a_{t-}. 1, Xt)=1$ for all $(x0, a0, \cdots, at-1, Xt)\in$

$S\mathrm{x}(A\cross S)^{t}$ . Let $\Pi$ denote the class of policies.
We denote by $P(A|S)$ the set of all stochastic kernels $\Phi$ on $B_{A}\mathrm{x}S$ with $\Phi(.A(x).|- x)=1$

for all $x\in S$.
A policy $\pi=(\pi_{0}, \pi_{1}, \cdots)$ is a randomized stationary policy if there is a $\Phi\in P(A|S)$

such that $\pi_{t}(\cdot|x0, a0, \cdots, Xt)=\Phi(\cdot|x_{t})$ for all $(x_{0}, a_{0,t}\ldots, X)\in S\cross(A\cross S)^{t}$ and $t\geq$

.
$0$ .

Denote the corresponding policy simply by $\Phi$ .
We denote by $B(Sarrow A)$ the set of all Borel measurable functions $f$ : $Sarrow A$ with

$f(x)\in A(x)$ for all $x\in S$ .
A randomized stationary policy $\Phi$ is called stationary if there exists an $f\in B(Sarrow A.)$

satisfying $\Phi(\{f(X)\}|x)=1$ for all $x\in S$. Such a policy will be denoted by $f$.
The set of $\mathrm{a}\dot{1}1$ randomized stationary and stationary policies will be den,oted by $\Pi_{RS}$

and $\Pi_{S}$ respectively.
Note that $\Pi_{RS}$ and $\square s$ are $P(A|S)$ and $B(Sarrow A)$ respectively.
Let $H_{t}=$ $(x_{0}, \Delta_{0}, \cdots , \triangle_{i-1}, X_{t})$ . We assume that for each $\pi=(\pi_{0}, \pi_{1}, \cdots)\in\Pi$ ,

Prob$(\triangle_{t}\in D_{1}|H_{t})=\pi_{t}(D_{1}|H_{t})$ and $Prob(x_{t+}1\in D_{2}|H_{t-1,t-1}\triangle, X_{t}=x, \triangle_{t}=a)=$

$Q(D_{2}|x, a)$ for each $D_{1}\in B_{A}$ and $D_{2}\in B_{S}(t\geq 0)$ .
For any Borel set $X$ , let us denote by $P(X)$ the set of all probabitity measures on $X$ .
For each $\pi\in\Pi$ and initial state distribution $l\text{ノ}\in P(S)$ , we can define the probability

measure $P_{\pi}^{\nu}$ on $\Omega$ in an obvious way.
The average expected reward and costs from a policy $\pi\in\Pi$ with an initial distribution
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$\nu\in P(S)$ are defined $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}_{\mathrm{V}}\mathrm{e}1.\mathrm{y}$ by

$J$ (lノ, $\pi$ ) $= \lim_{Tarrow}\inf\frac{1}{T}\sum^{-}\infty T1t=0E_{\pi}^{V}[r(xt, \triangle t)]$ , (11)

.

$I_{l}( \nu, \pi)=\lim\sup_{\infty}\frac{1}{T}\sum_{=l0}E^{\mathcal{U}}\tauarrow\tau_{-}1\pi[Cl(X_{t}, \Delta t)],$ $(l=1, , . . , k)$ . (1.2)

where $E_{\pi}^{\nu}$ is the expectation with respect to $P_{\pi}^{\nu}$ .
For any given vector $\alpha=$ $(\alpha_{1}, \alpha_{2}, \cdots , \alpha_{k})$ , let

$U=\{(\mathrm{I}\text{ノ}, \pi)\in P(S)\cross\square |I\iota(l^{\text{ノ}}, \pi)\leq\alpha l, l=1, \cdots, k\}$ . (1.3)

In this paper, assuming that $U\neq\emptyset$ , we consider the following problem.

Problem(A): maximize $J(\iota \text{ノ}, \pi)$ ,
subject to $(\nu, \pi)\in U$.

The optimal solution of Problem(A), $(\iota \text{ノ^{}*}, \pi^{*})$ , if it exists, is called a constrained optimal
pair.

For each $\nu\in P(S)$ , letting

$J( \nu)=\sup\{J(\mathcal{U}, \pi)|(l\text{ノ},\pi)\in U\}$ ,

a policy $\pi^{*}$ is a constrained optimal policy if J(\iota ノ) $=$ J(\iota ノ, $\pi^{*}$ ) for all $l\text{ノ}\in P(S)$ with
$(\nu, \pi^{*})\in U$.

For any $\mu\in P(K)$ , let $\mu_{S}\in P(S)$ denote the marginal of $\mu$ on $S;i.e.$ ,

$\mu s(D):=\mu(D\cross A),$ $D\in B_{S}$ .

Let $O(K):= \{\mu\in P(K)|\mu s(\cdot)=\int Q(\cdot|x, a)\mu(d(X, a))\}$ . Note that an element belong-
ing to $O(K)$ is called an ergodic occupation measure in [6].

We shall use the following.

Lemma 1.1 (cf. [15]). For any $(\nu, \pi)\in P(S)\cross\Pi$ and $g\in C(K)$ , there exists a $\mu\in O(K)$

such that
$\int g(x, a)\mu(d(_{X}, a))\geq\lim_{Tarrow}\sup\frac{1}{T}E^{\nu}[\pi\sum g(X_{tt}\infty\tau-1t=0’\triangle)]$. (1.4)

Lemma 1.1 asserts that for any given reward $g\in C(K)$ any pair $(\nu, \pi)\in P(S)\cross\square$

can be replaced by an ergodic occupation measure $\mu\in O(K)$ , the expected reward from

which is at least as large as that from $(\nu, \pi)$ .
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2Saddle-point Theorem For Constrained MDPs
In this section we define the Lagrangian associated with Problem(A), by which the saddle-
point statement is given. And using the absence of a duality gap between a corresponding
linear program (P) and its dual $(\mathrm{P}^{*})$ the saddle-point theorem is proved.

First we define the Lagrangian, $L$ , that corresponds to Problem(A) as follows:

$L((\nu, \pi),$ $\lambda)=J(\nu, \pi)+\sum_{=l1}k\lambda l(\alpha l-Il(\nu, \pi))$ , (2.1)

for any $(\nu,\pi)\in P(S)\cross\Pi$ and $\lambda=(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k})\in R_{+}^{k}$ , where $R_{+}^{k}$ is the positive orthant
of a $\mathrm{k}$-dimensional Euclidian space.

Henceforth $\lambda=(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k})\in R_{+}^{k}$ will be written simply by $\lambda\geq 0$ .
For the Lagrangian approach in general non-linear programming problems we refer to

([3,16]).
The following saddle-point statement can be made, whose proof is similar to ([16],

p.221, Theorem 2) and omitted.

Theorem 2.1 (cf. [16]). Suppose that there exists a $(\nu^{*}, \pi^{*})\in P(S)\cross\Pi$ and $\lambda^{*}\geq 0$ such
that $L((\nu, \pi),$ $\lambda)$ possess a saddle-point at $(\nu^{*}, \pi^{*}),$ $\lambda^{*};$ i.e.,

$L((\nu, \pi),$ $\lambda^{*})\leq L((\nu^{*}, \pi^{*}),$ $\lambda^{*})\leq L((\nu^{*}, \pi^{*}),$ $\lambda)$ , (2.2)

for all $(\nu, \pi)\in P(S)\cross\Pi$ and $\lambda\geq 0$ . Then, $(\nu^{*}, \pi^{*})$ solves Problem(A) and is a
constrained optimal pair.

From the above theorem, it will be of value to obtain sufficient conditions for the
existence of a saddle-point of the Lagrangian $L$ .

To this end let us introduce several notations, the linear program (P) and its dual
$(\mathrm{P}^{*})$ corresponding to Problem(A).

For a Borel set $X$, let $B(X)$ be the set of all bounded Borel measurable functions on
X.

For any $u\in B(X)$ and $\eta\in P(X)$ , we denote the integral as follows:

$\langle u, \eta\rangle=\int ud\eta$ .

For any $\lambda=$
$(\lambda_{1}, \lambda_{2}, \cdots , \lambda_{k})\in R_{+}^{k}$ , let

$r(x, a| \lambda):=r(X, a)+\sum_{l=1}^{k}\lambda_{l}(\alpha_{l}-C_{l}(x, a))$ . (2.3)

Here, consider the following linear programs (P) and $(\mathrm{P}^{*})$ .
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(P): maximize $\langle r, \mu\rangle$ ,
subject to $\mu\in O(K)$ ,

$\langle c_{l},\mu\rangle\leq\alpha_{l}(l=1, \cdots, k)$ . (2.4)

$(\mathrm{P}^{*})$ : minimize $\rho$

subject to $p+h(x) \geq r(x, a|\lambda)+\int h(x’)Q(dX|\prime X, a)$ (2.5)
$\lambda\geq 0,$ $h\in B(S)$ .

If the program (P) is $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}_{\mathrm{S}}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{t}$ ( $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}.$ , solvable), then its value is denoted by $\sup(\mathrm{P})(\mathrm{r}\mathrm{e}\mathrm{s}_{\mathrm{P}}.$ ,
$\max(\mathrm{P}))$ ; the value of the dual program $(P^{*})$ is written by $\inf(\mathrm{P}^{*})(\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{p}., \min(\mathrm{P}^{*}))$ .

If sup(P) $= \inf(\mathrm{P}^{*})$ , it is said that there is no duality gap, whereas if they are solvable
and max(P) $= \min(\mathrm{P}^{*})$ we say that the strong duality condition holds ([1]).

Throughout this paper we assume that both programs (P) and $(\mathrm{P}^{*})$ are consistent.
For any $\mu\in P(K)$ and $\lambda\geq 0$ , let

$L( \mu, \lambda)=\int r(x, a|\lambda)\mu(d(X, a))$ . (2.6)

It will become obvious that the above definition is compatible with the Lagrangian defined
in (2.1).

The following lemma, the proof of which is obtained by applying Lemma 1.1., will
play a crucial role in the sequel.

Lemma 2.1. For any $\lambda\geq 0$ and $(\nu, \pi)\in P(S)\cross\Pi$ , there exists $\mu\in O(K)$ such that

$L(\mu, \lambda)\geq L((\mathcal{U}, \pi),$ $\lambda)$ . (2.7)

Proof. Applying Lemma 1.1 with $g(x, a)=r(x, a|\lambda)$ , there exists $\mu\in O(K)$ such that

$L( \mu, \pi)\geq\lim_{Tarrow}\sup_{\infty}\frac{1}{T}\sum_{0t=}^{1}E_{\pi}\nu[rT-(x_{t}, \triangle_{t}|\lambda)]$ . (2.8)

Thus, from $\lambda\geq 0$ and $(2.1)-(2.2)$ , we get

$L(\mu, \lambda)$ $\geq\lim_{Tarrow}\inf_{\infty}\frac{1}{T}\sum^{-}T1t=0E\pi\nu[r(X_{t}, \triangle_{t}|\lambda)]$

$\geq J(\nu, \pi)+\sum^{k}l=1\lambda_{l}(\alpha l-I_{l}(_{U}, \pi))$

$=L((\nu, \pi),$ $\lambda)$ ,

which completes the proof. $\square$

Using Lemma 2.1 we can derive the following.
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Corollary 2.1. (i) For each $\lambda\geq 0$ ,

$( \nu,\pi)\sup_{\in P(S)\mathrm{x}\Pi}L((_{\mathcal{U}}, \pi),$ $\lambda)=\sup_{O\mu\in(K)}L(\mu, \lambda)$
.

(ii) $\sup$ inf $L((\nu, \pi),$ $\lambda)\geq$ $\sup$ inf $L(\mu, \lambda)$ .
$(\nu,\pi)\in P(S)\cross\Pi\lambda\geq 0$ $\mu\in \mathrm{O}(K)\lambda\geq 0$

Proof. Let $\mu\in O(K)$ . Then we decompose the probability measure $\mu$ into $\mu_{S}\in P(S)$

and $\Phi\in P(A|S)$ such that
$-.\cdot$

$\mu(D_{1}\cross D_{2})=\int_{D_{1}}\Phi(D_{2}|x)\mu s(dX)$ for any $D_{1}\in B_{S}$ and $D_{2}\in B_{A}$ ,

(for example, [4]).
Letting $Q( \cdot|x, \Phi)=\int Q(\cdot|x, a)\Phi(da|X)$ , it follows that

$\mu s(\cdot)=IQ(\cdot|X, \Phi)\mu s(dX)$ ,

which means that $\mu_{S}$ is a stationary absolute probability measure for the Markov process
induced by $\{Q(\cdot|x, \Phi)\}$ .

Hence, $L(\mu, \lambda)=L((\mu s, \Phi),$ $\lambda)$ , which shows (i) together with Lemma 2.1. Also, (ii)
follows similarly. $\square$

Lemma 2.2. (i) $\inf(\mathrm{P}^{*})\geq$ inf $\sup L(\mu, \lambda)$ .
$\lambda\geq 0_{\mu\in^{\mathrm{o}}(K})$

(ii) $\sup$ inf $L( \mu, \lambda)\geq\sup(\mathrm{P})$ .
$\mu\in \mathrm{O}(K\rangle\lambda\geq 0$

Proof. Let $(\rho, h, \lambda)$ be any feasible solution for $(\mathrm{P}^{*})$ and $\mu\in O(K)$ .
Integrating both sides of (2.5) with respect to $\mu$ , we get $\rho\geq L(\mu, \lambda)$ , which implies (i).
For (ii), let $\mu$ be a feasible solution fo..r (P). Then, since $\lambda\geq 0,$ $L(\mu, \lambda)\geq\langle r,\mu\rangle$ , which

shows (ii). $\square$

Applying general LP results ([1], Theorem 3.10 and Theorem 3.22), the following
lemma can be obtained by checking the closedness of $(\mathrm{P}^{*})$ from the compactness of K.
The proof is tedious and omitted.

Lemma 2.3. There is no duality gap between (P) and $(\mathrm{P}^{*})$ and (P) is solvable, i.e.,

inf(P*) $= \max(\mathrm{P})$ . (2.9)

Observing Corollary 2.1 and Lemmas 2.2-2.3, the following minimax theorem holds.
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Theorem 2.2. inf $\sup$ $L((\nu, \pi),$ $\lambda)=$ $\sup$ inf $L((\nu, \pi),$ $\lambda)$ .
$\lambda\geq 0(\nu,\pi)\in P(s)\mathrm{X}\Pi$ $(\nu,\pi)\in P(S)\cross\Pi^{\lambda}\geq 0$

(2.10)

Henceforth the common value of (2.10) will be denoted by $L^{*}$ .

Corollary 2.2. inf $\sup L(\mu, \lambda)=$ $\sup$ inf $L(\mu, \lambda)=L^{*}$ .
$\lambda\geq 0_{\mu\in \mathrm{O}}(K)$ $\mu\in \mathrm{O}(K)^{\lambda\geq 0}$

Here we define a convex function on $R_{+}^{k}$ by

$L_{1}(\lambda):=(\nu,\pi)\in P(\mathrm{s}\mathrm{u}\mathrm{p}S)\cross\Pi L((\mathcal{U}, \pi),$

$\lambda)$ . (2.11)

In order to prove the existence of a saddle-point, we need the following condition.

Condition A (Slater condition). There exists a $(\overline{\nu},\overline{\Phi})\in P(S)\cross\Pi$ such that

$I_{l}(\overline{\nu},\overline{\Phi})<\alpha_{l}$ , for all $l(1\leq l\leq k)$ .

Since $L((\overline{\nu},\overline{\Phi}),$ $\lambda)arrow\infty$ as $||\lambda||arrow\infty$ under Condition $\mathrm{A}$ , the following lemma obvi-
ously holds, where $||\cdot||$ is a norm on $R_{+}^{k}$ .

Lemma 2.4. Under Condition $\mathrm{A},$ $L_{1}(\cdot)$ is bounded from below and $L_{1}(\lambda)arrow\infty$ as
$||\lambda||arrow\infty$ .

In view of Lemma 2.4, under Condition A there exists $\lambda^{*}\geq 0$ such that

$\inf_{\lambda\geq 0}L1(\lambda)=L(\lambda^{*})$ .

For this $\lambda^{*}$ , Theorem 2.2 shows that

$L((\nu, \pi),$ $\lambda^{*})\leq L^{*}$ , for all $(\nu, \pi)\in P(S)\cross\Pi$ . (2.12)

Now, let $L_{2}( \mu)=\inf_{\lambda\geq 0}L(\mu, \lambda)$ for each $\mu\in O(K)$ .
Since $L(\mu, \lambda)$ is continuous in $(\mu, \lambda)\in O(K)\cross R_{+}^{k},$ $L_{2}(\cdot)$ is upper semicontinuous on

$O(K)$ .
Thus, from the compactness of $O(K)([17])$ , there exists $\mu^{*}\in O(K)$ such that

$\sup L_{2}(\mu)=L_{2}(\mu^{*})$ .
$\mu\in \mathrm{O}(K)$

Decomposing $\mu^{*}$ into $\mu^{*}=\nu^{*}\cross\Phi^{*}$ with $\nu^{*}=\mu_{S}^{*}$ and $\Phi^{*}\in P(A|S)$ , it follows from
Corollary 2.2 that

$L^{*}\leq L((\nu^{*}, \Phi^{*}),$ $\lambda)$ , for all $\lambda\geq 0$ . (2.13)

Let $U_{RS}=\{(\nu, \pi)\in U|\pi\in\Pi_{RS}\}$ .
From (2.12) and (2.13), we get the following main theorem.
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Theorem 2.3. Under Condition $\mathrm{A}$ , the Lagrangian $L(\cdot, \cdot)$ has a saddle-point with a
randomized stationary policy; i.e., there exists $\lambda^{*}\geq 0$ and $(\nu^{*}, \Phi^{*})\in P(S)\cross\Pi_{RS}$ such
that

$L((_{\mathcal{U},\pi}), \lambda^{*})\leq L((\nu\Phi*)*,, \lambda^{*})=L^{*}\leq L((\nu^{*}, \pi),$ $\lambda)$ , (2.14)

for all $(\nu, \pi)\in P(S)\cross\Pi$ and $\lambda\geq 0$ .

Then, from Theorem 2.1 and 2.3 the following corollary follows.

Corollary 2.3. Under Assumption $\mathrm{A}$ , there exists a constrained optimal pair in $U_{RS}$ .

3 Characterization of $\Phi^{*}$

In this section we use the hypothesis of Doeblin [10] and give the functional characteri-
zation of $\Phi^{*}$ .

Denoting by MDPs $(\lambda)$ unconstrained MDPs with $r(\cdot, \cdot|\lambda)$ as an immediate reward
function, we define the average expected reward in MDPs $(\lambda)$ as

$\phi_{\lambda}(\mathcal{U}, \pi):=\lim_{Tarrow}\inf\frac{1}{T}\sum_{t=0}^{-}E^{\pi}[\infty\tau 1\nu\Gamma(x_{t}, \triangle_{t}|\lambda)],$ $(\nu, \pi)\in P(S)\cross\Pi$ . (3.1)

We say that $(\overline{\nu},\overline{\pi})\in P(S)\cross\Pi$ is an optimal pair for MDPs $(\lambda)$ if $\phi_{\lambda}(\overline{\nu},\overline{\pi})\geq\phi_{\lambda}(\nu, \pi)$

for all $(\nu, \pi)\in P(S)\cross\Pi$ .
The following lemma can be proved easily (cf. [3]).

Lemma 3.1. Let $(\overline{\nu},\overline{\pi})\in P(S)\cross\Pi$ and $\overline{\lambda}=(\lambda_{1,2}^{-}\lambda^{-}, \cdots, \lambda^{-}k)\in R_{+}^{k}$ . Then, the Lagrangian
$L$ has a saddle-point at $(\overline{\nu},\overline{\pi}),\overline{\lambda}$ iff the following holds:

(i). $(\overline{\nu},\overline{\pi})$ is a optimal pair for MDPs $(\overline{\lambda})$ ,
(ii). $I_{l}(\overline{\nu},\overline{\pi})\leq\alpha_{l}$ for all $l(1\leq l\leq k)$ ,
(iii). $\Sigma_{l=1}^{k}\overline{\lambda}_{l}(\alpha_{l}-Il(\overline{\nu},\overline{\pi}))=0$ .

For any $\Phi\in\Pi_{RS}$ , the $t$-step transition probabilities are defined by

$Q^{(1)}( \cdot|x, \Phi)=\int Q(\cdot|x, a)\Phi(da|X)$ ,
$Q^{(t+1)}( \cdot|X, \Phi)=\int Q^{(t)}(\cdot|X_{1}, \Phi)Q^{(}1)(dX1|x, \Phi)(t\geq 1)$ .

Henceforth we assume that the following hypothesis holds.

Hypothesis (Doeblin [10]). There is a finite measure $\gamma$ of sets $D\in\overline{B}_{S}$ with $\gamma(S)>0$ , an
integer $m$ and a positive $\epsilon$ , such that

$Q^{(m)}(D|x, \Phi)\leq 1-\epsilon$ if $\gamma(D)\leq\epsilon$ , for all $\Phi\in\Pi_{RS}$ and $x\in S$.
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Here we need the following condition.

Condition B. The following BI-B2 holds:
Bl. The finite measure $\gamma$ in the hypothesis of Doeblin is non-atomic, that

is, $\gamma(U_{\epsilon}(x))>0$ for any $\epsilon>0$ and $x\in S$,
where $U_{\epsilon}(x)=\{y\in S|d(x, y)<\epsilon\}$ and $d$ is a metric on S.

B2. For any $f\in\Pi_{S},$ $\nu_{f}$ and $\gamma$ are absolutely continuous each other, where $\nu_{f}$

is a stationary absolute probability measure for the Markov process
induced by $\{Q(\cdot|x, f(X))\}$ .

For $(\nu^{*}, \Phi^{*})$ and $\lambda^{*}\geq 0$ in Theorem 2.3, considering unconstrained MDPs $(\lambda*)$ , from
Lemma 3.1 we can obtain the following functional characterization of $\Phi^{*}$ , whose proof is
obtained by observing that of ([15], Theorem 2.2) and left to the reader.

Theorem 3.1. Suppose that Assumption A and $\mathrm{B}$ hold. Then, for $(\nu^{*}, \Phi^{*})$ and $\lambda^{*}$ in
Theorem 2.3 there exist $v\in B(S),$ $v_{l}\in B(S)(1\leq l\leq k)$ such that for all $x\in S$, the
following $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ holds:

(i). $v(x)+L*= \int\Phi^{*}(da|X)\{r(x, a|\lambda^{*})+\int v(X’)Q(dx’|x, a)\}$ ,
$(3.3)(3.2)$

(ii). $u_{l}\{\Phi^{*}\}(X)\geq 0$ ,
(iii). $\Sigma_{l=1}^{k}\lambda_{\iota^{u}}^{*}l\{\Phi^{*}\}(X)=0$ , (3.4)

where, for $\Phi\in\Pi_{RS},$ $1\leq l\leq k$ ,

$u_{l} \{\Phi\}(_{X})=\int\Phi(da|x)\{\alpha l-c_{l}(X, a)+\int v_{l}(X)\prime Q(dx’|x, a)\}-vl(x)$ .

Corollary 3.1. Under Assumption A and $\mathrm{B},$
$\Phi^{*}$ in Theorem 2.3 is a constrained optimal

policy.

Proof. From Theorem 3.1 (i), for any $x\in S,$ $(x, \Phi^{*})$ is a optimal pair for MDPs $(\lambda*)$ ,
where the initial distribution degenerate at a point $x$ is denoted by $x$ .

Also, (ii) and (iii) in Theorem 3.1 implies (ii) and (iii) in Lenmla 3.1 with $(x, \Phi^{*})$ so
that $(x, \Phi^{*})$ give a saddle-point of the Lagrangian $L$ , which is as required. $\square$

For further working, we need the following condition.

Condition C. The following CI-C2 holds:
Cl. For any $g\in B(S),$ $\int g(x’)Q(dX|JX, a)$ is continuous in $(x, a)\in I\mathrm{t}’$ .
C2. The set-valued function $A(\cdot)$ is lower semicontinuous, i.e., for any

sequence $\{x_{n}\}$ and $x\in S$ with $x_{n}arrow x$ as $narrow\infty$ and any $a\in A(x)$ ,
there exists a sequence $\{a_{n}\}$ with $a_{n}\in A(x_{n})$ and $a_{n}arrow a$ as $narrow\infty$ .
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For $v\in B(S)$ in Theorem 3.1, let

$U(x, a):=r(x, a| \lambda^{*})+\int v(X’)Q(dX’|X, a)$ , for $(x, a)\in I\mathrm{t}’$ .

Under Condition $\mathrm{C},$ $U(x, a)$ is continuous in $(x, a)\in K$ and $U^{*}(x)= \max_{a\in A(x)}U(x, a)$ is so
too.

Thus, if we put $I\mathrm{f}_{0}:=\{(x, a)\in K|U^{*}(X)=U(x, a)\},$ $I5\mathrm{i}_{0}$ is closed.
Also, (3.2) implies $v(x)+L^{*}\leq U^{*}(x)$ for all $x\in S$ .

Lemma 3.2. Under Assumption $\mathrm{A}$ , B,and $\mathrm{C}$ , we have:
(i). $v(x)+L^{*}=U^{*}(x)$ , $\gamma-a.s.$ ,
(ii). $\Phi^{*}(I\mathrm{f}_{0}(x)|X)=1,$ $\gamma-a.s.$ ,
(iii). For any $\Phi\in\Pi_{RS}$ with $\Phi(I\mathrm{t}^{\nearrow}0(X)|x)=1$ for all $x\in S$ is optimal in

MDPs $(\lambda*)$ , that is, $\phi_{\lambda}*(X, \Phi)\geq\phi_{\lambda}*(x, \pi)$ for all $\pi\in\Pi$ and $x\in S$ ,
where $I\iota_{0}^{\nearrow}(X)=\{a\in A(x)|(x, a)\in K_{0}\}$ .

Proof. Suppose that (i) does not hold, then, there exists a $D\in B_{S}$ such that $\gamma(D)>0$

and $U(x)+L^{*}<U^{*}(x)$ , for all $x\in D$ . .

By the measurable selection theorem (for example, $[4,8]$ )$\backslash \cdot \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ exists a $f\in B(Sarrow A)$

with $U^{*}(x)=U(x, f(x))$ for all $x\in S$ .
For this stationary policy $f$ , we have :

$\nu(x)+L^{*}\leq U(x, f)$ , for all $x\in S$

and
$\nu(x)+L^{*}<U(x, f)$ , for all $x\in D$ .

By the usual discussion (for example, [9,15]), it follows from $\mathrm{B}$ that

$L^{*}<\phi_{\lambda}*(\nu f, f)$ ,

which is a contradiction.
Also, from (3.2) and (i), (ii) and (iii) obviously follow. $\square$

Theorem 3.2. Suppose that Assumption $\mathrm{A},$
$\mathrm{B}$ and $\mathrm{C}$ hold. For $v,$ $v_{l}(1\leq l\leq k)\in B(S)$

in Theorem 3.1, let $\Phi\in\Pi_{RS}$ satisfy the following $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})l$ :
(i). $\Phi(I\{\mathrm{i}_{0}(X)|X)=1$ for all $x\in S$ ,
(ii). $u_{l}\{\Phi\}(x)\geq 0$ for all $x\in S$ ,
(iii). $\sum_{l=1}^{k*}\lambda_{ll}u\{\Phi\}(x)=0$ , for all $x\in S$ , where $\lambda^{*}=(\lambda_{1}^{*}, \cdots, \lambda_{k}*)$ is in

Theorem 2.3.
Then, $\Phi$ is a constrained optimal policy.

Proof. In view of Lemma 3.2 (iii), we observe that $\Phi$ is optimal for MDPs $(\lambda*)$ .
Also, (ii) and (iii) implies that $I_{l}(x, \Phi)\leq\alpha_{l}$ for all $x\in S$ and $l(1\leq l\leq k)$ and

that $\Sigma_{l=}^{k}1\lambda_{l}^{*}(\alpha l-I_{l}(x, \Phi))=0$ for all $x\in S$ . This fact implies from Lemma 3.1 that the
Lagrangian $L$ has a saddle-point at $(x, \Phi),$ $\lambda^{*}$ , which is as required. $\square$
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