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The proximinality of the center of
a quasicentral C*-algebra

BRI ®EEEM: (Sin-Ei Takahasi)

Abstract. Let A be a quasicentral C*-algebra and Z(A) its center. If the
maximal ideal space of Z(A) is O—compact and paracompact, then Z(A)
is a proximinal subspace of A. )
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Fr+AD =@ +A x+A1€A) , BIZO0x+A1)=A (x+A1€4A) EBNT, Ffg:
@ = @ 1T Dy U{0} (CA') BB Bysy ~DFEIRERE G XD, THIK Byay 13

Dy P 1R RY MELEXBND, ROZEHIZ Cohen D Factori zation
Theorem &MHIN DS DT, KROFEREBRFERD—DOTH S,

3. Theorem (Cohen [3]). Let B be a Banach algebra with a left approximate identity
bounded by K=1 andlet X be aleft Banach B-module. Then for every z € X, and

£>0 there exist elements ¢ € B and y € X such that z=ay,|a|sK,y€EZ,ﬂy—z|<£,

where X, is the closed linear subspace of X spanned by BX, which is called the essential
part of X.

4. B 9E Dy, IZH LT, G,=G,(A) #% Glimm ideal, DX V. Ker ¢ DEKT S
A OHBIASFT7 VLT 5, 4 A % left Banach Ker p-module & & T, #® essential
part /% Theorem2 %> 5 G,=G,= (Ker 9)A £72oTND,

Lemma. e,+ G, is the identity element of A/ G, .

Proof. Let x€ A. Since A is quasiccntral; it folows that there exist z € Z(A) and
. a€ A such that x=za by tTheorem 2. Therefore e,z -z € Ker ¢ C G, and hence

ex—x=(ez—-2)a€ G,. This means that e, + G, is the identity elementof A/ G, . Q.
E.D.

5. WX [9, Theorem 2.7. 5| DEHFEDFERTH 5. {HL Prim A 1X A DIRIMATT

NEEDOL DREEZEMERT.
Lemma . The mapping :

PrimA — @,
W vV (Kergp=PNKero)
P - ¢

is continuous and surjective.
~In particular, éEQZ(A; G,={0} and henc. |x|= sup ‘ﬂx+G¢| forall x€EA.
@ E D74 :
6. A & ADY R TRWERFEOFRESD, 5 XL T3 (Jacobson KA b
PUBREANTESDE, ADARZ FTLLIRE, ) z€i IZHLT,
R+ D =a(x) + AL, , ox+ kD) =AM, EBVT, ) ={#:7€A}U{w} TH5.

7. Lemma. Ae,+ Gy,=A' 1+ G, (AEC, p E Dy, .
Proof. Let AEC and ¢ € P,,,. Then F(Ae,) = p(Ae,) = A= P(A- 1) and hence
Ae,~A-1EKer C G, . Q. E.D. ' 2

8. Lemma. Ix+ G;,|=|x+ G@I forall x€EA and @ € Py, .
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- Proof. Let x€ A and @ € @y, . Note that G,= A. In fact, if G,=A, then
Z(A) € G,. By Lemma 5, there exists P € Prim A such that P N Z(A) = Ker @ and hence
KeroC P, so A=G,C P, acontradiction. Therefore there exists an element

pE (A G such that |p(x +G,) | =|x+G,| (see[4, Lemma 3.3.6). But there exists a

unique element 7 € A such that G,C Ker n and p(a+ G,) = n(a) forall a€ A. We
assert that G, C Ker & . In fact, for each z € Z(A), we can find a uniue complex number
J(2) such that n(z) = f(2)I,_, since & is irreducible. Then f is a homomorphism. Also
J =0. If not, then Z(A) € Ker & and this contradicts the quasicentrality of A. Thus
J € P4y - Moreover, Ker f C Ker x N Z(A) € Prim Z(A) andso Ker f=Ker x NZ(A).
But Ker ¢ C G,C Ker n and so Ker ¢ = Ker t N Z(A) . Thus Ker p=Ker f, so p=f.
Therefore if z+ A+ 1 E Ker @, then

Hz+ A1) =m@) + My_= @@y + My = z+A- DI, =0,
sothat Z+A- 1€ Ker &. Then Ker < Ker & and hence G, < Ker i . 1t follows that

|2+ Gq,l:l:t(x)|=|fi(x)|=|x+Kerft|s x+Gy|.

On the other hand, since G, = (Ker )A C (Ker #)A=G,, it follows that
|x+G,|z|x+G,|. Q.E.D. |

9. Lemma. Let x€ A and A€ C . Then the mapping : ¢ —> l(x+ Aey) + G, | is upper

semi-continuous on Pz, .
Proof. Let x€A, AEC and >0, and set

G(a, x, A) ={QE Dyyy: |(x+ Ae,)) + G l<a}.

Gla, %, A) = {Y € Dy | (x+ A~ 1)+G,,|<a}.

Then G(a, x, A) is an open subset of Pz by [11, Proposition 1.1]. Also if ¢ € @y, , then
@+A-1)+Gyl= (x+G¢)+(A-1+G¢)I

=|(x+ Gp) + (Ae, + G,)| (by Lemma 7)

=|G+2e) + G,

(by Lemma8) .

=|(x+ Ae,) + G,

This implies that (G(a, x, A))” = G(a, x, A)\ {0} and hence G(a, x, A) is an open subset of

D, - Thus the mapping : @ —> | (x + Ae,) + G¢| is upper semi-continuous on Py, .
| Q.E.D.

10. Lemma. If A is quasicentral, then G, N Z(A)‘= Ker ¢ foreach ¢ € ¥y, .
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Proof. Assume that A is quasicentral and let @ € ®;,,. Choose P € Prim A such that
G,C P. Then G,NZ(A)C PNZ(A)=Z(A) by the quasicentrality of A. But since
Ker ¢ C G, N Z(A) , it follows that Ker ¢ = G, N Z(A) .

11. Lemma. Let X€ A and >0 . Then {p € Py,,: |x+ G‘PI = o} is compact.
Proof. Let X€ A and a>0. Set K={@ € Dy, : |x+ Gq,lz a}. Let {F,: A€ A} be
a decreasing net of relatively closed non-empty subsets of K. Foreach A€ A, set

Jl= n G(p’

pER

Also for each AE A, take an element @; of F; and then

|x+JA|z|x+GmIaa. @)
Set J= EI . Since {J,: A € A} is a increasing net of closed two-sided ideals of A, it
follows that J is a closed two-sided ideal of A. Also (*) implies that lx +J | = a. Since
a>0, we have x&J and hence A/J is non-zero C*-algbera. By [4, Lemma 3.3.6], we
canfind pE(A/)* such that |p(x +J) I = Ix +J l . But there exists a unique element
x€ A such that J C Ker m and p(a+J)=n(a) forall aEA. Hence

ix+Kern|=|n(x)|=|p(x+J)l:lx+J|z a.
Choose ¢ € @y, such that Ker x N Z(A) = Ker @ . Since G, C Ker &, it follows that
|x+ Gq,lz a andso @ € K. But since
Ker ¢ = Ker m N Z(A)

2J NZA)

2 J, N Z(A)

= WQFA G, NZ(A)

= WQFA Ker ¢ (by Lemma 10)
forall AE A, it follows that p EF, forall AEA. Hence ¢ € AQA F, because each F,

is relatively closed in K. We thus obtain that K is compact. Q. E. D.

12. Let X be a normed space and Y a subspace of X. Foreach xE X, set
w(x)={y€Y:dx,Y)= uirelt;lx—ulzlx—yﬂ}.
We say that Y is proximinal if ®,(x) = ¢ forall x€ A. We also say that Y is Chebychev

if ®,(x) consists of a single point foreachxE A.

13. Let T be an operétor of the Banach space B(H) consisting of all bounded linear
operators on a Hilbet space H and set

WyT) = {AEC: (TE,E) = A where |§,|=1 and |TE,|=|T|}.
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We call Wi(T) the maximal numerical range of T.
Theorem (Stampfli [13]). The following three conditions are equivalent:

(1) 0E Wy(T).
@ |T[ +|APs|T+ML,[ foran A€C.
@3 |T|s|T+ 1| forall A€cC.
In particular, CI, is a Chebyshev subspace of B(H) and
|7 -, (D[ +| Ak - 70D 5| T - 2,
forall AEC, '

14. Theorem. Let A be a quasicentral C*-aigebra. If x€A , then
d(x, Z(A)) = sup

PE Dy

Proof. Let X€ A and a the value of the right side above. Then

('x + an) - ”C(eo,+Gq,)(x + Gq))

Ix—zlz X+ G¢—(z+G¢I

=|x+G,-#(g)e, + G,) |

forall zEZ(A) and @ € ¥y, . Hence d(x, Z(A)) = . To show the converse inequality,

let £>0 andset K= {p € Dy Ix + G‘Pl = a+ ¢} . We consider two cases:
(i) K=¢. Since Ix + G"’I <o+ ¢ forall ¢ € &y, , it follows that

d(x, Z(4)) s | x| = sup lx+Gq,|sa+e
@ (A) .

and hence d(x, Z(A)) = o as € | O.

(i) K=¢. By Lemma 11, K is a non-empty compact subset of ®,,. Let ® be any
clement of K. Then there exists a unique scalar A, such that
Ty +cp® + Gg) = Agle, + G,) since C (e,+ G,) is a Chebychev subspace of A/ G, by

Theorem 13. Set z,=A,e, and so I(x -2Z,) + Gq,' < a. Also put

W,= {9 € Oyt |(x-2) + G| < a+ 2} .
Then @€ W,, and W, is a open subset of P, by Lemma9. Thus W, is an open
neighbourhood of ¢ . Take a relative compact open neighbourhood U, of @ such that
U,C W,. Since K is compact, there exist elements @i, ..., ¢, € K such that le U, 2K.

Let {/, -, /. J} be a partition of the identity for the convering {U,,, ... , U, Oy \K}.

RN

Since each Uy, is relative compact, it follows that f, vanishes at infinity and hence there is
an element %, € Z(A) such that f=14,. Set
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Z=UZy + .+ T,

For any element ¥ of P, we have

lx+G "(Z"'Gw)l Zf(¢)(x Z,) + G, + f(P)x+ G,

=3 | -2+, |+ﬁn(¢)|x+Gw|
If Y€K, then

Ix+G —(z+G,,,)l )

f(w)l(x Z,) + G, Isa+s

If also ¥ € K, then

|x+G,,,—(z+G,,)| f(w)l(x zq,)+G i+!§°(¢)ﬂx+G ﬂ

YEU,,

< f() @+ &) + L(P) (a+ &)

WEU%
sa+te.

This implies that|x—z|sa+s and hence d(x,Z(A))slx—zis aase| 0. QE.D.

15. Theorem (Michael [7]). Let £2 be a paracompact T;-space and X a Banach space.

Then every lower semi-continuous carrier for €2 to the family of non-empty, closed convex
subsets of X admits a continuous selection.

~ 16. Theorem. Let A be a quasicentral C*-algebra and Z(A) its center. Suppose that
Z(A) satisfies the following two conditions: (i) D, is paracompact. (ii) there exists an

clement vE Z(A) such that %(@) >0 forall @ € Py, . Then Z(A) is a proximinal
subspace of A.
Proof. Suppose Py, is paracompact and there exists an element v € Z(A) such that

#(@)>0 forall ¢ €E Pyyy. Let xE Aandset a=d(x,Z(A)). We can without loss of
generality assume that = 1. By Theorem 3, we can find elements # € Z(A) and a € A
such that x=ua and |u|s 1. Foreach ¢ € @y, , there exists a unique scalar A, such that
Hoeyeap® + Go) = Agle, + G,) since C (e, + G,) is a Chebychev subspace of A/ G, by

Theorem 13. Then {(x—A

&%

#|= 1 by Theorem 14. Also

[Aq,|s|x+G¢l= ) s}ﬁ((p)“al. (1)

~ The first inequality follows from Theorem 13. Set
c,={reC:|(x- L= 1 and |A|<]a]|a(@) |+ 9@}

Then each C, is a non-empty, closed, convex subset of C. We prove that the set-valued

map : ¢ —> C, is lower semi-continuous on P, . Let U be any open subset of C and set
P={@pE Dyy,,: C,NU = ¢}. Toshow that @ is an open subset of P, let @, be any
element of €. Choose A4 € C,, N U and take an open ball U(A,; &) of radius
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e(0<e<1) centeredon A suchthat U(A; ) CU. Set

By = {9 € Pyt | (1= Det) + Gy <1 + £ and |2,|<|a]|a(@) |+ (1 + S0}

Then @, € P, since £¢>0 and #(@,) >0, and P, is open by Lemma 9. Let ¥ € &, and
put f=1- I (x=Ae,) + G,,,I andso Os =1 by Theorem 14. Also, Theorem 13 implies

that
2
(1 +—"§—) ,

+ S 42p-p" . @)

I(x+ Gw)—)u,,,(ew+Gw)|2+|)\0—lwrs|(x+ G, - 2e, + Gy <

and hence
3

|2 - A|<(1+ )—(1 p==

We COIlSldCI two cases:

J>l

) ﬁ<— It follows form (2) that')\o A | <% gz §2— 2382 and hence

A, € U(Ay; ) . Also we have |(x—)L,‘,e,,) + G.,,l < 1 by Theorem 14 and IA,,,| < lﬁ(¢)|ﬂa| by
(1),sothat A,€C,. Then Yy E P.. |
) =% . Set u=(1-L)d+E£h,. It follows from (2) that

Aomif = S -1 < 254 & +26- p)<_(%+612+1)_=§5%82,
and hence u € U(Ay; €) . Also we have |
| |(x—ue¢)+G¢|s(1-—2€)|(x—)\oeq,)+G,,,|,+§|(x—l,,,e¢)+6¢ﬁ
s(1-§)(1+—§—)+-§-(1—ﬁ) (since P E D)
<(1-5HA+8)+L1-5)
=1-£<1. |

16
Moreover,

1= =D [+ 54|
<(1-%) (|a||ﬁ(¢)|+(1+§)ﬁ(1p)) +%|a||ﬁ(tp)l (since 9 € @, and by (1))

N e .
=|a]|aw)|+ 1 -5 ¥y
<|a||ﬁ(1p)|+ (1) .
Then u€C, and hence Y E P.
This shows that @ is an open subset of P, and hence the set-valued map : ¢ = C, is
lower semi-continuous on P.,,. Since Py, is paracompact, it follows from Theorem 15
that we can find a continuous complcx-valucd function f on QZQA) such thaf f(@)eC, for

all @ € Py, . Since | f(9)|s|a]|@(@)|+g) forall ¢ € Pyy, the function / vanishes



101

at infinity and so f =Z for some z € Z(A) . Moreover,

|x~z|= sup |(x+G)-(+Gp

9 E Oz(4)

= sup |(x+Gp)-(A@e,+G,)
P E Dz

= sup |(x-f(@ey)+G,

PE Dzy)

<1 (since f(g) EC, forall p € Dyy).
Therefore we have Ix -Z | =d(x,Z(A). Q.E.D.

17. Remarks. (i) If @y, is connected, then Py, : paracompact <> Py, : O—compact.
(ii) If Py is O—compact, then there exists an element v € Z(A) such that ¥(¢) >0
forall ¢ € ¥y, . '
(iii) If Z(A) is separable, then P, is paracompact and there exists an element
v € Z(A) such that (@) >0 forall @ € Py, .
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