<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>ON $P\cdot P$ OF SURFACE SINGULARITIES</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Okuma, Tomohiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1998, 1050: 41-48</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62222</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
ON $-P \cdot P$ OF SURFACE SINGULARITIES

TOMOHIRO OKUMA

1. INTRODUCTION

Let (X, x) be a normal surface singularity over the complex number field \mathbb{C} and $f : (M, A) \to (X, x)$ a resolution of the singularity (X, x). Let K be the canonical divisor on M. Let $A = \bigcup_{i=1}^{k} A_{i}$ be the decomposition of the exceptional set A into irreducible components. Assume that f is the minimal good resolution, i.e., f is the smallest resolution for which A consists of non-singular curves intersecting among themselves transversally, with no three through one point. It is well known that there exists a unique minimal good resolution.

Definition 1.1. By [12, Theorem A.1], $K + A$ admits a unique Zariski-decomposition $P + N$, $P, N \in \sum_{i=1}^{k} \mathbb{Q}A_{i}$, where

1. $(K + A) \cdot A_{i} = (P + N) \cdot A_{i}$ for all i.
2. P is f-nef, i.e., $P \cdot A_{i} \geq 0$ for all i.
3. N is effective.
4. $P \cdot N = 0$.

Then we define the invariant P^{2} by $P^{2} := P \cdot P$.

The $P \cdot P$ is a topological invariant and its fundamental properties are stated in [15]. It is expected that P^{2} has many of nice properties of the invariant $K \cdot K$ studied by Laufer [8]. The upper semicontinuity of $-P^{2}$ in a family of surface singularities follows from that of the L^{2}-plurigenera δ_{m} (cf. [2]), since the following equality holds (see [15, Introduction]):

$$-P \cdot P/2 = \limsup_{m \to \infty} \delta_{m}/m^{2}.$$

In this note, we prove the following.

Theorem. Let $\pi : X \to T$ be a deformation of a normal Gorenstein surface singularity such that T is a neighborhood of the origin of \mathbb{C}. Let P^{2}_{t} be the invariant of the fiber $X_{t}, t \in T$. Then the following conditions are equivalent:

1. π admits the simultaneous log-canonical model.
2. P^{2}_{t} is constant.
2. Preliminaries

Let X be a normal variety over \mathbb{C} of dimension $d \geq 2$, and X_{sing} the singular locus of X. Let $f: Y \to X$ be a birational morphism of normal varieties and $E = f^{-1}(X_{\text{sing}})_{\text{red}}$ the largest reduced exceptional divisor on Y. For a \mathbb{Q}-Cartier divisor D on X, we denote by $f^! D$ the sum of the divisors E and the strict transform of D under the morphism f. The morphism $f: Y \to X$ is called a good resolution of the pair (X, D), if Y is nonsingular and the support of $f^! D$ is a divisor with only simple normal crossings.

Definition 2.1 (cf. [7], [13]). Let B be a reduced divisor on X. The divisor $K_X + B$ is said to be log-canonical if the following conditions are satisfied:

1. $K_X + B$ is a \mathbb{Q}-Cartier divisor.
2. There exists a good resolution $f: Y \to X$ of (X, B) such that

$$K_Y + f^! B = f^*(K_X + B) + \sum a_i E_i$$

for $a_i \in \mathbb{Q}$ with the condition that $a_i \geq 0$, where the E_i are the exceptional prime divisors.

Definition 2.2 (cf. [7], [13]). Let $f: Y \to X$ be a partial resolution with the exceptional divisor $E = f^{-1}(X_{\text{sing}})_{\text{red}}$. Then the morphism $f: Y \to X$ is called a log-canonical model of X, if the divisor $K_Y + E$ is log-canonical and $K_Y + E$ is f-ample.

Theorem 2.3 (cf. [6], [13]). Let X be a normal variety of dimension $d \leq 3$. Then there exists the log-canonical model $f: Y \to X$ of X. In fact, the following morphism gives the log-canonical model:

$$\text{Proj} \left(\bigoplus_{n \geq 0} f_* \mathcal{O}_Y(n(K_Y + E)) \right) \to X,$$

where $f: Y \to X$ is a partial resolution with $E = f^{-1}(X_{\text{sing}})_{\text{red}}$ such that the divisor $K_Y + E$ is log-canonical.

3. The plurigenera

In this section, we describe basic facts concerning plurigenera of normal isolated singularities needed later.

Definition 3.1 (cf. [9], [16]). Let (X, x) be a normal isolated singularity and $f: (M, A) \to (X, x)$ a good resolution of the singularity (X, x). We define the log-plurigenera...
\{\lambda_m(X, x)\}_{m \in \mathbb{N}} \text{ and the } L^2\text{-plurigenera } \{\delta_m(X, x)\}_{m \in \mathbb{N}} \text{ by }

\lambda_m(X, x) = \dim_{\mathbb{C}} \mathcal{O}_X(mK_X)/f_*\mathcal{O}_M(m(K_M + A)) \quad \text{and}
\delta_m(X, x) = \dim_{\mathbb{C}} \mathcal{O}_X(mK_X)/f_*\mathcal{O}_M(m(K_M + A) - A), \text{ respectively.}

The definition does not depend on the choice of the good resolution.

Lemma 3.2. Let \(X\) be a normal variety and \(B\) a reduced divisor on \(X\) such that \(K_X + B\) is log-canonical. Let \(f: Y \to X\) be a good resolution of the pair \((X, B)\) with \(B_Y := f^!B\). Then we have \(f_*\mathcal{O}_Y(m(K_Y + B_Y)) = \mathcal{O}_X(m(K_X + B)).\)

Proof. It is clear that \(f_*\mathcal{O}_Y(m(K_Y + B_Y)) \subset \mathcal{O}_X(m(K_X + B)).\) We assume that \(X\) is affine, and we show that \(f_*\mathcal{O}_Y(m(K_Y + B_Y)) \supset \mathcal{O}_X(m(K_X + B)).\)

Let \(r\) be the index of the divisor \(K_X + B\) and \(m\) a positive integer which divides by \(r\). By assumption, we have that \(m(K_Y + B_Y) \geq f^!(m(K_X + B))\). Hence we obtain that

\[H^0(\mathcal{O}_Y(m(K_Y + B_Y))) \supset H^0(f^*\mathcal{O}_X(m(K_X + B))) = H^0(\mathcal{O}_X(m(K_X + B))).\]

For any positive integer \(m\) and any element \(\omega\) in \(H^0(\mathcal{O}_X(m(K_X + B)))\), we obtain that \(v_{E_i}(\omega^r) \geq -mr\) for all exceptional prime divisor \(E_i\) on \(Y\), where \(v_{E_i}\) is the valuation associated to the prime divisor \(E_i\). Hence \(\omega\) belongs to \(H^0(\mathcal{O}_Y(m(K_Y + B_Y)))\).

\[\square\]

Corollary 3.3. Let \((X, x)\) be a normal isolated singularity and \(f: Y \to X\) a partial resolution with \(E = f^{-1}(x)_{\text{red}}\) such that \(K_Y + E\) is log-canonical. Then we have

\[\lambda_m(X, x) = \dim_{\mathbb{C}} \mathcal{O}_X(mK_X)/f_*\mathcal{O}_Y(m(K_Y + E)).\]

Let \(\pi: X \to T\) be a deformation of a normal Gorenstein surface singularity \((X_0, x) = \pi^{-1}(0)\), where \(T\) is a neighborhood of the origin of \(\mathbb{C}\). Put \(X_t := \pi^{-1}(t)\). Then we define the \(m\)-th log-plurigenera and \(m\)-th \(L^2\)-plurigenera of \(X_t\) by

\[\lambda_m(X_t) := \sum_{p \in (X_t)_{\text{sing}}} \lambda_m(X_t, p) \quad \text{and} \quad \delta_m(X_t) := \sum_{p \in (X_t)_{\text{sing}}} \delta_m(X_t, p).\]

Let \(\psi_t: M_t \to X_t\) be the minimal good resolution of the singularities and \(K_t\) the canonical divisor on \(M_t\). Let \(A_{t,p}\) be the connected component of the exceptional set \(A_t\) on \(M_t\) which blows down to \(p \in (X_t)_{\text{sing}}\). Let \(P_{t,p} + N_{t,p}\) be the Zariski decomposition of \(K_t + A_{t,p}\). Here, \(P_{t,p}\) and \(N_{t,p}\) are \(\mathbb{Q}\)-divisor supported in \(A_{t,p}\). We define the \(\mathbb{Q}\)-divisor \(P_t\) on \(M_t\) by \(P_t := \sum_{p \in (X_t)_{\text{sing}}} P_{t,p}\). We put \(P_t^2 := -P_t \cdot P_t\) and define the function \(\mathcal{P}: T \to \mathbb{Q}\) by \(\mathcal{P}(t) = -P_t^2\). From [15, Theorem 1.6], [11, Remark 2.7] and Introduction, we obtain the following.
Theorem 3.4. For any $m \in \mathbb{N}$,

(3.1) \[\lambda_m(X_t) = \mathcal{P}(t)m^2/2 + P_t \cdot K_t m/2 + b_t(m) \quad \text{and} \]
(3.2) \[\delta_m(X_t) = \mathcal{P}(t)(m - 1)^2/2 - P_t \cdot K_t (m - 1)/2 + b'_t(m), \]
where b_t and b'_t are bounded functions. Furthermore, the function \mathcal{P} is upper semicontinuous.

4. SOME INVARIANTS WHICH DEPEND ON A DEFORMATION

In this section, we fix the following notation. Let $\pi: X \to T$ be a deformation of a normal Gorenstein surface singularity $(X_0, x) = \pi^{-1}(0)$, where T is a neighborhood of the origin of \mathbb{C}. Then X is a three-dimensional Gorenstein variety. Therefore, for any $t \in T$, we have the isomorphism $O_{X_t}(mK_X) \cong O_X_t(mK_{X_t})$. We denote by Y_t the fiber $f^{-1}(t)$ and put $f_t := f|_{Y_t}$. Let $f: Y \to X$ be the log-canonical model of X with $E = f^{-1}(X_{\text{sing}})^{\text{red}}$. We define the sheaves by $\mathcal{I}_m := f_*O_Y(m(K_e + E))$ and $\mathcal{Q}_m := O_X(mK_X)/\mathcal{I}_m$ for any $m \in \mathbb{N}$. We put $T^* := T \setminus \{0\}$. We assume that T is sufficiently small.

Let $\mathcal{C}(t)$ be the residue field of $t \in T$, i.e., $\mathcal{C}(t) = O_{T,t}/\mathcal{M}_t$ where \mathcal{M}_t is the maximal ideal. We use the symbol $\otimes \mathbb{C}(t)$ instead of $\otimes_{\mathcal{O}_T} \mathbb{C}(t)$. By Nakayama's Lemma, we obtain that

(4.1) \[\dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(t) \leq \dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(0), \]
where the equality holds if and only if \mathcal{Q}_m is a torsion free O_T-module. Let $\mathcal{I}_{m,0}$ be the image of the homomorphism $\mathcal{I}_m \otimes \mathbb{C}(0) \to O_{X_0}(mK_{X_0})$.

The following Lemmas are proved by an argument similar to that in [4, §1].

Lemma 4.1. The following conditions are equivalent.

1. The equality in (4.1) holds.
2. \mathcal{Q}_m is a torsion free O_T-module.
3. $\mathcal{I}_m \otimes \mathbb{C}(0) = \mathcal{I}_{m,0}$.

Lemma 4.2. For any $t \in T^*$, the restriction $f_t: Y_t \to X_t$ is the log-canonical model of X_t. Moreover, for each $m \in \mathbb{N}$, there exists a closed analytic subset S_m of T containing the origin such that $\lambda_m(X_t) = \dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(t)$, for all $t \in T \setminus S_m$.

Let $\psi: (M, A) \to (X_0, x)$ be a good resolution. For every $m \in \mathbb{N}$, we put $A_m := \psi_*O_M(m(K_M + A))$ and define the invariant ϵ_m and θ_m by

\[\epsilon_m := \dim_{\mathbb{C}} A_m/(\mathcal{I}_{m,0} \cap A_m) \]
\[\theta_m := \dim_{\mathbb{C}} \mathcal{I}_{m,0}/ (A_m \cap \mathcal{I}_{m,0}). \]
Then we have the diagram

\[
\begin{array}{c}
\mathcal{A}_m \cap \mathcal{I}_{m,0} \longrightarrow \mathcal{I}_{m,0} \\
\downarrow \quad \downarrow \\
\mathcal{A}_m \longrightarrow \mathcal{O}_{X_0}(mK_{X_0}).
\end{array}
\]

From (4.1) and Lemma 4.2, we have the following inequality for every \(m \in \mathbb{N} \):

\[
(4.2) \quad \lambda_m(X_i) \leq \lambda_m(X_0) + \epsilon_m - \theta_m.
\]

Lemma 4.3. There exist \(a, b \in \mathbb{Q} \) such that \(\epsilon_m \leq am + b \).

Proof. First, we show that \(\psi_* \mathcal{O}_M(mK_M + (m-1)A) \subset \mathcal{I}_{m,0} \cap \mathcal{A}_m \). Let \(\omega \) be a section of \(\psi_* \mathcal{O}_M(mK_M + (m-1)A) \). By [2, Theorem 2.1], there exists a section \(\omega' \) of \(f_* \mathcal{O}_Y(mK_Y + (m-1)E) \) of which the image in \(\mathcal{O}_{X_0}(mK_{X_0}) \) is \(\omega \). Since \(f_* \mathcal{O}_Y(mK_Y + (m-1)E) \subset \mathcal{I}_m \), we see that \(\omega \) belongs to \(\mathcal{I}_{m,0} \). Hence we obtain the inclusion. Then the inclusion implies that

\[
\epsilon_m \leq \dim_{\mathbb{C}} \mathcal{A}_m/\psi_* \mathcal{O}_M(mK_M + (m-1)A)) = \delta_m(X_0, x) - \lambda_m(X_0, x).
\]

From Theorem 3.4, we obtain the assertion. \(\square \)

In [14], Tomari and Watanabe proved their main theorem by using Izumi’s results on the analytic orders [5]. We need their useful arguments. The following lemma is the version due to Ishii.

Lemma 4.4 (Ishii [3, Lemma 1.5]). Let \((W, \omega)\) be a \(d\)-dimensional normal isolated singularity and \(h: W_1 \to W\) a resolution of the singularity which factors through the blowing up by the maximal ideal of the singular point. Let \(F = \bigcup_{i=1}^k F_i \) be the exceptional divisor on \(W_1 \), where the \(F_i \) are irreducible components. Then there exist positive numbers \(\beta \in \mathbb{R} \) and \(b \in \mathbb{N} \) such that:

For an \(\mathcal{O}_W \)-ideal \(J = h_* \mathcal{O}_{W_1}(- \sum_{i=1}^k a_i F_i) \) with \(a_i > b \) for some \(i \), the inequalities \(\dim_{\mathbb{C}} \mathcal{O}_W / J \geq \beta(a_i)^d \) \((i = 1, \ldots, k) \) hold.

Lemma 4.5. If \(\theta_r \neq 0 \) for some \(r \in \mathbb{N} \), then there exists a positive integer \(c \in \mathbb{R} \) such that \(\theta_{mr} \geq cm^2 \) for all \(m \in \mathbb{N} \).

Proof. Assume \(\theta_r \neq 0 \). By Lemma 3.2, we may assume that \(\psi: (M, A) \to (X_0, x) \) is a good resolution of the singularity which factors through the blowing up by the maximal ideal of the singular point. Let \(\omega \) be a section of \(\mathcal{I}_{r,0} \) which does not belong to \(\mathcal{A}_r \). We define a homomorphism \(\varphi_m: \mathcal{O}_{X_0} \to \mathcal{I}_{mr,0} \) by \(\varphi_m(s) = s\omega^m \) for every \(m \in \mathbb{N} \). We denote by \(J_m \) the inverse image \(\varphi_m^{-1}(\mathcal{A}_{mr} \cap \mathcal{I}_{mr,0}) \). Then we have the injection

\[
\mathcal{O}_{X_0}/J_m \to \mathcal{I}_{mr,0}/\mathcal{A}_{mr} \cap \mathcal{I}_{mr,0}.
\]
We put \(a_i := \min \{ v_i(\omega) + r, 0 \} \), where \(v_i \) is the valuation at an irreducible component \(A_i \) of \(A \). Then \(J_m = \psi_* \mathcal{O}_M(\sum m a_i A_i) \). By the choice of \(\omega \), there exists a component \(A_i \) such that \(a_i < 0 \). By Lemma 4.4, there exists \(c \in \mathbb{R} \) such that \(\theta_{mr} \geq cm^2 \) for any \(m \in \mathbb{N} \). \(\square \)

Corollary 4.6. If \(\mathcal{P}(t) \) is constant, then \(\theta_m = 0 \) for all \(m \in \mathbb{N} \).

Proof. It follows from Theorem 3.4, (4.2) and lemmas above. \(\square \)

5. **Main Theorem**

In this section, we prove the main theorem. We use the same notation as in the preceding section.

Definition 5.1. Let \(f : Y \to X \) be the log-canonical model of \(X \) with the exceptional divisor \(E \). We call \(f \) the simultaneous log-canonical model, SLC model for short, if the restriction \(f_t : Y_t \to X_t \) is the log-canonical model of \(X_t \) and \(K_{Y_t} + E_t \) is log-canonical for any \(t \in T \).

Definition 5.2. For any \(m \in \mathbb{N} \), we define the function \(\Lambda_m : T \to \mathbb{Z} \) by \(\Lambda_m(t) := \lambda_m(X_t) \).

The following Lemma is proved by an argument similar to that in Lemma 4.5.

Lemma 5.3. Let \(g : (X', B) \to (X_0, x) \) be a partial resolution such that \(K_{X'} + B \) is log-canonical. Let \(D \) be a reduced divisor on \(X' \) such that \(0 \leq D \leq B \). For every \(m \in \mathbb{N} \), we define the invariant \(\nu_m(X'; B, D) \) by

\[
\nu_m(X'; B, D) = \dim_{\mathcal{O}} g_* \mathcal{O}_M(m(K_{X'} + B))/g_* \mathcal{O}_M(m(K_{X'} + D)).
\]

If \(\nu_r(X'; B, D) \neq 0 \) for some \(r \in \mathbb{N} \), then there exists a positive integer \(c \in \mathbb{R} \) such that \(\nu_{mr}(X'; B, D) \geq cm^2 \) for all \(m \in \mathbb{N} \).

Proposition 5.4. Assume that there exists the SLC model of the deformation \(\pi : X \to T \). Then the function \(\Lambda_m \) is constant for \(m >> 0 \).

Proof. Let \(f : Y \to X \) be the SLC model of the deformation \(\pi \). Since \(K_Y + E \) is \(f \)-ample, \(R^1 f_* \mathcal{O}_Y(m(K_Y + E)) = 0 \) for \(m >> 0 \). From the exact sequence (cf. [10])

\[
0 \to f_* \mathcal{O}_Y(m(K_Y + E)) \to f_* \mathcal{O}_Y(m(K_Y + E)) \to f_* \mathcal{O}_Y(m(K_{Y_0} + E_0))
\]

\[
\to R^1 f_* \mathcal{O}_Y(m(K_Y + E)),
\]

we have \(f_* \mathcal{O}_{Y_0}(m(K_{Y_0} + E_0)) = \mathcal{I}_m \otimes \mathcal{C}(0) \) for \(m >> 0 \). Since \(f_* \mathcal{O}_{Y_0}(m(K_{Y_0} + E_0)) \) is a submodule of \(\mathcal{O}_{X_0}(mK_{X_0}) \), we have the equality \(\mathcal{I}_m \otimes \mathcal{C}(0) = \mathcal{I}_{m,0} \). Then Lemma 4.1 and Lemma 4.2 imply that

\[
\lambda_m(X_t) = \dim_{\mathcal{C}} \mathcal{Q}_m \otimes \mathcal{C}(0).
\]
We denote by B the exceptional set on Y_0. Since $E_0 \leq B$, we obtain the equality
\[
\dim \mathbb{C} \mathcal{Q}_m \otimes \mathbb{C}(0) = \lambda_m(X_0, x) + \nu_m(Y_0; B, E_0).
\]
Since $\mathcal{P}(t)$ is upper semicontinuous, $\nu_m(Y_0; B, E_0) = 0$ by the lemma above.

Lemma 5.5. \mathcal{Q}_m is a torsion free $\mathcal{O}_{\mathcal{T}}$-module for any $m \in \mathbb{N}$, if \mathcal{P} is constant.

Proof. We assume that there exists a section $\omega \in \mathcal{O}_X(rK_X) \setminus \mathcal{I}_r$ of which the image in \mathcal{Q}_r is a torsion element. Then there exists an exceptional prime divisor F on Y lying over X_0 such that $v_F(\omega) < -r$. We note that F is a projective surface. Let \mathcal{I}_F be the \mathcal{O}_Y-ideal of the subvariety F, and let $L_m := m(K_Y + E)$. Since L_1 is f-ample, there exists an integer $n \in \mathbb{N}$ such that $\mathcal{O}_F(L_n)$ is a very ample invertible sheaf and the following sequence is exact for any $m \in \mathbb{N}$:
\[
0 \to f_* (\mathcal{I}_F \mathcal{O}_Y(L_{mn} + F)) \to f_* \mathcal{O}_Y(L_{mn} + F) \to H^0(\mathcal{O}_F(L_{mn} + F)) \to 0.
\]
By [1, III, Ex. 5.2], there exists a polynomial q' of degree 2 such that
\[
\dim \mathbb{C} f_* \mathcal{O}_Y(L_{mn} + F)/f_* (\mathcal{I}_F \mathcal{O}_Y(L_{mn} + F)) = q'(m)
\]
for $m >> 0$. Since $\mathcal{I}_F \mathcal{O}_Y(L_{mn} + F)$ is isomorphic to $\mathcal{O}_Y(L_{mn})$ outside a one-dimensional subvariety in F, there exists a polynomial q of degree 2 such that $\dim \mathbb{C} f_* \mathcal{O}_Y(L_{mn} + F)/\mathcal{I}_{mn} \geq q(m)$ for $m >> 0$. Since any section of the sheaf $f_* \mathcal{O}_Y(L_{mn} + F)/\mathcal{I}_{mn}$ is a torsion element of \mathcal{Q}_{mn}, we obtain the inequality (cf. (4.2))
\[
\dim \mathbb{C} \mathcal{Q}_{mn} \otimes \mathbb{C}(t) \leq \dim \mathbb{C} \mathcal{Q}_{mn} \otimes \mathbb{C}(0) - q(m).
\]
Since $\dim \mathbb{C} \mathcal{Q}_{mn} \otimes \mathbb{C}(0) - \dim \mathbb{C} \mathcal{Q}_{mn} \otimes \mathbb{C}(t)$ is bounded by a linear function, we are led to a contradiction.

Remark 5.6. From the proof above, we see that Y_0 is irreducible. Thus any irreducible component of E dominates T. Since Y_0 is a principal divisor, for any irreducible component F of E, the intersection $F \cap Y_0$ is a one-dimensional variety.

Lemma 5.7. $\mathcal{I}_{m,0} = \mathcal{A}_m$ for any $m \in \mathbb{N}$, if \mathcal{P} is constant.

Proof. The inclusion $\mathcal{I}_{m,0} \subset \mathcal{A}_m$ follows from Corollary 4.6. Let ω be a section of \mathcal{A}_m and ω' a section of $\mathcal{O}_X(mK_X)$ of which the image in $\mathcal{O}_{X_0}(mK_{X_0})$ is ω. If $v_F(\omega') < -m$ for an irreducible component F of E, then there exists an irreducible component A_i of A lying over the variety $F \cap Y_0$ such that $v_{A_i}(\psi^* \omega) < -m$. It contradicts the definition of ω. Hence ω' belongs to \mathcal{I}_m, and ω also belongs to $\mathcal{I}_{m,0}$.

Theorem 5.8. The following conditions are equivalent.
(1) \(\pi: X \rightarrow T \) admits the SLC model.
(2) The map \(\Lambda_m: T \rightarrow \mathbb{Z} \) is constant for any \(m \in \mathbb{N} \).
(3) The map \(\mathcal{P}: T \rightarrow \mathbb{Q} \) is constant.

Proof. We consider the following condition: (2)' The map \(\Lambda_m: T \rightarrow \mathbb{Z} \) is constant for \(m \gg 0 \). By Proposition 5.4 (1) implies (2)'. It follows from Theorem 3.4 that (2)' implies (3). We assume that \(\mathcal{P} \) is constant. Then, from Lemma 4.1 and lemmas above, we obtain the following equalities for any \(m \in \mathbb{N} \):

\[\mathcal{I}_m \otimes \mathbb{C}(0) = \mathcal{I}_{m,0} = \mathcal{A}_m, \quad \dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(t) = \dim_{\mathbb{C}} \mathcal{Q}_m \otimes \mathbb{C}(0). \]

Now it is clear that (2) holds, and that \(Y_0 = \text{Proj}(\bigoplus_{m \in \mathbb{N}} \mathcal{I}_m \otimes \mathbb{C}(0)) \) is the log-canonical model of \(X_0 \). Since \(\mathcal{A}_m = \mathcal{I}_m \otimes \mathbb{C}(0) = f_* \mathcal{O}_{Y_0}(m(I_{i}Y_{0}+E_{0})) \) for \(m \gg 0 \) (cf. proof of Proposition 5.4) and \(K_{Y_0} + E_0 \) is ample, \(K_{Y_0} + E_0 \) is log-canonical. On the other hand, \(f_t: Y_t \rightarrow X_t \) is the log-canonical model for \(t \in T^* \) by Lemma 4.2. Hence we obtain the condition (1). \(\square \)

References