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ON ABSOLUTE CM-PERIODS II
By HIROYUKI Y OSHIDA

Abstruct. For a CM—ﬁeld.K , Shimura defined the period symbol pg by factorizing periods of abelian
varieties with complex multiplication. We define the absolute period symbol gx using division values
of the multiple gamma function and conjecture that pg  coincides with gx up to the multiplication by
algebraic numbers. Taking the action of Gal(Q—/ Q) into account, we present a refined vetsion of this
conjecture. We show that these conjectures are consistently formulated and discuss various numerical

examples which support our conjectures strongly.

In our previous paper [Y2], we formulated a conjecture which gives an expression of
the derivatives of Artin L-functions at s = 0 by CM-periods. However we could not
express CM-periods themselves by such a conjecture.! In the present paper, we shall give
a conjecture which expresses CM-periods by the values of the multiple gamma function at
division points, and present various numerical examples which support it. ,

Let us explain our ideas and the contents of this paper more premsely Let K be a
CM-field, Jx be the set of all isomorphisms of K into C and Igx be the free abelian
group generated by Jg. For every o, 7 € I, Shimura defined ([S2], [S3]) the CM-period

pk(0,7) € C*, which is uniquely determined mod QX The fundamental properties of
the period symbol px will be reviewed in §1. For a, b € C, let us write a ~ b if b # 0 and
a /b € Q. Using px, we can write the Chowla-Selberg formula as

a
(1) 7k (id, id)? ~ HF E a)/2h,

Here K is an imaginary quadratic field of discriminant —d, w is the number of roots of
unity contained in K, h is the class number of K and x is the Dirichlet character which
corresponds to K.

Now assume that K is abelian over a totally real field F. Put n = [F : Q], G =
Gal(K/F) and let p € G be (the induced map from) the complex conjugation. Let G_ be
the set of all characters x of G such that x(p) = —1. Let Jr = {01, 03, -+ ,0,} and extend
o; to an element of Jg, for which we use the same symbol ¢;. Our previous conjecture,
that is essentially equivalent to a conjecture of Colmez [C], can be brought to the form

- —nu(r)/2 X(T) L/(O X)
(2) Z1—:-[1;);((01,7'01-) ~ )/ Xg— exp(F== Gl 0, X)) T € G,

1Thls point will be shown explicitly by an example in §7. See also the discussion in the begmmng of
[Y2], §
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where (1) = 1 (resp. —1) if 7 = 1 (resp. 7 = p) and p(r) = 0 otherwise (cf. §3).
A property of the period symbol implies that [[;—, px (04, 70:) ~ [[1y Pxo: (id, 07 1 70;).
Shintani’s results ([Sh1], [Sh2], [Sh3]) express L'(0,X) in terms of the multiple gamma
function introduced by Barnes ([Bal], [Ba2]), which will be reviewed in §2. Inserting -
Shintani’s formula for L'(0,%), we shall realize that the right hand side of (2) can be
factorized naturally in accord with the factorization of the left hand side. Thus, in §4, we
shall define gk (id,7) € C* for 7 € Gal(K/F) using the multiple gamma function so that
[Ty 9k (id, o, ' 70;) is equal to the right hand side of (2) and shall predict

Conjecture A. pk(id,7) ~ gk (id,7) for T € Gal(K/F).

We note that if F = Q, Conjecture A follows from a result of Anderson [A].

We can sharpen Conjecture A in a similar way as in [Y2], §5. By virtue of a theorem
of Shimura (cf. §1), we can choose Grossencharacters A1, Ag, - -+, Aq of type Ap of K and
integers €y, €2, -+, €5, m so that

, ,
H L(m/2,)% ~ mpk(id, 7)°
=1

holds with A € 27'Z, e € Z. Then we expect
Conjecture B. For every o € Aut(C), there exist;s a root of unity { such that

3:1 L(m/z’ At)ez )0' — . '1, 1 (m/2 ) )ei
mAgk (id, T)e WAgKa (id, o 17’0)6'

In §4, we shall also show that Conjecture A is sufficient to express px (0,7) mod —QX
terms of the multiple gamma function for all o, 7 € Ik.

Let us describe our factorization of (2) explicitly in the simplest case n = 2, [K : F] =2,
T = 1. Let € > 1 be the generator of the group of totally positive units of F Let ai, as,

, ap, be integral ideals which represent narrow ideal classes of F'. Let foojo0s be the

conductor of K as a class field over F, where co; and ooy are the archimedean primes of
F. Let Cj be the ideal class group of conductor fooj00, of F'. For c € Cj, take “u so that
c and a,f belong to the same narrow ideal class and put

R(e,c) = {z—a:—l—yee(auf) 1|az:y€Q,0<Jc<1 O<y<1 (z)am‘—c in Cf}.

Regard x € G_ as a character of C; and let T'5(z, (1, €)) be the double gamma function.
By Shintani’s formula, (2) can be written as

HPK(UuUz Hexp( 2L(O 0 Z x€) >

ceCy z= :z:—l‘—yeER(e,c)
@ D@0 e
B [lg (L n(ey o B |
—logN(auf){e >+Bz<y>>+31<x>31<y>>}]>.
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Here, for a € F, o/ denotes its conjugate and B,,(z) denotes the m-th Bernoulli polyno-
mial. (For p3((1,€)), see §2.) We define

Fz Z, 1,6
9k (id, ld) =7 exp 2L(0 X) Z X(c) Z [log Pz(((l(, 6)))) :

z=z+ye€ R(e,c)

- € 1og CBQ(CC) - Z,log N(auf){e/Bg (iE) + eBz(y) + 231 (.CC)Bl (y))}J )v,

/

€
+

3 . ‘ FZ(ZI?(LGI))

. gKe2(id,id) =~ exp x(c [log——-—
wees i 1) o 9 2 © 2 [ty

/

+ 5" ClogeBy(z) — ilog N(auf){eBa(z) + € Ba(y) + 2B1(z) By (y))}J ),

where o3 |F # id. Put

1 € —e
= m Z x(c) Z 1 Bs(z).

ceCj z=x+yeeR(e,‘c)
Then Conjecture A predicts (cf. Lemma 4)

x(e)/L(0,x)

(4) | wpK(id,id)ZNea‘H" I Ty (2, (1,€))

ceCy zER_(e,c)r pz((l,e))

If F=Q(Vd),0<deQ,ais of the form bv/d with b € Q. In our examples discussed in
the text, this quantity a will play an important role. Note that L(0, X) = 2h/i, where h
is the relative class number of K/F and 7 is the index of the unit group of F in the unit
group of K. The analogy of (4) to (1) is now manifest.

In the general case, Shintani’s formula depends not only on the choice of representatives
of narrow ideal vclasses but also on a cone decomposition of R”; so does our definition of

“absolute period” g (id, 7). In §5, we shall study the dependence of gk (id, 7) and show
that the validity of Conjectures A and B does not depend on these auxiliary data. A careful
reader will notice that our definition of gk (id, 7) is almost uniquely forced to satisfy this
demand of canonicality and the factorization of (2). '

In §6 ~ §8, we shall discuss numerical examples to convince ourselves of the truth of
Conjectures A and B. In §6, we examine the case when F is real quadratic, [K : F]=2 K
is not normal over Q. In §7, we examine the normal closures over Q of CM-fields discussed
in §6, which are cyclic extensions of degree 4 of real quadratic fields. These sections
correpond to the classical case treated by Hecke and can be regarded as a sharpening of
the experiments made in [Y2]. Basic procedures of present experiments are the same as
before and though we shall describe our results fairly explicitly, the reader is advised to
see [Y2], §3, §4 for more technical details. In §8, we shall present an example when F is
a cubic field and [K : F| = 2. This example is important for us to believe the validity of
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Conjectures A and B in the general case, since the term V(c) in the definition of g (id, T)
(cf. (4.4)) is too simple when n = 2.

Our conjectures will produce a number of new problems. The author would like to
discuss some of them on a future occasion. ‘ T '

Notation and Terminology. Throughout the paper, we fix an algebraic closure Q of Q
in C. By an algebraic number field, we understand an algebraic extension of Q of finite
degree contained in Q. We denote by p the complex conjugation. For an algebraic number
field K, Jx denotes the set of all isomorphisms of K into C and I k denotes the free abelian

group generated by Jx. The ring of integers, the unit group and the class number of K
‘are denoted by Ok, Ex and by hg respectively. We denote by I(K) the ideal group of

K. For an integral ideal f of K, I{(K) denotes the ideal group of K modulo §, i.e. the
- group of fractional ideals which are relatively prime to f. We abbreviate p|K to p if no
confusion is likely. For an extension L of K of finite degree, Res; /K denotes the restriction
homomorphism from I, to Ix; Inf; sk denotes the inflation homomorphism from Ix to
I, such that, for o € Jk, Infy x (0) is the sum of all elements of J;, whose restrictions to
K coincide with 0. The norm (resp. trace) map from L to K is denoted by Ny, /K (resp.
Trr k). We abbreviate Ny ,q (resp. Trx,q) to N (resp. Tr). The relative discriminant of
L over K is denoted by D(L/K). For an abelian extension L of K of finite degree and for

L/K

a fractional ideal X of K , which is relatively prime to the conductvor‘ of L, (T) denotes

“the Artin symbol. We denote by K the idele group of K.

For a totally real algebraic number field F' of degree n, we denote by 0oy, 002, - - -, 0oy,
the archimedean primes of F. We identify every oo; with an element of J r and choose 0co;
so that it corresponds to the identity embedding of F' into C. For a € F, a > 0 means
that a is totally positive. We put Ef. = {¢ € Er | ¢ > 0}. By a CM-field, we understand
a totally imaginary quadratic extension of a totally real algebraic number field. For a
CM-field K, ® € Ik is called a CM-type if ® + ®p is the sum of all elements in Jx. A
representation 3 of Gal(K/F), where K is a CM-field which is a finite Galois extension
of a totally real algebraic number field F, is called odd if ¥(p) = —id. For a finite group
G, a subgroup H of G and a representation 1 of H, the induced representation from Y
is denoted by Ind$+. For elements g1, g2, - - -, gn of a group, (91,92, , gn). denotes the
subgroup generated by g1, ga, - - -, gn. For a set .S, | S| denotes the cardinality of S. For a,
be C, wewritea~bifb#0and a/be Q. Weput Ry = {z € R |z > 0}.

§1. Two theorems of Shimura

In this section, we quote two theorems of Shimura on CM-periods which are crucial for
succeeding sections.

Theorem S1 ([S3], Theorem 1.1, [S5], Theorem 32.5). For every CM-field K, there
exists a map pk : Ix X Ix — C* with the following properties.
(1) If® isa CM-typeof K and 0 € ®, [ w, ~ wpg (o, ®) for every c € Hi(A,Z), where A is
 any abelian variety defined over Q of type (K, ®) and w, is any Q-rational holomorphic
differential 1-form on A which is multiplied by a” under the action of a € K N End(A).
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(2) pr (&1 + €2,m) ~ pr (&1, MPK (€2,m), PK (&M + m2) ~ PK (&, m)px(f,nz) for every &, 51,
52’ n, T, 12 € IK

(3) px(&p,n) ~ pr(€,1p) ~ P (§,m) " for everyf,nefx
(4) px (&, Resp k(€)) ~ pr(Infy/k(£),() if§ € Ik, ( € Iy and K C L, L'is a CM- fie]d

(5) px(Resp/k(¢),§) ~ pL(C,InfL/K(g)) if¢ €Iy, €l and K C L, L is a CM-field.
(6) px:(¥€,¥n) ~ px(§,n) if v is an isomorphism of K " onto K.

Let ® be a CM-type and f be an integral ideal of K. Let A be a Grossencharacter of
I+(K) such that

M(@) = [[@/lec))ts  if a=1 mod™f,
oce®
where t,, o € ® are non-negative integers. Let L(s, A) denote the L-function attached to
. We write L(s,\) as Lx(s,A) when we emphasize the dependence on K.

Theorem $2 ([S1], Theorem 2 combined with [S3], Theorem 1.1; or [S5], The-
orem 32.12). For every integer m such that m — i, € 27 and —t, < m < t, for every
o € &, we have

L(m/2,)) ~ 7% p () to - 0, <1>),

oed

where e = m[F : Q|+ > co to

§2. Review of Shintani’s results

In this section, we recall Shintani’s formula which expressés the derivative of a partial
zeta function of a totally real algebraic number field at s = 0 in terms of the multiple
gamma function. We follow Shintani [Sh3], [Sh5] faithfully.

Let r be a natural number and let w = (wy,ws, -+ ,wr) € RT, z > 0. For s € C, we
define the multiple Riemann zeta function by
Glewn= 3 (e +9)
Q=miwi+mows+-+Mrwr
Here (mi,mg,---,m,) extends over all r-tuples of non-negative integers. This series
converges when 9‘%(3) > r and can be continued meromorphlcally to the whole s-plane;
¢r(s,w, x) is holomorphic except for simple poles at s =1, 2, ---, r. We put

) 0
—log p’r'(w) = xlifgo{é—g’r(svwa x)‘&=0 + lOg IE},

0
E(’r(sa w, -’E)Is:O = 108{—‘—

' (z,w) is the r-ple gamma function introduced by Barnes ([Ba2]). I, (z,w)™! can be
analytically continued as an entire function to the whole z-plane; I (z,w) is holomorphic
at z if = is not of the form z = —(miw; + Mmows + -+ - + Myw,) With non-negative integers
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my, ma, -+, my. Fori, 1 <i<r, put w(1) = (wl, » ,wi_l,wi+1",---.,w,~). Then we have
the dlfference equation '

1 F,-(.’IC,&)) — 1o ]__‘7._1(113,(:0(’1;))

T (z + wi,w)
2.1 log —— T X0 o - )
&1) 0@ oW b1 @0)

Let A = (am) 1<i<n,1<j<rbeann xr-matrix. We assume a;; > 0 for all ¢
and j. Let = be a column vector such that x = (z1,%2, -+ ,Zpn), z; > 0 for all ¢ and that
x # 0. We put

Ay (Az)y
A ‘ A:C 2
Ao | e | W
A, ; (Az)y

For s € C, we define |

(2.2) | ((s,A,z) = Z H{Z aij(2; + ;)} S-

21, 2p=01=1 j=1

This series converges if R(s) > r/n and can be continued meromorphically‘to the whole
s-plane; it is holomorphic at s = 0. For I = (I1,l2,-- ,1;), 0< L, € Z, 1 < j,k < n, j #k,
we put »

r

' 1, d
(2.3) Crix(4) = /{H (ajm + agmu)'= "1 = T ol 1}_5_;
m=1

Z Cz,a,k(A)

(4,k)

Here (j, k) extends over all ordered pairs of integers such that 1 < j,k < n, j # k. The
xt
Bernoulli polynomials are defined by c

— = Z Bin (2 )tm 1 Now Shmtam s formulas

t m‘

are

Bl xJ)

(24)  ¢(0,Az)= Zg (0, Ay, (A2)3)/n = I)TZZH{ 2

i=1 j=1

(25) —C(S A, 7)o O—IOg{H L' ( Ail(xf);,)A 1) Zo(A H{Bl (CL‘J:) .

Here | = (13,12, : ,ZT) extends over all r-tuples of non—negatwe integers such that [; +1s+
et l.=r



Now let F' be a totally real algebraic number field of degree n. Let Jp = {01,092, -, aﬁ}.
We put (9 = 2% for z € F and embed F into R™ by

Fsz— (zM,2® ... z™)eR"

For r linearly independent vectors vy, ve, - -+, v, € R™, put
r :
C(vi,ve, - ,vup) = {Ztm | t1,t2,- -+ ,tr > 0}

and call C(vy,vs,- - ,v.) an r-dimensional open simplicial cone with basis vy, va, - -+, V.
There exists a finite set J and an 7(j)-dimensional open simplicial cone C; with basis from
Op for every j such that (cf. [Shl], Proposition 4)

(2.6) R} = UGEE;mr €(UjesCy) (disjoint union).
We puf |

C] - C(vjlavjé) e >Uj7"(j))> Yj1, V52, 7Uj'r‘(j) € DF
and define an n x r(j)-matrix A; by 4; = (%(21) (the (I,m) component of A; is vJ(Q%) For
z € C;, we put :
z = xl(Z)Ujl + 2 (Z)’sz +e +$T(J)(Z)’UJ,,-(J), tx(z) = (xl(z)"qa(z), S Te(g) (Z)) c Q"'(j).
For a fractional ideal a of F', we put 7
(2.7) R(Cj, a) = {Z can Cj ! 0< ml(z),mz(z), <. -;,xr(j)(z) _<_ 1}.

Let ho be the class number of F' in the narrow sense and let a;, ag, ---, ap, be integral
ideals which represent narrow ideal classes.  Let f be an integral ideal of F' and let Cj
denote the ideal class group modulo 00100z - - - 00p,. For ¢ € Cj, take a, so that ¢ and a,f
belong to the same narrow ideal class and put : '

(2.8) R(Cj,c)={z¢€ R(Cj, (a,H)™h) | (2)auf=c in Cf}.
Then we have

{ze (00)7 NGy, (auf=c in Cp)

(2.9) |
= UZGR(CJ‘,C){Z + T1v51 + X202 + - - - + ZTr()Vjr(4) | 0 le, T2, " Tp(j) € Z}

Let
rls0)= Y N@

a,a=c in Cj

be the partial zeta functlon of the class c. By (2.9), we have

- (2.10) ; Cr(s,c) = Z Z N(auf)~°¢(s, Aj,:c(z)). _

. J€J z€R(Cj,c)
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From (2.4), (2.5) and (2.10), we obtain the following expressions of (r(0,¢) and ¢4 (0, ¢).
For je Jand z € R(CJ, ¢), we put

r(4)

‘ r(5)-
(211) Z {H{Bl (m(z m)}TrF/Q{H(,Ul —1 :| ,

' - Fr(j)(z(k),Ag'k)) .
(2.12) 1) =[] { b
| k=1 Pr(j)( 3 )
. g [ B @@
(2.13) Si(2) = ;a(Aj) 11 I
‘m=1
Herein ), I = (1,12, -+ ,lr(;)) extends over all r(j)-tuples of non-negative integers such

that Iy + 1z + - + 1,5y = 7(J); Ag.k) denotes the k-th row of A;. For ¢ € C}, we put

| L (1))
(2.14) He =Y ST v my),

T jeJ zER(Cj,c)

(J)

(2.15) 7o) = H T 7 eXp{Z Y S}

j€J zeR(Cj,c) - jed z€R(Cj,c)
Then we hdve
(2.16) ¢r(0,¢) = H(o),
(2.17) |  Cr(0,0) =log T(c) — log N (auf)¢r (0, ).

§3. Reformulation of our previous conjecture

Let us begin by fecalling a conjecture in [Y2]. Let L. be a CM-field which is normal over
Q. Put G = Gal(L/Q) and let p € G be the complex conjugation. Let G be the set of
equivalence classes of all irreducible representations of G and let G_ be the subset of G

which consists of the equivalence classes of all irreducible odd representations. For n € G ,
let L(s,n) be the Artin L-function attached to n. Conjecture 2.2 of [Y2] states
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Conjecture 1. Let c be a conjugacy class in G. Then

o —u(e)/2 CIX (c) L'(0,n)
ECPL (o)~ H [L nQ (0,77))
neG_

where X, is the character of n and

1 if e={1},
pe)=4 -1 if c={p},
0 if c#{1}{n}

Now let F' be a totally real algebraic number field such that [F': Q] = n. Let K be a
Galois extension of F' of finite degree. We assume that K is a CM-field and let L be the
normal closure of K over Q. We put G = Gal(L/Q), H = Gal(L/F), Hy = Gal(L/K).
For 7 € G, we put

[ pxGlK, (rolK)).
€ Ho\G
We note that Pr = [],c;, Px(o,70) if 7 € H. We are going to compute Pr assuming
Conjecture 1. By Theorem S1, we have '

Py ~ [] px(alK, (rajK)) VIl ~ II II pe(z, hrz)t/1Fel

zeG z€G h€Hg
~ H H pL(id,x_lth)l/[Hol ~ H H pr(id, O.)]GI/IHg]lC(hT)]
2€G h€Ho h€Hg oeC(hT)

~ Here for g € G, C(g) denotes the conjugacy class of g in G. Applying Conjecture 1 to this
formula, we get ' ‘

P~ [] {,r—u<m>|c|/zc<m)|mo| 11 exp( (G (A7) L'(0, ) lGlhT)l)}_

heHo e [L:Q] L(0,m) [Hol|C(

We put u(r) = 1 (resp. u(r) = 41) if there exists an h € Hp such that hr = 1 (resp.
ht = p) and (1) = 0 otherwise, using the same letter . Then we have

(3.1) P, ~ = #MIGI/21Ho] TT exp( 1 > x,;(hf).L'(O’”)),
|Hol| 7. L(0,n)

neG_ ‘
We have Y,y Xn(h7) = 0 if n|Hp does not contain the trivial representation. Let

{m,m2,--- ,m} be theset of all n € G_ such that n|Ho contains the trivial representation.
Then we get B

(3.2) P W—[K:Qlu(f)/zf‘[exp( 1 S o () L'(0, m))
. T . il ‘H()l R i ‘ (O 'rh)
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Take w € (Hm and regard w as a representation of H. By the Frobenius reciprocity,
we can write Inde o Z,L 1 Ci,wis Ciw € Z and n;|H = ZwE(HTH\) Ciww @ &;, where &;

is a representation of H such that &;|Hy does not contain the trivial representation. Now
let us assume that 7 € H. Then we have ‘

: Z Xn; (hT) = |H0| z Ci,iuXw(T)'

Since L(s,w) = Hi:l L(s,n;)%«, we have

S L0 L(Ow)
Hence we get
l
1 L'(0,m) L' (0,w)
—_— (hT)—— = C X\T) 757
2Ty 2 T = L e
=1 heHo | we(H/Ho)-

Inserting this formula in (3.2), we get

L'(0,w)
L(0,w) )

(33) | P, ~ W”[K:Q]IJ(T)/Z 7 H eXp(Xw('T)
| we(H/Ho)-

Summing up the calculations above, we obtain:

Proposition 1. Let K be a CM-field which is a Galois extension of F' of finite degree.
Put G = Gal(K/F) and let G_ be the set of equivalence classes of all irreducible odd
representations of G. For T € G, let u(r) = 1 (resp. —1) if 7 = 1 (resp. T = p) and
p(T) = 0 otherwise. If Conjecture 1 holds, then we have :

Ll
@0 ] pelore)~rm 08 [ apieZ8D) o s
oc€JK -‘wEG_ ( 7w)
Corollary. Let Jp = {01,09,--- ,0,} and use the same letter o; for any extension of o;

to Jx. We assume that K is abelian over F'. Then we have

(35) . HPK(UzaTU% ~T —np(r)/2 H ex LTg-I) LLI((S”:})))

weG -

We note that px (ci,70;) mod Q  in (3.5) does not depend on the choice of the exten-
sion o; in view of Theorem S1, (6). Clearly (3.4) includes Conjecture 1 as a special case
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where F' = Q. Actually we can prove that Corollary to Proposition 1 implies Conjecture
1 by a similar consideration to the above.

§4. Main conjectures -

Throughout this section, let F' be a totally real algebraic number field of degree n and
K be an abelian extension of F'; we assume that K is a CM-field. Let foolooz -+ - 00, be
the conductor of K as a class field over F'. Set G = Gal(K/F'). We begin by writing the
right hand side of (3.5) using Shintani’s formula (2.17). For an integral ideal f of F, C;
denotes the ideal class group modulo foo;005 - -+ 00,. For w € G —, regard w as a character
- of C— by the Artin map and let f,001003 - - 00, be the conductor of w. For an integral

1dea1 £1f, we set (G_ )i=A{we€ G- | f, = f} and regard w € (G_ )i as a character of Cf.
We have

> T L L’(o w) = Z Z L‘;’éﬂ L(0,w)

welG_ flf we(G-)s
w T
DI ” DIFCIACEY
fif we(G )f cEC

(It can happen that (G_)f = () for some f|f.) Thus (3.5) can be written as
Y e—rp(T)/2 | w(T)
(41) | HpK 0'1,,70'1) o exp(|G[ Z Z L(O,W) Z C)CF(O C
i=1 fif we(G-)s e€C
Writing (%(0, ¢) in full using (2.16) and (2.17), we have

k0,0=3Y %

' (k)
k=1j€J z€R(Cj,c) Pr(j)(Aj )

P [saw 3 ] {2ty

m

1—‘7'(j) (Z(k)a A_gk))

(4.2)

jed 2ER(Cj,¢) m=1
7(4) Bl .'.U(Z ) (5) ;
m —
g N@)Y T II{ brrere{ T 04 ]
m=1

l z€eR(Cj,c) m=1

We can factorize the right hand side of (4.1) naturally according as the factorization of
the left hand side. Note that Shintani’s formula (4.2) does not depend on the numbering
of Jp = {01,002, -+ ,on}.

Now we choose o, = id. For ¢ € Cj, put

I"r(j) (z(l)a A'g'l))

I

(4.3) G(c):Z Z log

(1)
. JE€J z€R(Cj,c) p"(j)(Aj )
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S|

CEDYCIE)
l

- jeJ

> (Crip(As) + Cria(4;) - — > Cz,i,k(Aj)J
k=2 M 1<ik<n itk :
4 ™ B (2(2)m)
’ In \T\Z)m
< > I :

I
zER(Cj,¢) m=1 m

1 - @ B (2(2)m), @y
(45) W =—lgN@f) ) (-17@3 7 3 [] =22 oDymt,

. In!
- jed I 2€R(Cj,c) m=1 m

" (4.6) - - X(c) =G(c)+V(c) + W(c).

For 7 € G, we put

(4.7) gx(id, 7) = mR(/2 exp(,—l—l >y L‘E’éz ) 3 w(e)X(e).

flf we(@-)s ey

In (4.2), (4.4) and (4.5), 3", is taken over all r(j)-tuples of non-negative integers | =
(la,l2y-++ ,lr(;)) such that Iy +1 4+ --- + lrijy = r(j). Hereafter Y, will always have this
meaning.

Conjecture A. For 7 € G, we have pg (id, T) ~ gk (id, T). |

~ Roughly speaking, Conjecture A expresses px (id, 7) in terms of the multiple gamma
function. Admitting Conjecture A, let us show that we can always express pg(o,T)
mod QX,. o, T € Ik by the multiple gamma function. Let L be the normal closure of
K over Q. We may assume that o, 7 € Jg. Take & € Jr, so that &|K = 0. By Theorem
S1, we have pk (o, 7) ~ pr (5, Infr k(7)) ~ pr(id, 5 Infr, k (7)). Hence it suffices to con-
sider py(id, ) for o € Jr. We may regard « as an element of Gal(L/ Q). Let F, be the
fixed field of (a, p). Then F, is totally real and L is abelian over F,,. Now Conjecture A
expresses pr,(id, @) mod Gx by the multiple gamma function. :

We are going to formulate Conjecture A in covariant forms under the action of Gal(Q/Q)
- in a similar way as Conjecture 5.1 of [Y2]. Let K be as above and let q be an integral ideal
of K. For 1 <i < g, let ®; be a CM-type of K and )\; be a character of I4(K) such that

Ai((a)) = H (a"p/|a"|)t<(’i) if a=1 mod*q.
ced,;

Here t,(,,i ) are positive integers. We assume that there exists an integer m which satisfies

m—~t((,i)€2Z and —t((,")<m§t<(,i)
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for every 4 and every o € ®;. By Theorem 52, we have

(4.8) L(m/2, %) ~ 7 2ppc (Yt -0, 8;), ei=m[F: Q]+ Y 1.
ged; o€ed;

Let L be the normal closure of K over Q and S be a CM-type of L. Take ®? € I, so
that Resz/x (®9) = ®; and put n; = Infr k(3 ,cs, 9. 0), n;t@) = D yens 6 v716 =

l( Do + m( )ap. Then for integers €1, €2, - - -, €, We have
ceS q
HpK(Zt(’) o, ;)% ~ pr(id, Zna o)
ced; oc€S
with nc, = ez(l(z) - mg)) For 7 € G, put InfL/K('r) Yopes lpo +myop, n, =

I —ml Then we have pk (id, 7) ~ pr(id, >, cgn,0). We assume that there exists an
integer e such that

(4.9) Z Neo = e Z n,o.

oceS c€S

Then we have

HL(m/z M)~ pK(ld T, A= Z efi

i=1 i=1
if the left hand side is meaningful.

For o0 € Gal(Q/Q) and C; = C(vj1, 52, Vjr()), Put CF = C(vf1, 955, 05,5)-
(To fix our idea, we define C7 including the ordering of the basis though the ordering has
no effects on our definition as will be shown in §5.) Then we have the decomposition

R} = Ueet, €(UjesCy) (disjoint union).

A natural way to define gx-(id,oc o) for 7 € Gal(Q/Q) is to use the data {C} e
and a7, 1 < p < hg. We then say that {gx-(id,07'70)},cqa(q/q) 18 covariantly defined.
When {C,};cs and a, are given gk- (id,0~1ro) depends only on o|F.

Conjecture B. Assume that L(m/2, ;)% # 0 if ¢; < 0 and that

{9K-(id, 071 70)} ,cqai(q)q) 18 covariantly defined. Then for every o € GaI(Q/Q) there
exists a root of unity ¢ such that

Z:l L(m/2’ )‘i)ei
nAgg(id, 7)°

_ L(m)2, )
1Agko(id, o~ 1r0)e’

)7 =¢

Here AJ (a) = (A;(a))? if all 9 are even. For the general case, see [Y2], §3. In Conjecture
B, ¢ depends on o and the determination of ¢ can well be called a reciprocity law. A special
case of this problem is discussed in [Y?2], §6, §7.
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By Theorems S1 and S2, we can easily derive the relation?

g
H L(m/2,\9)% ~ 1lpgo (id,0 7 r0)e

i=1
from the assumption (4.9). Hence Conjecture B is not only consistent with Conjecture A
but also refines it.
§5. On consistency of the main conjectures

In the formulation of Conjectures A and B, gk (id, ) depends on the choice of a cone
decomposition {C;};es and the representatives {a,} of the narrow ideal classes. In this
section, we shall show that if Conjecture A (resp. B) holds for one choice of these data,
* then it holds for any other choices.

Let us first show that if {gk-(id,0c~170)} scGal(Q/Q) 18 covariantly defined, then

(5.1)  [loxe:(d, o7 r0s) = 7 *’”exp(;mz ) LL(U(TZJZ () (0, ¢))-

=1 flf we(G-)y ceCy

We put G; = Gal(K7: /F?+). Then we have G; = ¢, '!Go;. Forw € G'_, define w® € (G;)_
by w®(z) = w(oyzo; ), z € G;. We have

w®(c?) =w(c), ceCy, L(s,w®) = L(s,w).

By definition, we have

gk (id, 07 roy) = mHET Wﬂ/zexp(l e Y Z “’g’(o,;‘;i) 3 w(eX()

fa’ fa" we(Gt _)fa CECfo'.i
- 7('_#(7')/2 exp(!G| Z Z LU(’T') Z w(Cai—%)X_(c)).
ﬂf (JJE(G )f Cecfai ’
Hence
- 1 w(r) , .
. -1 N (r)/2 L o
(82)  grmi(id o7 70y) = 770 (1 2 2 L(0,w) > w(@X (™)
flf WE(G_)f . CECf

and it suffices to show

(5.3) ZX(C‘”) = (R (0,c¢).

2L(m/2, \;) # 0 implies L(m/2, A7) # 0. (cf. [S4], Corollary 6.2.)



180

Using (2.16), we have
3" W(e™) = ~log N(auf)Cr (0, 0).

i=1

Hence (5.3) is reduced to

n _' r(5) (7) (2
0 Sven=S s au) 5 ] {Beln))
=1 4

. Jed zER(CJ,c) m=1

Let A;; be the n x r(j)-matrix determined by the cone C ‘. Fixje Jandl =
(I1,l2, -+ ,1r(5)). Then (5.4) follows from ‘ ’

n n

(5.5) Z(Z(Cl,l;k(Aj,i) + Crk,1(454)) — % Z ‘Cl;p,l;(Aj',i)) = C'l‘(Aj)'

=1 k=2 1<p,k<n,p#k

We easily have |
' 1 n
n Z Z Cipk(4js) = C’Z(Aj),‘
i=11<p,k<n,p#k

n

> Cuakl(4;) +Cl,k,1(Aj,i) =0 Y (Cipaldy) + Cuin(A;))) = 2Ci(4;).

i=1 k=2 i=1 1<k<n,k#i

Hence (5.1) is established. ‘

Now let us consider the dependence of gk (id, 7) on {C;} e and {a,}. Let {C]}ic be
a finite family of open simplicial cones with basis in O p. We call {C}}icr a reﬁnement of
{C;}jes if every C] is contained in some C; and 1f

R} = U, cpre(Uie LC{ ) (disjoint union).

In this case, we have UjesC; = Ue,C|.
Lemma 2. Let {C;};cs and {D;}icr be two finite families of open simplicial cones with
basis in D such that

R} =U.cpt €(UjesC;) (disjoint union), Ri =Ueeps €(UjerD;) (disjoint union).

Then there exists a finite family {C]}ic1, of open simplicial cones with basis in O and a
family of units {€;}ier, € € Ef such that {C|}icr is a refinement of {C;}jcs and that
{€1C} }ieL is a refinement of {D; }161

Proof. We have

(5.6) Cj = User UeeE;,ijeD,:;éw (CjneD;) (disjoint union),
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(57) -Dz = UjeJ UGEE;,Di'ﬂe;le#Q) (Dzﬂ e‘lG’j) (diSjOiﬂt union).

Fix j € J and ¢ € I. Let us show that there are only finitely many € € E} which
satisfy CiNeD; # 0. Set H = {(21,22,--- ,2zn) € RY | 21722, = 1}. Then Ef
is a dlscrete subgroup of H. For an open simplicial cone C, put Cl CNH. Clearly
C;NeD; # § if and only if C’1 NeD} # (. It suffices to show that the closures Cl and
D are compact. Let C =C (vl, va,- -+ ,v,) be an r-dimensional open s1mphclal cone with
Uk = (Vk1, Uk2, " Vkn) € R7, 1<k<r.Ifze —C"—l, then we see immediately that z is of
the form z = ZZ=1 tvg, 0 <ty <1/ Y/ Vk1Vkg * - - Ukn. Hence Clis compact.

By Shintani [Sh1], Corollary to Lemma 2, C; N eD; can be written as a disjoint union
of finitely many open simplicial cones with basis in Op. Now the assertion follows from

(5.6) and (5.7).

By Lemma 2, to see the dependence of g (id, 7) on {C}};e, it suffices to consider the
following two operations.

(1) Replace {C;}ecs by a refinement {C]}icr.-
(2) Replace one member C; of {C;}jes by €,;C; with €; € EJr

Now fix ¢ € Cy and take a, so that the narrow ideal class of ¢ is the same as that of
a,f. For j € J and for 1 <+¢ <n, put

(s, Cra)= S ()

z€(a,f)=1NCy,(z)auf=c

Here, since 209 > 0, (2M)~¢ is naturally defined by exp(%slog z()) taking the principal
branch of log z(") and = means the equality in C;. By (2.9), we have

(O Crran) = D7 (s, 47, 2(=9)).

ZER(CJ',C)
By (2.4) and (2.5), we obtain
| (i) ’ 1)) a Blm(x(z)m) (z) bn=1 .
(5.8) ¢(0,C5,a,) = (-1)70 Z > 1I- )"

2€R(Cj,c) 1 m=1

« d .. '
(5.9) 3G also= Y log ;
. ds z€ER(Cj,c) p”"(])(A,g ))

For 1 <,k <n,i+#k, weput

95, Cpa)= Y (D)

z€(a,f)~INCy,(2)a,f=c



182

Using (2.9), (2.4) and (2.5) similarly to the above, we obtain

(i r(F) .
510) (90,000 = I 3 37 [T Baltlmd 0y By

2ER(Cj,c) 1 m=1

i) () (k)
F"'(J)(Z() A ) o F'r(j)(z(k)aA_j )

d . | |
54(“’°)(8,Cj,au)|s=0=‘ Z l:l()g

. i k
(5.11) z€R(Cj,c) pr<j>(A§-)) Pr(j)(Ag‘ -))
' , ; . r(j)
(-1 By, (z(2)m)
t+ El:(c{,i,k(Aj)+.Cl,k,z'(Aj))n17;IlT
Therefore we have |
(5.12) Zd ¢V (s,C;, a,)]s=0,
. - jed
(5.13)
V()= Z( Z( C(l k)(s CJaau)ls =0 — _C( )(3 CJaau)is =0 — _‘C(k)(s Cj,au)ls=0)
jeJ k=2
1 . ) |
2 > (EC(“’“)(S, Cj,au)ls=0 — a‘;C( )(s,Cj, ) |s=0 — £C(k)(3,cja au)|s=0)),
1<i,k<n ik e
| 1
(5.14) W(c)=——logN (a,H) 3¢V (0,C5, ).
jeJ

By (5.12) ~ (5.14), it is evident that gk (id, T) does not change when we replace {C;} cJ
by its refinement. Also when we change the ordered choice of the ba31s of Cj, gk (id,T)
does not change.

Now assume that Cj is replaced by eC; with € € EF We have

¢ (s,€Cy,a,) = (€D)7¢D(s,Cj, 0,),

C(z‘,k) (s,€Cj,a,) = (eci)e(k))—sc(i,k)(s, Cj; a)-

Note that we have C(i’kj(O, Cj,a,) = 2(¢9(0,C;j,a,) + ¢ (0,C;,a,)) by (5.8) and (5.10).
By a direct computation using (5.12),(5.13) and (5.14), we see that G(c) +V(c) is changed
to

G(e)+ V() - ~loge® 3°¢®(0,¢5,a,)
k=1
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and that W(c) does not change Therefore gx (id, 7) is multiplied by (¢1))~% where

a= IGIZ Z L(Ow)z (0)¢(0,Cj,ay),

(5.15) | U we@oy, Joers!
(sCnm)= 3 NE@T= Y ((s45,0().
z2€(auf)—1NCy,(z)a,f=c 2€R(Cj,c). }

Since ¢(0,Cj,a,) € Q, we see easily that a € Q; we find similarly that ggo: (id, o ’raz)

is multiplied by (e®)~2. Hence if Conjecture B holds for {C;};e, it also holds When we
replace a member C; by eCj.

Next suppose that a, is replaced by (au)au where ozp is a totally positive element of F.
Since the consistency of the main conjectures with the change of a cone decomposition is
already established, it sufﬁces to con81der the simultaneous change3

a, — (o)ay, {Cj}jeJ — {(e) " Ciser-
We have o R ‘ o o
C(i)(3>a;10j7(au)aﬂ) ' Z (z9)*
' : o z€((ap)auf) 1Ny 1 Cj(2) () auf=c

_ z - ((a l(j)) 1 (z)) s:( (z)) C(%)(S o au)

z€(auf)~INC;,(z)a,f=c
Similarly we obtain . B , 7
(P (s, 0 Cy, (a)an) = (P alk))*¢BR (s, Cj, a,).
By (5.12), we see that G(c) changes to |

G(c) + Zloga(l)g(l)(o CJ,aM)
JjeJ

By (5.13), we see that V(c) changes to

V(e) — Z [log al(})C(’l‘) (0,Cj,a,) — - log ole,) Z ¢®(0,¢5,a,)
jeJ , \ k=1 S e

1 1 ' n_
~ ~log N ()0, Cj, @) + — log N (o) > (W0, ¢y, a”)} .
k=1
By (5. 14) we see that W(c) changes to
W(e) - = > log Ne )¢ (0, Cg,a,»

JEJ

3We may assume that (a,)~1C; has a basis in Op.
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Hence X (c) changes to
. .
X (c) +1log o Cr (0, ¢) — —log N(au)(r(0; ),

since (r(0,¢) = £ Y7 D op=1 ¢¥)(0,Cj, a,). Therefore g (id, 7) is multiplied by B
(a(l)N(a#)*I/”)b where -

Z Z w(T)) Z w(c)CF(O, C)v |

fIf we(G-)s 7 ceCy
(5.16) 1/2 if T=id,
| IG! Z w(r)=4 —-1/2 if 7=p,
weG- 0 if 7+#id,p,

which is the sum of a given by (5.15) over all j € J. In other words, b = u(7)/2. We find
similarly that gge: (id, o; }70;) is multiplied by (a(’)N (au)~Y/™)b . Therefore Conjecture
B holds also for the new data {o;1C}}jes and (oy)ay.

Let us call the map 0 — { = ((o) of Conjecture B a reczproczty map. We deduce from
the above considerations the following: :

Proposition 3.

(1) The reciprocity map does not depend on the ordered choice of the basis of C; and
does not change when we replace {C;};ecs by its refinement.
(2) When we change a member C of {C;}jes by €C; with € € Ef, ((0) changes to

{g;; }CC(G) where a € Q is given by (5.15). ,
(3) When we change an ideal a, to (a,)a, and {C; }JGJ to {(a,)~1C;}jes with a
(a u) (N (e)/m)°
)UN(au)b/n

totally positive element a“ of F, {(o) changes to { }e¢(o), where

b € Q is given by (5.16).

We also have to consider the dependence on the choice of m and A; in Conjecture B.
The consistency with changes of m and A; follows easily from considerations in [Y2], §7,
using Deligne’s conjecture proved by Blasius [BI].

86. Numerical examples I: Quadratic extensions of real quadratic fields

Let F' be a real quadratic field. We are going to write Conjecture B more explicitly.
For an element or an ideal z of F, 2z’ denotes its conjugate. Let ¢ > 1 be the generator of
Ef. We may take C; = C(1), C2 = C(1,€). Let f be an integral ideal of F' and ¢ € Cj.
Following Shintani [Sh2], we put

R(e,c)={z=z+ye€ (a,) 7' |7,4€Q0<z<1,0<y<1,(2)a,f=c in Cj},



where a, is taken as before. We have

Ly(z1) Ty(2,1)
2, leT TS 3l

ZER(Cl,C) Z=$+y€€R(€,C),y=0 '

S olEGd s 00

z€R(C2,c) p2((1,)) z=z+ye€ R(e,c),0<x<1,0<y<1 p2((L,€))

‘ - Doz +¢€(1,€)
S I e (v

z=x+ye€R(¢,c),y=0

. ' d
By the difference equation (2.1), we obtain

Doz, (1,9)
(61 - 3 weetir

z€R(e,c) |

Here, for simplicity, we write z for 2(1). We have C;(4;) = 0. Hence

1 B :czm
SEOCIUSED ol | RS

ZER(C276) m=1

IfA: (3, ﬂﬁ’)’ a, BEF, a, >0, then
dp-aff | §
Ty ER

,3'01-—,304/ o

C(zi,o) (A) 0(1,1)(A) =0, C'(0,2) (A) =

oo’ o

Hence we obtain

V_(c‘):%(e'—e)loge Z | M

z€R(C2,c) 2

Then we easily get

(6.2) V(c):%(e'—e)loge S B).

z=xz+4ye€R(e,c)

We also see easily that

63) W) =-7lsN(@wf) S (¢Bae) +eBaly) + 2B, (@)Bi(y)).
z=x+ye€R(e,c)

log —.

185
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Summing up, we have

X(c) = Z {log%&;)))—l—i—(e'—e)logeBg(x)

(6.4) z=z+ye€R(e,c)

- i log N (a,f)(¢ Bz(z) + €Ba(y) + 2By (z) By (y))}-

Shintani’s formulas (2.16) and (2.17) simplify in this case to ([Sh4], (16), (17))

65 w0d= Y @+ o)+ BE@BG)).
z=z+ye€R(e,c)

,

, _ Fg(z,(i,é))Fg(z’,(l,e})) %’—e ¢ Bolz
(6:6) CF(O’C)_ZWWZGR(C,C;{bg O I R }

—log N(uuf)CF(Oa c)-

By (5.3), we get

N ' Lo, (1)) 1., : ‘
X(C)— Z {log-—m-i-z(t‘. —e)logeBg(as)

(67) z=z+ye€R(e,c)

Lo N @) (Bate) + Biw) + 28, B |

The following Lemma would be of some interest.

Lemma 4. We have 3_,_ .\ ccre.c) B2(T) = 2, s iyeen(e,) B2(y) and
W(c) = —3log N(auf)Cr(0,c).

Proof. It suffices to show the first assertion. Let z = x + ye € R(e,c). Then e 'z +¢ =
y+z(e+€)+(1—z)e satisfies (e "1z +€)a,f = cin C;. We take 71 € Q so that 0 < z7 < 1,
Ty =y+x(e+¢) modZand put y; =1 — =z, 2; = z; + y16. Then we have 21 € R(e, c).
Put ¢(z) = 2;. Clearly the mapping ¢ is injective, hence bijective. Now the assertion
follows from By(1 — z) = Ba(z). S

Though it can well be the case that W(c) = —= log N(a,f)(r(0,c) in general, we have
not examined this problem yet.

Let K be a totally imaginary quadratic extension of F' and let foo;002 be the conductor
of K as a class field over F. Let x be the Hecke character of F{ which corresponds to K.
Then (4.7) can be written as '

(6.8) . - gr(id,id) = 7~ 1/2 exp(m Z x(6)X(c)),
’ ceCs
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1
2L(0,x)

(6.9) | gxce (id, id) = m=2/2 exp 3 x(©)X(<))

CEC;

ifoe Gal(a/ Q) induces the nontrivial automorphism on F. In this case, we have
‘ li

Let F = Q(\/E), 0<deQandz+yVd, z, y € Q be a totally positive element. Set

€=/ +yVd i, & = \Vx— yvd i, K = Q(¢). We assume that K is not normal over Q.
Define 0 € Jx by £7 = ¢. Let q be an integral ideal of K. For positive integers a and b,
let )\((11’1)) and )\Efl)) be characters of I;(K) such that

of a’f ’

A (@) = (|_07|)a(|a0 ),  a=1 mod*q,
af a’ ,

Affl))((a)) = (i'a—l)a(laapl)b, a=1 modXg.

By Theorem S2, we have
Lx(1, )\‘(111))) ~ m+att)/2p (g id + b- 0,id + o),
Lk (1, )\((12’1))) ~ et/ 2 (g id + b op,id + op). -

We note that Lk (1, )\((;3,) # 0 for every i, a, b. By Theorem S1, we have

L1, ALk (1,252)

6.10 ~ T2pg (id, id)?,
610 PRI ITRTRE)

L (LA L (1,02)
(6.11) GO M2 CLoY! ~ w2pg (0, 0)%.

Li(1,A59) Lrc(1,28))

In this case, Conjecture B states that

Lic (LA Lic (1, M) Lre (1, A5)) " Lie (1, A59) !
m2gK (id,id)*

_. Ix(L 0L A Lae (L (52)) ™ Lae(l, (A55)) ™

B T2gKa(id, id)*

for every a € Gal(Q/Q) with a root of unity (. Put

(6.12)

0 L (LA L (LA Lre (1, A8) " Lk (1,A8)) 2

1= 29k (id, id)2 T
L)L (1) L (1, 08) 1 Ly (1, 03))
2= m2gKo (id,id)4 '

(6.13)
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If hxk =1 and the conductors of /\( , are (1) in (6.13), then we see easily that (6.12) can
be written as :

(6.14) { (@)% =¢C-Qa, (Q)*=C- Qo if ofF =id
(Q1)* = (1 Qo (Q2)*=C- @1, if ofF #1id,
with roots of unity {; and (2 which depend on o.
1
Example 1. Let F = Q(\/—) K =Q( —§+7[—5— i). Then we have € = 3+2\/5,
f= (13+\/_) N(f) =41, L(0 ,X) =2, hr =hg =1, |Cf =2. Since ho = 1, we may take

= (1). Take q = (1). Then for even positive integers a and b, /\(1,), and /\( ) exist and are
uniquely determined. Define ; and Q2 by (6.13). By a numerical experlment, we find

Q1Q2 = 9 (The numerical value coincide to the 45-th decimal place. This quantity is
equal to ABQ in the notation of [Y2], §4, Example 1.) We also find ’

6_22/41Q1 +€22/41Q2 — 490

3-41°
Solving these equations and comparing with numerical values to determine the sign of
square roots, we get

o/ 245+ 60/5

2241 245 - 60\/_
3-41 '

@ = 3.41

Q2 =
The numerical coincidence is to the 45-th decimal place.* In this example, (; is a 41-st root
~ of unity given by (e22/41)® = ¢;((€*)?%/4!). Here the involvement of the fractional power of
¢ is curious and this was the main difficulty of the numerical experiment. Let C; = {c1,¢2}
where c; is the identity. We may take c; = the class of (6) ‘We have |R(e,¢;)| = 20,1 =1,
2 and ‘

19 ' —-29

14 = (¢’ —€)loge -

'2.3.41 (e2) = (€ = e)log e 557y

Vier) = Viez) = '—H\/—glog €, W(c1) = —-;— log(41), Wiea) = %log(éll).

Vicy) = (¢ — )loge

Thus we have

. N 1 _svB/a1 F2(Z7(17€)) I (z,(l,e)) -1
ﬂ'ng(Id,ld) = Hﬁ /4 (Zelgq) ,02((1,6)) )(zelgcz) [2)2((1,6)) )

We note that €Y is a transcendental number by the Gelfond-Schneider theorem. It is
remarkable that the power €22/4! can be “explained” by 22 — 8v/5 = 0 mod f. Similar
phenomena will be noticed in the following examples.

4For the sake of completeness, we carried out the second computation with higher precision and im-
proved the numerical coincidence to the 112-th decimal place.
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Example 2. Let F' = Q(v41), K = Q({/13 + 2v/41 ). Then we have € = 2049+320v/41,

f=(13+2v41), N(f) =5, L(0,x) = 2, hp = hc = 1, |Cy| = 2. We take a, = (1), q = (1).
Then we find

. 546718 + 85383/41 O, — 4175 . 546718 85383+/41
. 2 .

:4/2
@ =e 22.3.5 ’ | 3.5

The numerical coincidence is to the 42-nd decimal place Let Cs = {c1,¢c2}, c1 = 1. Then
| R(e, cz){ = 1280, i = 1, 2. We have V(c1) — V(cz) = ——\/—loge and 4 — 41 =0

mod {2 holds. (The “reason” of square is that 52 appears 1n the denominator of V(cl) -
V(cz). Compare with Example 11.)

Example 3. Let F' = Q(v/29), K = Q( 9+2\/@ i). Then we have € = gz—_—*_—;iz—g,
f—(9+\/—) N()—13 L(0, x)—~2 hr =hk =1, |Cf|_2 Wetakeal_(l) q=(1).
Then we find '

0y = /13 2935 +503v20 Qg = c9/13. 2935 503v/29 |

24.3.13 24.3.13
The numerical coincidence is to the 29-th decimal place. Let Cf = {c1,c2}, c1 = 1. We

~ have V(ey) = V(c2) = —-1-5@ loge and 9 — /29 = 0 mod § holds.

Example 4. Let F = Q(v/13), K = Q(\/9+2V13 4). Then we have ¢ = ———11‘_"_23 3,
f=(9+2v13), N(f) = 29, L(0,x) = 2, hr = hg =1, |Cf| = 2. We take a; = (1), q = (1).
Then we find '

2829 5669 + 274/13
23.32.29 '

_ag20 5669 — 27413

@1 = 93.32.29

Q2 =

The numerical comc1dence is to the 45-th decimal place. Let Cs = {cl,cz} c1=1. We
have V(cy) — V(CQ) = ——\/—— 3 loge and 28 — 3v/13 =0 mod §' holds.

Example 5. Let F = Q(\/—) K = Q(\/9+2\/—7 i). Then we have € = 33 + 8\/_
f=(9+2V17), N(f) = 13, L(0,X) = 2, hr = hx = 1, |Cf| = 2. We take a; = (1), g9 = (1).
Then we find

A1/13 285 + 64/17

1113 285 — 6VIT
22.13

Q= 22.13

Q2 =

The numerical coincidence is to the 29-th decimal place. Let Cs = {c1,¢2}, c1 = 1. We
“have V(1) — V(cz) = —1—13\/ﬁ loge and 11 — /17 =0 mod § holds.
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| ' 1 11 1
Example 6. Let F = Q(\/ﬁ), K = Q( 9+2\/_§ i). Then we have € = ———— +23\/_3,
9+ V13

f=(——— 5 ), N(f) =17, L(0,x) = 2, hr = hg =1, |Cf| = 2. We take a; = (1)q—()
Then we find

A7 5522 + 1519+/13
32.17

@2 = 32.17

Q1=

The numerical coincidence is to the 44-th deciinal place. Let Cs = {c1,¢c2}, c1 = 1. We
2 . :
have V(c;) — V(cp) = -——1—,%\/ 13 loge and 1 — 2y/13 =0 mod { holds.

Example 7 Let F = Q(\/_) K = QW7+ 2\/5 i). Then we have € = 3+2\/5,

f=(4)(T+2v5), N(f) =24-29, L(0,x) =4, hp = 1, hx = 2, |Cf| = 16. We take a; = (1),
g = (1). The prime ideal (2) of F' ramifies in K. Put (2) = P3. Let z =1 or 2. For every
positive even integers a and b, there exists two Grossencharacters A )b of conductor (1).
They are determined by )\(Z »(P2) =1 or —1. First determine /\( g » taking )\(z »(P2) =1 for

every a, b and i. Define Q1 and Q2 by (6.13). Though hg —2 (6.14) stlll follows from
(6.12). We find

(19/29 49675 — 4569v/5

_19/29 49675-!—4569\/—
2-3.13-29 ° ‘

2-3-13-29

Q1= Q2 =
Next determine )\( » taking /\ (‘}32) = —1 for every a, b and i. Then we find

(19/20 24645 — 823/5
2.52.29

_19/29 24645 + 823v/5
2-52.29

Q1= Q2=

The numerical coincidence is to the 44-th decimal place. Let C; = {c¢; | 1 < i < 16}. We

16
have %ZX(Ci)V(Ci) ’:—-%\/g log e and 38 — 154/5 =0 mod (7 — 2+/5) holds.
i=1 ' :

§7. Numerical examples II: Quartic extensions of real quadratic fields

We keep the notation in the prévious section and proceed to consider the normal closure

L=Q(,¢') of K over Q. We have [L : Q] = 8. Define g, T € Gal(L/Q) by
g (575,) I (gla '—6)7 7 T: (£>§,) - (5,,6)

(Previous o is extended.) Then Gal(L/Q) is the dihedral group generated by ¢ and 7
which are subject to the relations )

ot =12=1, , 3 2
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The reflex field K "of (K,{id,o}) is contamed in L and given by K’ = Q(1/2(z + Vd' 1),
d' = 2% — y2d. The max1ma1 real subfield of K’ is F' = Q(+v/d’). We have

Gal(L/K) = {l,07}),  Gal(L/K")={1,7}.

Let us consider the problem to give py (id, a) for all o € Gal(L/Q) in terms of the mul-
tiple gamma function. Gal(L/Q) has five conjugacy classes {id}, {p}, {o,0p}, {r,7p},
{oT,07p}. Therefore, in view of Theorem S1, (3), our previous Conjecture 1 can give
essentially only pr(id,id).. We have

Pk (1d7 1d) N' PL (ldv ld)pL (lda UT)) Pk (U’ 0‘) ~ PL (lda 1d)pL (1d7 0-7-)—1‘7

px:(id, id) ~ pyr (id,id)p (id, 7), pK,(a'r? ot) ~ pr(id, id)pr (id, )=t
and these quantities were examined in examples discussed in §6. In other words, we
examined the validity of our conjectures for pr (id,id), pr(id, 7) and for p(id,o7). What

remains to be considered is pr(id, o). Put F, = Q(vdd’') C L. We have Gal(L/F,) =
(0) =2 Z/4Z. By Theorems S1 and S2, we can easily derive the relation

Lr(L, M) L (1,57)
Lic(L DLk (1,A5))

pL(lda 0)8‘

Hence we put

L (1L, A D (1, A8 L (L, ASD) T L (1,A8))

(1) 0= gr(id, o)®

and are going to examine the algebralclty of Q. Here g, (1d o) is deﬁned by (4. 7) (0 in
place of ’I') and (6.4), L being an abelian extension of F.

Let ¢’ be an integral ideal of K’. For positive 1ntegers a and b, let ,u(l) and Mgzl)) be
characters of I (K’) such that

M(;ll);(( )) (la‘) (I(?;:i)b a=1 qux '
pE(@) = (S, a=1 modd.

Then we have @ @)
L (1,5 3) L (1, g 2)

LK/(l [,L(l))LK/(l /,I,(2)

~ pr(id, 0))8. |
We put

Li(1, ( )LKr(l M(z))LK'(l “(1) 1LK'(1 /J(z)) 1
gr(id, o)

(7.2) R=



192

Example 8. Let F = Q(v5), K = Q(

+ V5 i). Then F' = Q(vAT), K' =

Q(V/13 +2V41 i). These fields are considered in Examples 1 and 2. We have F, =
' 43 + 3v/205

Q(v225). The fundamental unit ¢y of F, is — which is totally poSitive- Set

€ = ¢. We also have hp*"‘ = 2, hg = 4. We have D(K/F) = (13+\/_), D(K'/F')y =

(13 + 2v/41). Hence D(L/Q) = Nk/Q(D(L/K))-(5*-41%) = Nk /q(D(L/K')) - (52 - 41%).
Since L = K VQ(v41) = K’V Q(V/5), only prime factors of (41) (resp. (5)) can ramify in
L/K (resp. L/K'). Here V denotes the operation to make the composite field. Then we
easily get D(L/Q) = 5*-41%. Since D(L/Q) = Nr, jq(D(L/F.))D(F,/Q)*, we must have
D(L/F.) = (1). Therefore L is unramified over F,. Hence L is the maximal ray class field
of conductor (1)ooj00, of F,. Set

142 1— /205

Then p3 and p3 are prime ideals of F, and we have (3) = pap}. As representatives of the
narrow ideal class group of F,, we can take

ay = (1)’ a2 = Pps3, a3 = p§ =(14 -V 205), a4 = p’3_

We have (LgF*) = 0. For 1 <1 <4, let ¢; be the class of a;. We have
3 .

|R(e,c1)| = 3, |R(e,c2)| = |R(e, cs)| = 9, |R(e, c3)| = 27.
By (6.5), we get |
CF* (Oa cl') = 1’ CF* (0762) = CF* (0?04.) = O’ ‘CF* (O’ 03) =-1

Hence

g1(id, o) = exp(z]l'-(X(c4)'— X(c2))).

Define )\(% as in Example 1 and let us consider the quantity @ defined by (7.1). Conjecture
B does not apply directly to Q since /\((:;)b is not a Grossencharacter of L. To reduce to

the situation of Conjecture B, regard )\(i as a Hecke character of K and let w be the
Hecke character of K} which corresponds to the quadratic extension L/K. We have
Li (A%, 0 Npyx) = Lic(s,\}) L (5, \w). Set

_ L (1, M) L (1,A8) ' L (1, M3w) L (1, AF)w)
L (LA Lre(1,23)) Li(1,\w) Lxc (1, Aw)
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and for a € Gal(L/Q), set
_ Le(LOEDNLK 08D
)

_ _ Li(, ) Lk (1, O
Lic(1, 0D Lx (1, ()’

)
L (1, A$w)*) Lk (1, \Hw)e)

We can easily verify that
Ar=A, A=A A=A, A =N

AN

gr(id, o)16"
gr(id,op) = gL (id,0)~1. We use the same letter o (resp. 7) for any extension of o (resp. 7)
to Gal(Q/Q). The conjecture implies that Q7 = (,Q., QT = (. Q7! with roots of unity (,

/
and ¢;. On the other hand, by Proposition 7.3 of [Y2], we immediately get (1—\—) :I:Z}X )

Put Q, = Conjecture B can be applied to Q.. Note that gr (id, 7 lo7) =

I

(—)T = iA Since Q% = Q. - —, we conclude that

Q@ =CQ Q =¢Q!

with roots of unity ¢/ and (.. We search a € Z so that (e2/27Q)2 + (¢*/27Q)~2 is close to
a rational number with a simple denominator.® We find a = 6 fits this scheme and

1 367
(€2/9QQ)2 Y

(CZ/QQ)2 4+

Solving this equation and comparing with the numerical value, we find

0= e2 1 /367 + 23205
o 32 2 '

(¥)
a,b’

The numerical coincidence is to the 47—th decimal place. Similarly, taking q =) for u
we find

—2/9 . \/637530967 — 18592639v/205
32.31-61

The numerical c01nc1dence is to the 48-th decimal place.

Example 9. Let F = Q(\/_) K = Q(\/9+2 17 i). Then F' = Q(\/ﬁ), K =

Q( 2+ \/— i). These fields are considered in Examples 5 and 6. We have F, = Q(+/221).

R=

5Practically we can do such test using the expansion of a real number into the continued fraction.
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15 ++v/221

The fundamental unit €5 of Fy is —s Set € = ¢g. We have hp, =2, hg =4 and L

is the maximal ray class field of conductor (1)ooj002 of Fy. Set

1— /221
ps =52+ ———— Z.

1+ /221 7
2 ’ 2

ps = 5Z +

Then we have (5) = psp}, (L;f‘*

) = 0. As representatives of the narrow ideal class group

of F,, we take
a = (1), az = ps, az = p2 = (14 — V221), ag = pi.

Define )\[(j’)b (resp. uf:,)b) taking q = (1) (resp. ¢’ = (1)). Then we find

Q= 1 \/276343 + 18585v/221

53 2

The numerical coincidence is to the 30-th decimal place.

JRye /64769 + 3600+/221

R= 191 ;

The numerical coincidence is to the 47-th decimal place.

9+ /29

2

Q(vV9+ 2v13 i). These fields are considered in Examples 3 and 4. We have F, =

Q(v/377). The fundamental unit € of F is 233 + 12v/377. Set € = ¢o. We have hp, = 2,
ho = 4 and L is the maximal ray class field of conductor (1)oojc0s of Fi. Set

1—-+/377
2

Example 10. Let F' = Q(v/29), K = Q( i). Then F' = Q(‘\/l_?;), K' =

1 377
RRE 2

p2 =27 + , Py =2Z+

Then we have (2) = pap5, (Léj*

of F,, we take

) = 0. As representatives of the narrow ideal class group

. 19— /377

ay = (1), az = P2, az =py; = ( 5 ) a4 — P’z-

Define )\((:,)b (resp. ,u,‘(;)b) taking q = (1) (resp. q’ = (1)). Then we find

Q =_e‘1/4-

1 490432649 — 24564411377
22.1889 2 '
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The numerical coincidence is to the 32-nd decimal place.

R= 6_1/4 .

I [2459444473 — 123549195/377
22.23.179° 2 ' '

The numerical coincidence is to the 49-th decimal place.

Remark. There exist intricate relations between quantities considered in §6 and §7. Let us

consider the quantity @)1 in Example 5. The ideals (2) and (53) decompose completely in
Q(V17); so let (2) = paph, (53) = psapss be the decompositions into prime ideals. Then

we have the factorization into prime ideals:
(%) (eT/13Qq) = p3 *p5 2 (3)psaf F

where f = (9 + 2v/17). We can check that §'§~! always appears in the factorizations of
similar quantities in Examples 1 ~ 7. (In Example 7, f is not prime, but a similar fact
holds.) Now con31der the quantlty Q in Example 9. We have the factorization 1nto prlme

ideals:

' (€ I/SQ)Z = q53(a53) %,
where (53) = q53q53 in Q(+/221). The appearance of 53 in the denominator of Q seems to
be explamed by (*) Similar relations ex1st for all the other examples.

: §8. Numerlcal examples III: Quadratic extension of a totally real cubic field

Let F be a totally real cubic field and let K be a totally imaginary quadratic extension
of F. Let Jp = {01,02,03} with 01 =id and extend each o; to an element of Jx. Let ¢
be an integral ideal of K. For positive integers a, b and c, let )\f:)b, 1 <% < 4 be characters
of I;(K) such that - |

Dy = (2N @7 a7
‘/\abc(( ))"'(|al) (la‘@]) (1a03|> ’

23 (@) = (%)“(l‘fjj’pb( ,j;';lr,
A8 (@) = qa') <|a02p|> <|ac,3|>c

a2
)c

(4) —
Aa4bc(( )) (|a|) (I(X‘72p|)b(

o]

Since . L
H Lk(1, >‘4,2,2)

: i=1 LK(L Ag)zz)
holds (independently of the extensions ¢;), Conjecture B states that
(Hz 1 Lr (1, /\4 52) LK (1, )\gz)2,2)—1 e

o gk (id,id)?® '

IL L Lr (1, (08 )™ Li (1, (A5 5)*) 1
gk (id,id)®

~ 7T4pK (id, id)s

(8.1)
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for every a € Gal(Q/Q) with a root of unity (. Put

H?:1 Lg (1, )‘422)LK(1 /\51)2;2)—1

@ = w9k (id,id)® - ’
(8-,2) : Q : .H;;:l Lk (1, )‘gLZ; 2)Lk(1, )\gz,)z,z)_l
’ 2 7r4gKoz (id, id)8 ’
Qs = Hz 1 LK(l ’\2 .2, 4)LK(1 )‘gz)z,z)*l

m4gKos(id,id)®

Example 11. Let F' = Q(¢7 + (1), where ¢ = €2™/7. Set

7 7 7

We have Op = Z + Zw; + sz Define o1, 02, o3 € Gal(F/Q) by o1 = id, wi? = wo,
w7® =ws. Set e = (1 +w1)2w1 =2+ w1, n = w? =2+ w,. Then it is known that hp =1
and that

L -2 ‘ 4 8 -
w1 =2cos=m=Cr+( Y, we=2cos = = (7 + G ws =2cos =1 =(Ca+ G4

EF=<—1>, wy, 1+w ),‘ E},L'=(e, n).

Since Er has an arbitrary signature distribution, the class number of F' in the narrow
sense is also 1. By Shintani [Sh1], p. 415, R} = U, E;u(ug‘:icj) holds by taking (cf.
also Thomas and Vasquez [TV], Theorem 1)

C’1 = 0(11 €, 67])7 02 = C(]-a m, 776): 03 = C(lv 6)7
C4 = 0(1,7’]), 05 = -C(l, 677), 06 = C(l)
Now put § = 6+w; —ws, K = F(v/81). We see that & is totally positive and N (§) = 167.

We have (167) = pp’p” in F' with conjugate prime ideals p, p’, p”. We specify p by w1 =19

_ : 61 +1
mod p. Then we can verify that p = (6). We check that \/—Lz-l-_w_z is integral over Op.

Therefore we see that K is a CM-field, p is the only' prime ideal which ramifies in K/F and
that O K = () FM

field of conductor poojcozo0s of F. We have Cp, = {c1,c2} where ¢; = the class of (1),
co = the class of (5). We see that

[R(C1, c1)] = |R(C1, 2)| = 83, |R(Ca, c1)| = |R(C2, c2)| = 166
and R(Cj,c1) = R(Cj,co) =0 if j > 3. We compute {r(0,¢;) by (2.16) and obtain
¢r(0,c1) =2, _CF(O, c2) = —2. |

Let x be the Hecke character of FJ which corresponds to the quadratic extension K/F'.
We have L(0,x) = 4. Since Ex = EFr, we get hix =1 (cf. [Y2], §3). We have

@ Opr. We can also verify that K is the maximal ray class

gre-(,id) = 7~V exp(3 (X(ef) ~ X(e5)), o € Gal(@/Q).
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Here to define gxo(id,id), we use {C¢}1<;<6 and af = (1). We extend oy, 02, 03 €
Gal(F/Q) to o1, 02, 03 € Jx by 09 = 1d

(Vi) 2 = V@i, 6D =6+wy—ws, (V69)? = V6@ 4, 63 =6+ ws— w;.

We compute gx-(id, 1d) by the asymptotic expansion of the multiple gamma function given
in Barnes [Ba2], p. 424% and by the difference equation (2.1). We take q = (1) and consider
the quantities Qz defined by (8. 2) (Note that for every positive even integers a, b; ¢ and

1 <4 <4, there exists unique /\a b of conductor (1)). Then (8.1) implies

(Q1)*=(1-Qn, (@2)* = (- Qq, (@R3)*=(3-Q3, if ofF=
(8.3) (Q1)* = (1 Q2, (Q2)* =¢2- Qs, (@3)*=(3-Q1, if a|F =oy,
(Q1)* =¢1- Qs, (Q2)* =2+ Qu, (Q3)°‘ =(3-Q2, if ofF =o3

with roots of unity (7, (2 and ¢3 which depend on . We compute Lx(1, /\E:)b .) by Shimura’s

method explained in [Y2], §3. We obtain (listing to the 20-th decimal place)

Q1 = 19.59569210489183464935 - .-,  Q, = 0.04269484846107960286 - - - ,
Q3 = 4.61030480431463779839 - - - .

2 ,
We find easily that Q1Q2Q3 = ——7—7- The coincidence is to the 33-rd decimal place. We
have V(c3) = =V (e1), W(cz) = —W(e),

1

V(c1) = Viep) = w{(—%lm — 389193 wy + 133671ws) log e

(84) +(—313883 — 283680 w; — 657969 ws ) logn},
4
Wi(cy) — Wi(cs) = —3 log 167.
To identify @);’s with algebraic numbers is more difficult than the case of quadratic fields.

We proceed in the following way. Note that (7) = (2 —w;)? in F. From the experience in
the quadratic field case, we suppose that '

(*) 1674°Q =" - 2 (50)2(6@) (5
— Wi ;

6Barnes did not estimate the remainder term explicitly. Probably this is the reason for that Shintani

[Sh2] gave another asymptotic expansion of log F‘f (ﬁ “))) with an explicit estimate of the remainder term.

The author finds an elementary method to estimate the remainder term of Barnes’ asymptotic expansion

of log ng% if wi/wj € Q—Q for all 1 <4 < j < r. This result includes classical estimate of the

remainder term of Stirling’s series ([WW], p. 252) as a special case and is quite practical for our present
purpose. The details will be exposed elsewhere.
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where «, B, v € Z satisfy a + 8+~ = —4 and a, b € (22 - 32 - 1672)"'Z. Then, by the
action of o3, we would have

(%%) 167~ 4/3Q2_,7a(€77) -b. = (5(2)) (5(3))6(5(1))7

When «, B and v are given, we can solve (x) and (x*) and obtain a and b. We search «,
B, v € Z so that 2% - 3% . 167%a is close to an integer for the solution (a,b). This procedure
works well for a = —4, 8 =y =0 and we find

901097 927649
a=——= -
2.32.167%’ , 2-32.1672
Thus we obtain identifications
, 3 1
Q: = 1674/3 . 6901097/2-32-1672n927649/2~32~1672 ) =
2 — w1 0
_ Y167 (901097 /2 32 1672 927649/2.32.1672 23395929 — 8832486 w; + 13899651w2
- T} 3 y
7167 _ :
3 1 '

Qs = 1674/?’ . 6—927649/2-3?-1672,,7—26552/2-32-1672 .

5w (6
s 6—927649/2-32-1672,,7—26552/232-1672 9496278 — 13899651wq — 22732137wo

71673 ’
— 4/3 . _26552/2-3%.167%, —901097/2-3%.167° 3 1
Q3 = 167 € 7 2 —ws (6®)F
_ 16T . 26552/ 32. 167277_901097/2 32.1672 32228415 + 22732137w; + 8832486 wz
7-1673

The numerical values coincide with these algebraié numbers to the 33-rd decimal place.
Concerning the exponents of € and 7, we find (cf. (8.4))

2.901097 + (—85174 — 389193 w; + 133671w,) =0 mod p’ 2p" 2,
2.927649 + (—313883 — 283680 w; — 657969wz) = 0 mod p’2p”?,

where p/' = (6®), p” = (6®). This phenomenon is quite similar to Examples 1 ~ 7,
especially to Example 2. '
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