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ON THE TRANSFORMATIOAN FORMULA
OF RIEMANN’S THETA SERIES

= #FE— (KoicHI TAKASE)

Miyagi University of Education

80 Introduction

0.1. Theta series is a double—faced monster like Janus One face is Iooklng at geometry,
the other face is looking at representation theory.

For example, let us consider Riemann’s theta series;

1 -. '
Ia](2, w) = Z e (§(€+ o, (L+d)z) + (€+a’,w+a”)> :
gGZn v . . . .
Here a = (o/, ") € R?™ with o/,a” € R™. 2z is an element of the Siegel upper half space
$n of degree n, and w € C". e(t) = exp 2nv/—1t and (z,y) = = ty for z,y € C".
' In the geometry, Riemann’s theta series plays an important role in the analytic
theory of abelian varieties [Mum, Chap.I]. Fix a diagonal matrix

€1 .
€= , 0<6j €Z s.t. €j|€j+1.

€n

For each z € 9, an abelian variety X, . = C"/(Z"z @ Z"e) is defined with a Riemann
“form H(z,y) = (z-Im(z)~',7). The polarization of X, . is defined by a line bundle £, ,
which is characterized by z E $Hn and a € R?™. Let {a] },_ .,N be a complete set of the
representatives of Z"e~1/Z". Put o; = (o, 0) €' R?", Then {19[0: +a;](z, %) }iz1,.. N is @
C-basis of the complex vector space I'(X, ¢, £,o) of the global sections of £, . The basis
is ortho-normal with respect to the canonical Hermitian inner product on I'(X, ., L, a)
From this fact, we can deduce the transformation formula of Riemann’s theta series w1th

respect to the paramodular group I'(e) defined by

I(e) ={v € Sp(n,R) | Ly = L} -

where L = Z™ x Z™e is a Z-lattice in R?". For every v € I'(e), the abelian varieties X, .
and X, (,) . are isomorphic over C via the isomorphism w — wJ(7, 2)~!. Here

v(z) = (az +b)(cz+d)™, and J(v,2) =cz+d

1January is the most suitable month to talk about Janus!
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for v = {ZL 2] . This isomorphism induces an isomorphism

C D(Xq(e)er Layra) 2 T(Xae, Loy (aro)y)

which is unitary with respect to the canonical Hermitian inner product. Here we put
1 t 2n
6= -2—((0 d)o - e, (a®h)g) € R

and, for any symmetric matrix S € Sym,(R), S € R" is the row vector whose i-th
component is the i-th diagonal component of S. Then the representation of this unitary
isomorphism with respect to the ortho-normal basis consisting of Riemann’s theta series
gives the following transformation formula of Riemann’s theta series with respect to the

paramodular group;
Theorem 0.1.1.
[19[a + il (v(2), w - J(, z)_l)];':l,--- N

= ° (% (w,w- J(v, z)-lc>) det J(3,2)/20 - Bl(a+ Oy + a5 wliy,

for any o € R?™. Here U = U(y;a;{ai, -~ ,an}) € U(N,C) is a unitary matriz
~constant with respect to z and w. : :

0.2. The transformation formula of theta series comes also from representation theory,
that is, Weil representation. Let : '

w: :S’\;/)(n,]R) — Sp(n,R)

be the non-trivial two-fold covering of the symplectic group Sp(n,R). Then 3';9'(71,]1&)
has a unitary representation w on L2(R™) called Weil representation (see §2 for the

constructions of %(n,ﬂk) and w). Let 'y be the subgroup of v = lz Z] € Sp(n,Z)

such that the diaggnal components of a’h and c'd are even. Ty is called theta group. Put
Iy = w™1(Ts) C Sp(n,R). Then we have the following theorem of Weil [Weil;
- Theorem 0.2.1. For any 7y € Ty, we have

' 0,(75) = p(F) - B,(5).

Here ¢ € S(R™) is a Schwartz function on R™, and 0, is a fuﬁction on %(n,]R) defined
by '
0,(3) = Y (w(@)¢)(®)

Lcm
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p is a group homomorphism of T'g to Cy = {z € C* | |2| = 1}.

0 1,

T AO=3 0O W= [ ele)e(-@)ds

Lezn Len

In the special case of v = [ }, Theorem 0.2.1 gives Poisson summation

formula

for a Schwartz function ¢ € S(R™). So Theorem 0.2.1 is called the generalized P01sson
summation formula of Weil. :

If we choose suitably a Schwartz function ¢, Theorem 0.2.1 gives the transforma-
tion formula of Riemann’s theta series (see [Mum?2, Cor. 8.9]). However it gives the
transformation formula only for the theta group I'y in the case of principal polarization
e=1,. '

0.3. I have been wondering the reason why there exists such a gap between these two
~ methods of proving the transformation formula of Riemann’s theta series. One possible
reason was that the special choice of a Schwartz function in Theorem 0.2.1 makes Rie-
mann’s theta series much more symmetric beyond the symmetry of theta group. In this
lecture, I will show that this is not the case. That is, the generalized Poisson summation
formula of Weil can be extended so that it gives the transformatlon formula of Riemann’s
theta series with respect to the paramodular group of any polarization.

§1 Weil representation

Let us recall the construction of Weil representation over the real number field.

"~ 1.1. Let V be a symplectic R-space with a symplectic R-form D. The group of the
symplectic automorphisms of V' is denoted by Sp(V);

Sp(V) = {0 € GLw(V) | D(z0,y0) = D(z,y) Va,y €V}

(GLg(V) acts on V from right). The Heisenberg group associated with V is denoted by
H|[V], that is, H[V] = V x R with multiplication law

(z,t) - (y,u) = (x+y,t+u+ %D(x,y)) .

The center of H[V] is {(0,t) | t € R}, and it is identified with the additive group R.
o € Sp(V) acts on h = (z,t) € H[V] from right as an automorphism by k% = (zo,1t).
For any additive subgroup M of V, put H[M] =M x ]R which is a normal subgroup of
H[V].

Let Ag be a Z-lattice in V which is self-dual with respect to D. Then there exists
* a polarization V = W & W' of V such that Ag is a direct sum of lattices Ay and Ay of
W and W’ respectively. A paring W x W/ — R is defined by (z,y) = D(z,y) (z € W '
y € W'). The Haar measure on W and W’ is normalized so that vol(W/ Ag) =1 and
vol(W'/A§) = 1 respectively.
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1.2. H[V] has an irreducible unitary representation 7 such that w(t) = e(t) for all
t € Z(H[V]) = R. « is unique up to unitary isomorphism. The representation space of
7 is denote by Er. There exist two realizations of .

~The first one is realized on L?(W) by
. ) 1 . ’
(r(Ahe)(w) = (14 (o) + (w3} - olw+ 2

for h = ((z,y),t) € H[V] and ¢ € L2(W). This realization is called Schrédinger model.

‘The second one is realized as an induced representation Ind(H[V], H[Ao]; {o) with a
character €o of H[Ao] defined by

folh) = e (t #3@9)) for h=(@3)0) € Hlh)

(Let us recall the definition of an induced representation. Let G be a locally compact
unimodular group, H a closed unimodular subgroup of GG, and p a unitary representation
of H with a representation space E,. Then the induced 1epresentat10n 7 = Ind(G, H; p)
consists of the E,-valued function ¢ on G such that

(1) (p(hg) = p(h)p(g) for all h € H,
(@) |gf? = / o(9)[2dg < oo
H\G

with the action (w(g)p)(z) = p(zg) for g € G.) An 1somorphlsm between these two
realizations is given by

L2(W) 3 ¢ ©,, € Ind(H[V], H[Ac]; &o)
where O, is defined by |
‘ | 1
0(h) = 3 wlo+ e (t+ 5 (m0) + (t1)
_KGA.() o :
for h = ((z,y),t) € H[V] and a Schwartz function ¢ € S(W) on W.

1.3. Let U(Er) be the group of the unitary automorphism of E, as a complex Hilbert
space. U(E,) is a Hausdorff topological group with respect to the weakest topology such
that U(E,) > T — Tv € E; is continuous for all v € E,. Let Mp(V) be a subgroup of
Sp(V) x U(Ex) consisting of (o, T) such that T~ ow(h) o T = w(h°) for all h € H[V].
Then Mp(V) is a locally compact unimodular group [Igu].

1.4. Suppose E, = L2(W). For any ¢ € Homg(W’, W), put det ¢ = det((wic, w;))i j=1,- n
with a R-basis {wi,:-,w,} of W. Now for any o = [i b} € Sp(V) such that

d
detc # 0, deﬁne ro(o) € U(Ex) by

(ro(0)) (w) = | det c]!/2 /W plwa +uc)e (%(wa e, wh+ w'd) — %@, w'>)? du
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for all ¢ € L#(W) N LY(W). Then it is proved that r(c) = (o,ro(0)) is an element of
Mp(V). o

There exists uniquely a continuous group homomorphism ® of Mp(V) to C; such -
that '

(1) ®(1,\) = A2 for all A e Cy,
(2) ®(r(0)) =e(z dim V) det c/| det ¢| for all o = [Z
0. _
Put Sp(V) = Ker(®). Then

b

d} € Sp(V)' such that det c #

w: Sp(V) 3 (0,T) — o € Sp(V)
gives a non-trivial two-fold covering of Sp(V') and
w: Sp(V) 3 (0,T) — T € UL*(W))
‘deﬁnes a unitary representation of %(V) which is called Weil representation.

1.5. The two-fold covering group Sp(V) acts on H[V] via the covering mapping. The
action defines a semi-direct product Sp(V); = Sp(V) x H[V] which is called Jacobi
group. Put .

wy(g) =w(o) om(h) for g=(d,h) € Sp(V),.

Then wy is an irreducible unitary representation of Jacobi group on L2(W).

§2 An extension of generalized Poisson summation formula

Now we will construct an extension of generalized Poisson summation formula re-
called in Introduction. Let L be a sub Z-lattice of Ag. Then

AhCL* ={zeV|D(L,z)CZ}.

Now put
Sp(L) ={v € Sp(V) | Ly =L} ={y € Sp(V) | L'y = L"}

and call it the paramodular group of L.

2.1. Let us start with some preliminaries. Let X1 be a set of pairs ('A, €) such that
(1) A is a Z-lattice in V, self-dual with respect to D,
(2) Lc AcCLx
(3) ¢ is a continuous unitary character of H[A] such that £(t) = e(t) for all t €
Z(H[A]) =R. |
For each (A,€) € X1, put xae = Ind(H[L*], H[A];¢) which is a finite dimensional
irreducible unitary representation of H[L*]. It is irreducible because

Ind(H[V], H[L*}; xa,¢) = Ind(H[V], H[A]; €)



104

is an irreducible representation of H[V]. We have
dim xa¢ = (H[L*] : H[A]) = (L* : L)Y/2.

The trace of xa ¢ is given by

, 0 | h¢ H[L]
(2.1.1) - trxae(h) = { (L*: L)Y/2¢(h) h € H[L]

for any h € H[L*].

I am not sure if the representation x4 ¢ is determined by its. character. So let x°
be a subset of X, consisting of the (A,£) such that the order of £(z,0) is bounded for
all z € A. Then, for any (A, &) € X9, the representation ¢ factors through a compact
quotient group of H|[L*|, so the representation XA,¢ is determined by its character. Note
that (Ao, &o) is an element of X9. -

Let Xy be a set of continuous unitary character ¢ of H[L] such that ((t) = e(t)
for all ¢t € Z(H[L]) = R. The paramodular group Sp(L) acts from right on X by
(v-Q)(h) = ((h"). We have a bijection § — (s of V/L* onto X, defined by

Cs(h) = e (t + %@’,x") + D(z, 5))

for all h = (x,t) € H[L] such that z = (z’,2") €L withz' € Wand 2" e W.

2.2. Take any element v € Sp(L). For any vector ¢ € Ind(H[V], H[Ao]; &), define a
function ¢ on H[V] by ¢”(h) = ¢(h?). Then ¢" is an vector of Ind(H[V], H[Agy™}]; J)
where £](h) = &(h”). So the mapping ¢ — ¢ gives a unitary isomorphism

[v] : Ind(H[V], H[Ao]; é0) = Ind(H[V], H[Ao7™']; &3)
as complex HIlbert spaces. By the formula of induction in the stages, we have
Ind(H[V], H[Aoy"'};&]) = Ind(H[V], H[L*]; x Aov-1,67)-

Note that (Agy™1,£]) is an element of X?. Choose a § € V such that v =
Cs (see 2.1). Now we will twist the representation Ind(H[V], H [L*]; Xapy-1,¢7) by an
inner automorphism of H[V] induced by (6,0) € H [V] The tw1sted representation
is Ind(H[V], H[L*]; Xaoy-1,¢) with an element (Agy~!,¢’) of X9 7, because H[L*] and
H[Agy~!] are normal subgroups of H[V]. The inner automorphism of H [V] induces a,
unitary isomorphism

[(8,0)] :» Ind(H[V],HY[L*];XAO,Y_l,gg) = Ind(H[V], H[L*]; xpgy-1,61)-

Because of the special choice of § € V, we have f |y = §0| H(L), that is, tr xp 41 ¢ =
tr X Ao,& Dy the formula (2.1.1). Because (Apy~1,¢’) is an element of xg, there exists a
unitary isomorphism

U7)5 : XA07_1;€I _AL)XAO’gﬂ
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as representations of H[L*]. Note that U, s is unique up to constant multiplication. Now
U, s induces an unitary isomorphism

[Uy,6] : Ind(H[V], HIL*]; XAgy-1,¢) = Ind(H([V], H[L*}; xA0.60) = Ind(H[V], H[Ao]; &o).
The composition of all the isomorphisms

| r(7,6) = [Uy,6] 0 [(6,0)] o [7]

is a unitary automorphism of E, = Ind(H[V], H[A¢];&). Now we can prove that
(7,r(v,90)) € Sp(V) x U(E;) is an element of Mp(V).
2.3. Put Sp(L) = w~}(Sp(L) and take any ¥ = (v,T) € Sp(L) C Sp(V). Choose a
6 € V such that v- (o = (5 (see 2.1).

We have constructed an element (y,r(7, 6)) € Mp(V). Then T is equal to a constant
multiple of r(y,6). We can adjust the constant in the choice of U, s so that we have
T = r(7,6). This normalized U, s is determined uniquely by 7. So we will denote it by
Us 5. o

Now look at the intermediate induced representation xa,,¢, = Ind(H[L*], H[Ao); &)-
The twist by 7 induces an unitary isomorphism {7} of xa, ¢, onto x Aov-1,67- The inner
automorphism of H[V] associated with (§,0) € H[V] induces an unitary isomorphism
{(6,0)} of Xapy-1,67 ONtO XAgy-1,¢- Put '

| U(5,6) = Uss o {(8,0)} o {r}
which is a unitary automorphism of x4.¢, as a complex Hilbert space.

2.4. Now let us describe our main result. For any Schwartz function ¢ € S(W) and
- a € V, define a function
Fple] : Sp(V); — Ind(H[L], H[Ao]; &)
by
Yola)(g) : H[L*] 3 h— Oy, (5),(h(a,0)) € C

for all g € Sp(V);. Then our main theorem is

Theorem 2.4.1. Take any7 € SA';;)(L) and put y-(o = (5 with§ = (6',6") € V. = WaW'.
Then '
Fple](79) = € - U7, 8)y[(a + 6)7](9)

with e = e (—;—D((S, a) — %(5',6")) forallp e SW) andae V.-

Let us reformulate Theorem 2.4.1. Let Gy be a subgroup of %(V) J consisting of
h-%5 € Sp(L) x H[V] with h = (6,t) € H[V] and ¥ € Sp(L) such that v - o = ¢s. For
any h-y € G with h = (6,t) e H[V] and 6 = (§',6") e V=W o W”, put

U*(h-7) = e (t - %(5’,5”)) U(,6).

Then we have
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Corollary 2.4.2. For any h-7v € G, with h = (6,t) € H|V]., we have
Dola](h-79) = U™ (h-7)d,[(a + 26)7](9)
forallp e S(W) anda € V.

Using Corollary 2.4.2, we can prove

Corollary 2.4.3.
(1) U* is a unitary representation of G, on Ind(H[L*], H[Ao]; &),
(2) U*(h) = XAO,go(—e, t) for h = (E, t) € H[L*]
Note that H[L*] is the kernel of a group homomorphism % -5 +— 7 of G, onto S}S(L)

and that (z,t) — (—=z,t) is an automorphism of H[V]. So the second statement tells
how U (7, §) behaves under various choice of § € V for each 7.

§3 Automorphic factor of weight 1/2

Let us recall the construction of the automorphic factor of weight 1/2. For the sake
of simplicity, we will assume that V' = R?" (row vectors) and D(z,y) = z-Jn ty for

z,y € V with J, = [_2 10 ] See [Tak] for the details.

3.1. For any complex symmetric matrix S € Sym,, (C) of size n, put
det™Y25 = [ exp(—n(zS, z))dz

R~
For any 2,2’ € $,, and o € Sp(V), put

AN I =
g(o;2',z) = det™1/? <M) det!/2 (z z

2T 2\/__1) | det J(0,2')J (0, 2)|"V/2.

For any zy € $,, and 0,7 € Sp(V), put
By (0, 7) = €(0; 20, 7(20))

Then (3, is a C;-valued real analytic two-cocycle on Sp(V). The two-cocycle Bz, is
constructed by Satake [Sat]. The cohomology class of 3,, is of order two;

IBZO (o, 7_)2 = Qg (T)azo (UT)—lazo (U)

with a,,(0) = det J(o, 20)/| det J(g, 20)|. - The two-fold covering group Sp(V) can be
realized as a subgroup of the central extension of Sp(V) associated with the two-cocycle
B, Put
Sp(V;20) = {(5,0) € C, x Sp(V) |2 = azO(a)_l}
with a multiplication law
(57 U) ) (77> T) = (6771820 (07 T), UT)'
Then @/)(V; 2p) is a connected real Lie group and
w : gf)(V 29) 3 (g,0) — o € Sp(V)
gives a non-trivial two-fold covering of Sp(V). We can give explicitly a topological group

isomorphism of Sp(V zg) onto Sp(V) the two-fold covering of Sp(V') constructed in 1.4
[Tak]. We will identify these two covering groups of Sp(V). 4
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3.2. For any 0 = (¢g,0) € S’T;)(Vr; 29) = g{)(V) and z € g, put

J1(G,2) = €7 - e(0; 2, 20)| det J (o, 2)| /2.

3
Then J 1isa non-zero-complex-valued function on %(V) X 9, such that

(1) real analytic on Sp(V) and holomorphic on $,,
(2) J3 (7, 2) = Jy (G, 7(2))J3 (7, 2) for all 5,7 € Sp(V),
3) Jy(o, z)? = det J(o, 2).

That is Jy is an automorphic factor of weight 1 /2.

§4 Application to Riemann’s theta series
Now we will apply our extension of generalized Poisson summation formula to prove
the transformation formula of Riemann’s theta series.

4.1. Let V = R?" be a symplectic R-space with a symplectic form D(z,y) = z - J, -ty
(Jp = [ (; 16’} ). A polarization V=WeW is given by
~1, |
W={(z,00€V|zeR}, W ={0,y) €V |yeR}

which are identified with R™. The semi-direct product Sp(V)s = Sp(V) x H[V] acts on
Hn x C* by )
9(z,w) = (0(2), (w + 22 + ) J(0,2)7")

~ for g = (o,h) € Sp(V) s with h = ((z,y),t) € H[V] and (z,w) € H, x C*. Put
n(g; z,w) = e (t + :rlz-(a:, :ca(z) +y) + (z,w(o,2)" 1) + %(w(—tc),wJ(o, z)"l))

a b
d
n(g; 2, w) has a property of an automorphic factor;

n(99’; Z) = n(9;9'(2)) - n(g’; Z)
for all g,¢' € Sp(V)s and Z € $,, x C™.

for g = (o,h?) € Sp(V)y with 0 = } € Sp(V) and H = ((z,y),t) € H[V]. Then

4.2. Put Ay = Z2™ which is a self-dual Z-lattice in V. Put L = Z" x Z™e with
€1 » ]
e= [ j!, 0<e; €Z, ejlejta.
€n .

Let {o}, -, o)y} be a complete set of representatives of Z*e~!/Z". Put a; = (a},0) €
V =Wae&W' Then {(ej,0)}j=1,..,n is a complete set of representatives of the coset
space H[Ag]\H[L*]. Define an element 9; € Ind(H[L*], H[Ao]; &) by

w(h):{ th[AOJ(aJaO)
’ € (h-(a;,0)7")  h € H[Ao)(a;,0)
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for h € H[L*]. Then {¢1, - ,¥n} is a ortho-normal (C—basis of Ind(H[L*], H[Ao]; &).
Take any a € V. Consider the theta series J,[a](g) with a Schwartz function

o@) = (Geam) @ew)

with a fixed zy € $,,. We will use the identification S?)(V) = :S';(V; 2zp) described in 3.1.
Now we can prove the formula ’

(9o[a](9), ¥5) = J3 (G, 20) " 1(g; 20,0)e (%D(aj, a)) 9 [a + ay](z, w)

for all g = (o,h) € :ST]/)(V)_]. Here we put g = (0,) € Sp(V), and (z,w) = g(z0,0) €
Hn x C*, and

(4.2.1) o (z,w) = e (—%(a',a”)) - Ia](z, w)

for all @ = (o/,a”) € V with Riemann’s theta series Ya(z, w).

4.3. Our extension of generalized Poisson summation formula (Theorem 2.4.1) and the
formula (4.2.1) give a transformation formula of Riemann’s theta series with respect to
the paramodular group Sp(L). Define a column vector of functions

6lo(z:u) = le (5D(a; ) ot o1z, )]

j=1,+,N
Take any 7 € ,S/?)(L) and put v- (o = (s with § = (¢',6") € V.= W @ W’. Then we have

Theorem 4.3.1.

Ola](+(2), wJ (v, 2)~ 1)——e( D(6,) - <6',5">)
x T3 (3, 207 2,0) U3, )6 (e + 6)1](z, w).

Here the representation matriz of U(7,6) with respect to {1,--- ,%n} is also denoted
by U(7, 6). |

4.4. Takeany 7y € Sp(L) Recall the identification Sp(V) Sp(V zp) and put ¥ = (g,7)
withe € C; and v = [? 3] € Sp(V'). In the transformation formula of Theorem 0.1.1,

replace the factor det J(v, z)1/2 with J 1 (7, 2). Comparing the formulae of Theorem 0.1.1
and Theorem 4.3.1, we can see that the unitary matrix U(y;a;{a1, -, N}) is equal
- to the representation matrix of U(%,8) with § = Z(( td)oe (a®)o) up to tr1v1al factors.
We can calculate an explicit formula of U(y; a; {al, -+ ,an}) by a modification of the
method of Siegel [Sie]. It gives an explicit formula of U (’y, 8), or its matrix coefficients.
Typical result is
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~ Theorem 4.4.1. Suppose detc # 0 and put
0 :i (5,,(5'/) = —;—((Ctd)oe, (atb)o). ‘
Then

I e (C R YoV
(OO OWis) = Gl @i gy s i)

v | )
X e (5(((1; - &, (o — &)ac 1y - (o — 6',6”))

where G(o, a}; ¢, d) is a Gauss sum defined by

G, o' c,d) =|det e] ™| det ¢|~1/2

ir &g : }
X Z e (%()\ +aj, A+ af)cld) — (o — 8, (A + a;)c_l)) .
XEZ" [Zre :

§5 Application to reductive dual pair

‘Our extension of generalized‘ Poisson summation formula (Theorem 2.4.1) can be
applied to general reductive dual pairs. In this section, we will consider the simplest case
of (O(m), Sp(n,R)). '

5.1. Fix a positive define ) € Sym,,(Z). The orthogonal group of @ is denoted by
o(Q);

0(Q) = {g € GL(m,R) | 9Q'g = Q}.
Define a symplectic form on V' = M, 2,(R) by D(z,y) = tr(z-J,-%). V has a polarization
V=WeoW with ' ' ‘ '
W=A{(z,0)eV]zeMnn(R)}, W ={(0y)€eV|ye Mm,n(R)}
which are identified with M »(R). A pairing (z,y) € R between z € W = M,, ,(R) and
y € W' = M, o(R) is defined by (z,y) = D(z,y) = tr(z -ty). For any 0 = [CCL b] €

d
Sp(n,R), put
1Xa Xb
1Rgo = [Q__l i ?m] € Sp(V).

Here Q @b is a R-linear mapping of W to W' defined by z — Qzb. Other elements are
defined similarly. For any g € O(Q), put

X1 0
gl 1= lg 0 tg—l = 1] € Sp(V).

Then o — 1&g o (resp. g +— g ®Bg 1) is an injective group homomorphism of Sp(n, R)

(resp. O(Q)) into Sp(V). Identifying Sp(n,R) and O(Q) with their image under the
group homomorphisms, we have a reductive dual pair (O(Q), Sp(n,R)) in Sp(V).

' Put Ao = Mpm2,(Z) and L = My n(Z) X Q X My n(Z) C Ag. Then the group

homomorphism 7 +— 1 Kg v maps Sp(n,Z) into Sp(L). So our extension of generalized

Poisoon summation formula, Theorem 2.4.1, gives the transformation formula of theta

series with respect to the Siegel full modular group Sp(n, Z).
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5.2. Fix a zy € $, and recall the identification %(n,f&) = EZ)(n,R; 2p) (see 3.1). The
polarization V' = W @® W' defines Siegel upper half space $y in Hom¢(W¢, We) (We =
W ®g C etc.). Then Q ® z is an element of Hy. Now identify :S’;(V) with EI/)(V; QR
z0). Then 19(d) = (€™, 1Rq o) for 7 = (¢,0) € %(n, R) defines a continuous group

homomorphism g of Sp(n,R) to Sp(V).

5.3. A C-valued function f on M, ,(R) is called Q-harmonic if Agf =0 for

[0 d | 9 d
_ t( 9 \H-1( 9 oy 9 _(_ O
Bo=tr ( (‘%) < (‘%)) with Oz (axij)1<i<m 1<j<n,

m 2 S

and f is called pluri-Q-harmonic if (a- f)(z) = f(za) is Q-harmonic for all a € GL(n,R).
We will denote by H¢ the space of the C-valued pluri-@-harmonic polynomial functions
on My, »,(R). The orthogonal group O(Q) acts on Hq by (9-P)(z) = P(%z) for g € O(Q)
and P € Hg. For any irreducible unitary representation A of 0(Q), let us denote by
Ho(A) the M-isotypic component of Hg with the contragredient representation X of .
We will fix a A such that Hg(A) # 0. The highest weight of such a ) is determined by
[K-V]. The representation 7 of GL,(C) on Hq(A) defined by (71 (d)P)(z) = P(zld~1) is
irreducible (see [K-V]). Put '

Ia(o,2) = 7a(J(0,2)) for o € Sp(n,R), z € Hy,.

5.4. Let us denote by Hg(A)* the complex dual space of Hq(A). The canonical pairing
between Hqo(A)* and Hq()) is denoted by (,). For any o = (o,a)eV=WeW,
define a Hg(A)*-valued function 95[a] on $, by :

(Irla](z), P) = Z P(l+d)-e <—;—(€+ o, QU+ a'z) + (L + a’,a”))
£EMo o (Z)

forall z€ §,, and P € ’HQ(A).. Put
Bfal(2) = e (—-§<a',a">) Lol (2)

Let {a}, -+ ,a}y} be a complete set of representatives of QM n(Z) /My, »(Z), and
put a; = (a,0) e V=W o W' Put

Oxla](z) = [ (300 @) sila+ a;-](z>]

i=1,---,N

For each ¥ = [Z Z] € SA’;o(n, Z), choose any 6§ = (§',6") € V. = W & W’ such that

§= 5@ B ()0 (mod @ My, (Z)), 5 = SQB (@) (mod My n(2).
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Here (QR(cd))o € @ My n(Z)/2Q™ Mg n(Z) (resp. (QB(ab))o € Minyn(Z)/2Mim n(Z))
is defined by the relation '

QB () = tr(( 8 (d))oy) (mod 22)
(resp tr(a:(Q ® (atb)) :v) = tr((Q X (atb))o ) (Iﬁod 27).)

Put Ug(7,6) = U(1q(7),6) which is a umtary automorphism of Ind(H[L*|, H[Ao]; &o).
The complete set of representatives {a;,---,an} of L*/Aq defines an ortho-normal C-
basis of Ind(H[L*], H[Ag]; &) The representation matrix of Ug(%,6) with respect to the
ortho-normal C-basis is also denoted by UQ('y, 5) Then we have the followmg transfor-
mation formula of 8)\[ ](z) S R : Te

Theorem 5.4.1.

(<6' #) - 106, a)) delo)
= Ua(F,6)8xl(c +8)(1 B ](2) ¢ r(112) ™1} (5 2)"

The exphc1t formula of the matrlx coefﬁments of UQ(')',(S) is glven by the -explicit
formula given by Theorem 4 4.1 and the _group theoretlc propertles glven by Corollary
24.3. : o S
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