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Abstract

In this work, we give an example of an Adelic Zeta function, with its
functional equation and its poles, associated to Prehomogeneous vector Spaces
of Parabolic Type (Fy, 1) in the spirit of the works of A.Weil (IWE 1]) and
S.Rallis and G.Schiffmann ([R-S]) in the case where the fundamental invariant

is a quadratic form, using well known methods of calculus of Tamagawa
numbers ([MA],[WE 1]).

Introduction

 Many adelic Zeta functions have been considered for Prehomogeneous

Vector Spaces (abr. PV) and many general results have been established.
These works begin with A.Weil in the case of a non degenerate quadratic form
[WE 1], J.G.M. Mars for the case of a cubic form [MA], J.I. Igusa in the case
of finitely many orbits and absolutely admissible representations, T.Shintani
and D.J.Wright for the space of binary cubic forms and by A.Yukie when the
vector space and the group acting have the same dimension.

K.Ying has proved the convergence of the Zeta function in almost all cases
of irreducible ‘, reduced , regular PV. A.Yukie has studied cases where the
group is a product of GL, using smoothed version of Eisenstein series. And
many other works are done in this subject.

Participation during the stay of the author in Japan supported by Grant-in-
Avd for Scientific Research, The Ministry of Education, Sczence Sports and
Culture of Japan. ‘ :
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Here we shall give the adelic Zeta function , equation and poles for a particular

and simple situation of Prehomogeneous Vector Spaces of parabolic type (ab.
PV of PT).

First we recall the form that the adelic Zeta function can take for PV of
PT for which the fundamental character has its values in the set of square
of the field, using mean function ( we have always infinitely many generic
orbits in this case) and we give suffisant conditions of absolute convergence
for it (prop. 1). Then we apply these results in the particular case of PV of
PT having (Fy, 1) as Dynkin diagram ( whith an exception ), because they
are a particular case of a more general situation where it is possible to give a
general description of the orbits by means of some quadratic forms ([MU 1])
and it is possible to do the calculus in a general standing.

The cases considered in this paper are listed in table 1.

I Prehomogeneous vectors spaces of parabolic type ([RU 1],[RU 2])

The situation of PV of PT that we can consider is the following :
Let g = @;¢z9; a finite dimensional simple graded Lie algebra over a global
field F of 0 characteristic, Hy is the element giving the gradation :

gi={r€eg | [Ho,z] =ix}

G is the centralizer of Hy in the group Auty(g) of automorphisms of g ([BO
2])
G acts on gy and g—; by adjoint action and (G, Ad, g1) ( denoted infinitesi-
mally (go, g1)) is a geometric PV.
Let B the Killing form of g, then the dual PV of (go, 81) is (80, 8-1) ([RU
1]). :
We assume that

1) g is an absolutely simple go-module

2) gy ={r € g1 | (z,2Hy,.) can be completed in a slo-triple } # ()

( 2) is equivalent to the regularity of the PV because of 1) ([RU 1]) )
So (G, Ad, g1)isa PV of PT regular , absolutely irreducible, having a relative

invariant of minimal degree, denoted P and we call y the corresponding

character ([RU 1]).



83

Let S, S, Sy respectively the set of places,infinite places, finite places of the
number field F.

To every v € Sy we associate as usual O, = {:v elF, | |zlo <1}, OF
the set of unities, ¢, the number of elements of the residual field. A, A* are
respectively the ring of adeles of F, the ideles of F.

Let L alattice in g;, for all v in St , L, is the closure of L in gl v = 01 QF lF
LS={z €L, | |P2)ly=1}, K, ={g € G, | 9(L,) =L,} and we denote
by Ga the adele group of G, K is a compact subgroup of Gp containing

HvGSf I&v’
' g1, =(ga)1 = 91 Qe A

gia={r€gma | Yves P(z,)#0, for almost all v € Sy z, €L}
S(¢1,a) is the Schwartz space of functions on g1A.
When x(G) = F*? we can consider the following Zeta function :
IT An adelic Zeta function under some assumptions : case x(G) = F*?

1- The mean function : recalls

a) The local case ([R-S],[RU 1],[IG 3])

Let t € F3 , U, T Eg | P,(xz) = t}, on U, there is a gauge form

0, defined bV 0(x which determines a measure on U

<d(Pv(x) )
denoted f,,; and if Mf fU fduvt we have for every f € 5(g1) and ¢
in D(P(g.,)) (R-5))

/ ME®H@M=/ My(t)e(t)de
91,v

P(g; ,)

( with the volume of L,, and the volume of O, equal to 1 if v € Sy)
When v is in Sf, we denote (as usual ) by M, the mean function associated
to the characteristic function of the lattice L,.

b) The global case

We assume now that the following conditions, denoted (H) are satisfied :
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HYPOTHESIS (H). —

1) Almost everywhere P,(g} ) contains O

2) There s C >0, a>1 such that for almost all v in Sf we have for all t
in 0% | M,(t) —1|<C'q

First, for every ¢ in F* we denote , as before, U, = {z € g, | P(z) = t},
then by hypothesis (2) : (1) are factors of convergence of (dy,, ), with ¢, =t
for all v in S ([WE 1]). -

Secondly, we consider for ¢ € A* as usual U; = {z € 9ia | Plz) =t}
we define on U; the measure p¢ product of the local measures Myt and for
f € S(g1,a) the function M,(t) = fU f du; is a borelian function on A*
([R-S]) and we have the following propertw

— —k+1 ; o —_ AT/
(%) Mygy(t) = IX(Q)I Mi(x(g)t)  where degree of P

Now we can define the adelic Zeta function : for s € C, f € S(g1,a),A a
unitary character of A*, trivial on F* let

Wi s) = / M) M) 4t
fGF*/F*Q

which corresponds o an integration on (A*)2. (91) with d*tg = IDI“‘ [Toes d*to,
D being the discriminant of F and d*¢, = pv(lt 1) o= (1 — ;1:) if v € Sy

and else p, = 1.

This is the adehc Zeta function 1ntroduced by A.Weil ([WE 1]), then by
S.Rallis and G.Schiffmann ([R-S]) in the case where P is a quadratic form.

2 A result about convergence

NoraTIONS. —

1) If F, is not of residual characteristic 2 , let {1 €y, Ty, Ty.€x} a set of
representatives of Fy [, with €, in 9% and |m,| = L
 2) For w and v in F* +/Fs2 we denote by (u, v) the value of the Hilbert symbol
and by x. the corresponding character on F} (xu(v) = (u,v))
) Let Z,(A,s) = [, MPyo(2))|Py(z)|*dx ( L, having volume 1)
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4) We choose an additive character T of A such that 7(zy) put in duality A
with itself in such a manner that the discrete subgroup F corresponds to wtself
with the duality T(xy) and for f € S(g1a), ¥ € g-1.4, let

fw) = J, , F@)(Blry) doa.

5) pr 1is the residue in 1 of the Zeta function of F and cg = 2-7

PROPOSITION 1. — If we assume that the conditions (HI) are verified with

i) Yv € Sy Py,(91,,) contains O |

i) almost everywhere x,(K,) contains O*?

1) 3¢ > 0 and oo > 1 such that almost everywhere | fLO Ty, Po())dz |<
C.qy ~

) 3d > 0 and 3B > 2 such that for almost all v in Sf ‘and s complex
number with strictly positive real part | Z,(Xr,,$) — Zo(Xr,.c,>5) |< dg7?.

Then for every character of A*, trivial on F*, almost everywhere non ramified

we have for all f € S(g1a) ,

1) for every complez number s, with strictly positive real part We(A,s) is

absolutely convergent and for all A > 0, let S4 = {s € C | Re(s) >
|Im(5)| < A.Re(s)} then lims—o scs,sWi(A, 5) =04 A # id and

lzms_o scsasWe(id,s) = cF. pu:f(O

2) vVt € A* ZéeF* M (t%€) 4s absolutely convergent.

We can remark that conditions (H) + 4i) are equivalent to i),ii),iii).

Proof |

1) We proceed as in the work of A.Weil ([WE 1]),§4.5) and S.Rallis and
G.Schiffmann ([R-S], comparing W,(},s) to an appropriate sum of Ono-
Integrals: Z(f; X', s) = [, A f(z) N(P(z) d'za with d'zg = |D|7% ], c5 pody.

We can deduce from a calculus analogous to that of ([WE 1]) and the results in

([WE 3],corollary 2 p.124 and corollary p.288) that lims_o,Re(s)>05-Z(fid, s) =
pF £(0) and if ) is as in the proposition lims_o,Re(s)>0Z(f; A, 8) exists and is
non-nil. v

2) We deduce 2) from 1), using Fubini-theorem and asumption ii). []

So finally we can write for Re(s) > 0:

Wi = [ O3 M) A
F=*

feF~
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ITI The case (Fg4,1)
1 The situation

We suppose from now that we are in the case (Fy, o) which means the
following additional properties at section I.

If a is any maximal toral subalgebra of gy, A the associated root system is
also graded : A; = {\A € A | A(Hp) = i}, and the positive system A% is chosen
so that we have U;>1A; C AT, Then, as we have g} = {z € g1 | (z,2Hy,.)
can be completed in a sly-triple } # (), we can assume that g; and g_;
generate g so the irreducible condition of I is expressed by saying that A is
irreducible and there is only one simple root not in Ay, it is in A; and ©i>00
is a maximal parabolic subalgebra of g ([RU 1]).

When ¢ is of dimension not greater than one, there is a maximal set

of orthogonal roots of A;, denoted (\;)1<i<n, such that >, .., h; = 2Ho,
where h; is the co-root of \;. The non-nil restrictions of A to the subalgebra
Gi1<i<nFh; is a root system denoted R of rank n, having the same properties |
than A : irreducibility, gradation and is also associated to a maximal parabolic
subalgebra (prop. 2.6.1 and coroll. 3.1.7 of [MU 1]).
The "commutative case” corresponds to g» = {0} ( g¢; is a commutative Lie
algebra) . This case is intensively studied and it is easy to study in a general
standing the ordinary Zeta function, equation and poles (except in two cases)
but all these cases (except two) are known by case by case examination . This
is why I talk about the case (Fy, 1) hoping that it is of some interest.

If g, is one dimensional it is easy to prove that P(x) = B((ad(z))*(w_),w-),
where w_ is a generator of g_, P is of degree four and y(G) = F** (lemme
4.1 of [MU 1]) . If we assume that the roots (A;);<i<4 are strong orthogonal
and of same length, then the different types (R, ) , avg being the only simple
root in Ry, are given by (prop. 6.6 of [MU 2]) :

(B4,(l’2) ) (D4,0.’2) ) (F4,Q’1)

in the Bourbaki notation ([BO 1]) («; is the long simple root at the end of
the diagram) B

So we assume from now that the Dynkin diagram of R is of type

Fyq
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If (X4, )1<i<a are chosen in the corresponding root space ( as in [MU 3] )
then

(#%) g1 = Br<i<a(FXy, BFw;) B1<icj<a Bij

w; = [wy, X_y,], ws being a generator of gs, E;; ={zeg [hi,z] = [hy, 2] =
z, [hg,2] =0, 1 < k #4,j < 4}, dis the common dimension of each
subspace E; ;, we have dim(g;) = 8 + 6d, £ = 2 + 3% and d can take the
values 1,2,4,8 ( the case d = 8 is treated in [IG 2]) (cf.Table 1).

P is normalized such that P(3_; ;<4 Xx,) =

Let I a non-empty subset of {1,2,3,4} and Hr = Z{zé[}h ‘then the
centralizer of @;¢/Fh; in g is reductive , its semi-simple part , denoted
U = U(P;¢rFh;) is graded by ad(Hy) and 4; = U N g;, (Yo,4h) is a PV
of PT which is absolutely irreducible and commutative if Hy # 2H, because
U; = {0} for |i| > 2 and Py, (2) = P(x + 3 (;¢7y X»;) is then a fundamental
invariant of it and its degree is |I|, the number of elements of I.

2 Preliminary results

| LEMMA 2- LOCAL RESULTS. — R = F} |
1) For almost every v € S¢ Zy(XryensS) = Zo(XmysS)
2) K > 0 such that for almost every v € S,c and fm“ all y € OF we have

MJ(y) -1 < K.gy®

Sketch of the proof

The detailed proof will appear somewhere 1ater We use similar methods as
in [IG 2] .
1) A change of variable : : _
Let H="hy+ho+hs, E;(H)={z € g|[H, 2] =iz}
Using (**) every z in gy can be decomposed in the form

T = Z x; with z; € E;(H)N g

0<i<3 : A

s0 2o = tX),, 23 = uws, (t,u) EF xF
- If t # 0 we have

1
T = eap(ad C))(z") with 2’ =tX), +a,+23, C= "‘t‘['xle—-M]
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DN =

/
:B-') — .17-‘) -

Z

' 1
ad(c)z(t}(/\*) ? lg = I3 — [Cv 3;2] + ::);(ad(c))g(t}l—)\.;)

So if f is a K—invariant function and if L/ = {z € L, | te O3}, we have
after a suitable change of variable and with the choice of Haar measures :

f(z)dx = /// , f(tX, + ¢ + uwy)dtdzdu
L, {teD I x{z€L, NE2(H)} x{u€D,}

2) Two calculus

We say that v is ” good” if v is finite , not of residual characteristic 2, 7, is
of order 0 and for every non empty subset I of {1,2,3, 4} , Py, and all its
partial derivatives have their coefficients in £, ( definition given in 1,III).
Let I as before, if | P, (20)|, = 1 for some o in L, N U(D;¢rFhi)1, denoted
simply L, m,, then using Taylor formula we have for "good” v

. 1
| P, (20 + 7oLy, ) — P, (20)]0 < o so |Pg (2o + 7Ly, )| =1

v

~and I(Hjpu) = // To(uwPyg, (2o + Ty))dwdy
. OvXLv,H['

:/ To(uw)dw =1 if ueH, else 0

v

I'(Hpu) = f[g To(u(1 + myw) Py, (zo + m,y) ) dwdy
vXLv,HI )

%[/Lv,HI To(WPH, (T0 + mpy))dy ] - [/ov 7o (umyw)dw ]

= 7o(uPp,(z0)) if |ul, <q, else 0

Every element of the form 1+ 7,9, is a square in % so it can be written
on the form xg,(g) for some g normalizing L, g, ( xg, being the character
associated to Py, ) so

J(Hr,u) = // To(u(1'+ th)P}[I (z))dtdx
4 OvXLv,HI

= / To(uPg,(z))dz = ]\/I;HI (u)
v,H

Ly m,
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3) Proof of 1) : we assume that v is "good”. |
Let M} (u) = fL To(u.Py(2))dz,, as O3 C y(K,) and with relation (*) we

see that M7 is 93? invariant; it is not difficult to prove that .7\/[ ¥ isin L1(F,)
so we have M, = = M} and for w/ 5. = Xr, We have

1 too
Zow) = [ Multpo()dt = ad Clun) 3 (g

C(Xx,) being a Gauss sum ([S-T]) and by, = fo* M*(n7* ) yr, (v)du, so 1)
of the lemma is equivalent to show that by, = 0 for all L > 1.

First , for every z # 0 in L, , there are u; € O* U {0}, z€r,.L,and k € K,
such that kr = E?zl u; X, + z, with ug # 0, so we can write

M (u) = Z / TU(UP(.I +y )dz

TEL, /,rva

=g, 5y /Tv(uP(l+7rvy))dy—qv(8+6d) > L

TEL, /"’va xeLv/rva

‘with Ip(u) = M}(r*u) and we obtain 1) by induction on k if we prove that
/ (7% u)y,, (u)du=0 for T #0

If T # O after a change of variable we have T = Ele w; Xy, let T =
Zle u; X, as we have assumed that uy # 0 we have , applying 1) :

(u) = /// TU(uP((wvt+u4)X,\4+(7rvx+f’)+7ruzw4)')dtd:rdz
Oux LoNEs(H)XO
but‘We have for every z in E>(H) N g :
Pz + SXM + ‘zw4_) = sPy(z) — i(zs)z
‘with the choice of the basis of g;. We have after a change of variable :

I(u) = J;(u)/j3 To(—ur?z?)dz
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with  Jz(u) = // To(U(Tyt + ug ) Py (72 + T'))dtdx
{teV,}x{z€L,NE;(H)}
It remains to calculate each piece :

L

/ To(—ur22?)dz = a(_—u)qvluﬁé if |ul, > ¢ else 1 (lemma 4.3 of [R-9])
Dv

and this quantity is constant on each set |u|, = ¢2* ([IG 2])
Jz(u) depends of the rank of T =number of u; # 0

If rank(T) = 4 then Jz(u) = I'(H, uuy) = To(uP(T)) if |u|, < ¢, and 0 else.
If rank(Z) = 1 then

J(u) = // To(W(Tot + ug) Py (mz))dtde
L€V, }x{z€LL,NE2(H)}

= // To(mou(myt + uy ) Py (2 ))dz‘d:c
(1€9, ) x{z€L,NEs(H)}

::/ NI}SH(WiuuA;)using J(H, uuy)

v

as Py is of odd degree( here 3) , M} is O}-invariant so Jz(u) = My, (miu)
and is constant on each subset |u|, = ¢¥. : :

If rank(Z) = 2 or 3 we can assume that 7' = 2i<i<iog WX, u; € OF, we
decompose x relatively to ad(H'), with H' =3 ;c; R

r = xo+x1+xo withx; € E;(H')NEy(H)Ng; ( note that F_ (H’ )Ng = {0})
and as Py(T') € D* we have using Taylor formula :

1
|Pyi(T') — P (T + mpa2)| < —  and  |Py(T + mp2)|, =1

v

so we can use a change of variable like in 1), let H” = H — H’

Jz(u) = /// To(W(Tot + Ug) Py (T + mo2) Py (o) )dzadaodt
. 3 0XFO 2 X D .
— /// To(Te ™ u(mpt + ug) Py (T + Wz»ﬂfz)PH”(i70))d952d170dt
Fy o X Fy 2 XD

- // Tv(ﬂ-i—iuuél-PH’(T, + 'WL:ATQ)PH” (xo))dxgdl’o
Fy 0 XFO 2 .

(using J(H”, uuy))
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with FZ’O = LU N ﬂ(@?zz":hl)l) and F()"Z = Lv N u(@le{l’._"i_l,ﬂﬂ:hl)l)
If i =2 (resp. i = 3) F5 9 = DX, (resp. Foo =90X,,) and Py~ ( resp. Py)
is a quadratic form , so '

For i =2
- Jz(u) = // To(um2ua(mys + up ) Pe (20) )dsdag
D XFO 2

=/ To(un?ugu; Py (z9))dzo (using J(H’ LT uu1u4 ) )
FO 2

= y(uuyug Pg» )q{f"')lul ($41) iy lulp > q2 else 1

with prop.4.4. of [R-S], which gives that Jz is constant on the subset |u, = ¢2*
( [IG 2] and prop.1.7 of [R-S] )

If i = 3 we have as precendetly |Py/ (T’ + mp22)|o = 1 s0

Jz(u) = //D F To(Uus Ty s Py (T + Ty29))dsdas
Xta.9 E

= I(H', uuym,)
=1 if |ul,<gq, else 0

Remark If we put together the results ,we obtain a formula for M (u) —
go (BH6d) M} (m5u) which is analogous to that of §4 of [IG 2].

4) For the proof of 2), as we have for y in D% My(y)—1=

1 1 1 | |
—5(1’\45(1“51)“”3(7% €)) + = \/m )C'(xn @2 ( Mi(m7h) — Mi(nte,))

it is enough to prove that for y in O% we have |[M} (7 1y)|, < Kq;2.

We do this with the usual methods, splitting the integral in order to make
appear irreducible polynomials and then we use the lemma 1 of [L-W], for
this we use changes of variable like in 1) and we complete with the value of

fo Tv(u Hdz. ]

This lemma proves that the hypothesis of proposmon 1 are Verlﬁed we can
consider W ()\ s) for A, s, f as in proposition 1 .

Let H be the Kernel of x. If U is a subgroup of Aut(g) and 7 is an element

of g, U, is the centralizer of n in U. |
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PROPOSITION 3. — Orbital results

1) The singular G and H-orbits are the same.

2) Let £ € F*,U¢ = {z € g1 | P(z) = &} then H has a finite number of
orbits in Ug and if Q¢ is a set of representatives , we have (Ug)g = {z €
(g1)a | P(z) =¢} = UnGQSHA n, this union being disjoint, and every Hp.n
is open in (Ug)a.

3) For every non singular n, the centmlzzer H,, s semi-simple

4) For any n the centralizer H, is unimodular

Proof

1) It is the theorem 4.3.2 of [MU 3].

2) It comes from the ”Hasse principle” : two elements are in the same G-orbit
if and only if they are in the same G,-orbit for alve S (theorem 4.4. 2 of
[MU 3]).
3) It is a calculus because we can assume that z = Zl<l<4 a;Xy,, H1<Z<4 a; #
0 (lemma 2.3.2 of [MU 3]) and we use the exphmt description of (go), given
in prop.3.1.3 of [MU 3]. -

4) For generic 7, it comes from 3) and for singular elements it is prop.3.3 of
MU 4. []

Lemma 2 and proposition 3 imply that the mean function verify for every
é’ e F* .

My (%) = [t~ ( 3 ,(H) ~ f(d'gmdga ) with x(¢') = £
nEfe n Hp /1y

and 7'(H,) = ¢,7(H,), 7(H,) being the Tamagawa number of H, and c,
the proportionality coefficient between the two Hp -invariant measure of
HF\/(HA) and p¢ restricted to the set Hp.n.

'n .

For every z in g; there is ¢ in G and a; € F,s = 1,...,4 such that
9T = Y 1< @ Xy, (lemma 2.3.2 of [MU 3]), we note rk(x) the number
of a; ;ﬁ 0. - | :

For a real t , [t] is its integer part

PROPOSITION 4. — ) Convergence
When A # R we assume that d # 2 then for every Schwartz function f on

g1,a the integral [ (Xeeq, f(9E) )dgn is absolutely convergent.
Hp/u '
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2) Measures on singular sets
Let n in g1 of rank j € {1,2,3} then for every Schwartz function f on g1.A

T, (f) = /H L

is absolutely convergent and T, (f(g.)) = |

Proof.

1) There are two proofs .

If A # R, g is an absolutely simple split algebra and we have two cases :
d =4 (87 type Dg of [IG 1] with representation pg) or d = 8 ( §9 type E;
of [IG 1] with representation p;); we use the results of [IG 1] .

If A = R, we use the lemme 5 of [WE 2]. For i = 1,...,4 and t € F*, let hy,(¢)
the element of the Cartan subgroup of G assoc1ated to each root A; ( [BO 2],
chap VIII, §1,n°5) and

A ={nt)= T] hr(t) lt_(z‘l,ta,tg)e Sta=( ] t)

1<:<4 1<:<3

wyi(t) = t;lt«z , Wa(t) = t51t3 , w3(t) = (t2t3)7% are the simple roots
associated to H ( with Cartan subgroup A ); let Ac = {t = (t1,t2,13) €
(R**)? | wi(t) <1 for i =1,2,3} then 1) is verified if we show that

/A H 5up< j)"’d>_ H sup(l,ti—%) H sup(l (tl tg)”T )

C1<i<j<d 1<i<4 1<i<4

. - o da dt; . . '
; 7(6d+4)_t2 7(4614-‘1)_153 2r(d+2) H —  with » = dim of F over @

1<i<3 !

is absolutely convergent which is an easy calculus.

2) 1) implies 2) because each H, is unimodular.

For d # 1 we can do it using the theory of quasi-invariant measures of
homogeneous spaces as in [WE 2]. Indeed, if 7 is singular , we complete it
in a sls-triple (MU 2]) (n,h,n") with-h € go,n" € g—1 then H, = N,,. (Hn)
with N = exp(ad(S;>1E;(h) N go)).
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To prove the absolute convergence of T, , it is enough to prove the absolute
convergence of

[ temazway
Pa/cug),

where P = N. H h is a parabolic subgroup of H and with this integral we
arrive at fP IPh )|Pdz,with 3 to compute , so we have to look to the
adelic Zeta functlon associated to a ”commutative” PV of PT ,and for d > 2
it is easy to prove the absolute convergence because we have an Ono- mtegral

with 5 > 0 ([ONO]). []

Remark :'in the case d = 2 (H,));, has a nontrivial center of dimension one if
rank(n) = 2 ( this also true for the ”commutative” case with d = 2)
For j =1,2,3 let

T, = /H ( Z ’.f(977) )dga = Z T(H,)T,

AlH  (negy rk(n)=5) {(n€gr k(n)=4)

then Vg € Ga T3(f(g.)) = |x(g)|~7% 21T, ( §).

We have the same results on g 1 So we deﬁne in the same manner T and

Vg € Ga T} (f(g.)) = Ix(9))? S+ 5(f) (recall that in the dual PV the
associated character is y™1).

With the proposition 4 it is not difficult to establish the following result
originally due to Mars in the ”commutative case "of PV of PT corresponding
to d = 8 ([MA])

COROLLARY 5 (MARS). — We assume that A = Fy or if A # F, then
d € {4,8}. For g’ in Ga and fin S(g1), let

Une) = [ (Y 5(0'98) Ydoa

Hp/n ceg)
then VN > 0 3Cy such that |[Us(g)| < Cn.|x(¢g" )|~ for large |x(g")]| .

All the precedent results are true on the dual PV (G, g_;) after the change

of v by x~L
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COROLLARY 6. — We assume that A = Fy or z'f A # Fy then d € {4,8}
For every non singular no we have 7'(H,,) = T(H).

?cﬂ:
We introduce first the usual notation : let F+(¢) = 0if | ¢ [3< 1 and else 1,
F=(t)=1- F*(¥)

WEAs)=Weprop(Ns) Wi (A s)=Wsp-op(),s)

Proof .
It is the method of [MA]. Let € the set of G-orbits in the non singular elements

of g : 917 ]‘ a Schwartz function such that f(z) = 0 for 2 € U,eq—n, Ga-n
and f z)dz # 0 (lemme 10 of [MA]) then

1
Z le(goJ(E) = 7 (H,,) L Z f(gogz) )dgn

£€F* AlE peg!

We apply the ordinary Poisson formula :

S~ Floogx) = 1X(90) ™ (Y Faos) )= (3. faolgz))

r€g veg-1 r€g1—g)

With the corollary 5, V[/’;' (A,.) is analytic on € so with proposition 1
lims—o,ses.sW; (Id, s) = cepE £(0) (S4 as in proposition 1) but for s € Sy
we have

T (H) Wi (1) = . [ f(ehlee+
IF *

[ S o)~ S o) Yan ] i with (0] =

Hp/H YEG-1 r€g1—g]

°L ST f)P[F
= s, F=(t) |t / Flgogy) Ydga | dth+
'/Mf i [ f Z o) ign |t 5= e

- 3 , .
+PF'T<H).f(O) Y 2 T;(f)pr N pe f(0) ]

2 j:1'5+2ﬁ——jd—[—iz'—-] 25+ 2K
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and with the corollary 5 applied to the PV (G, g—1) we obtain when we take
the limit of the two members for s € Sy — 0: 7(H) = 27’(H,70)cn: []
Finally we have obtained : ( **%*)

57 My(i%) = ZCS}tI"“ v (X flon) yga with (o) = ¢
alH

(eF~ (H rEg,

3 The result

THEOREM 6. — We assume that A = Fy or of A s Fy then d € {4,8}

Let f a Schwartz function on g1 and X\ a character of A*, trivuial on F*,
almost everywhere non ramified then

1) IVJZ*'()\, .) is analytic on C

2) W (A,.) has an meromorphic extension given by the following formula

W A :/ﬂ'/\ 1-—'_2___ — _
f( ,S) Wf( ,—5 2d) 5/\s+2+:§—d 6 p

5 ¢ T D) D)y
_'T(fH)<s+d+-§+s+§+§+s+1>

| T . T, T3 )
TH)\s+4+1  s+d+3  s+341

with 8y = cgpr if \/(A*)! = id and 0 else
3

8) Punctional equation : We(A, s) = W ()\" -5 — §d - 2)

Proof

1) is due to formula (***) and corollary 5.
2) is the same as the proof of corollary 6 because of the formula (***)

3) Comes from 2. []
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List of PV of PT having root system (R, aq) = (F}4, 1) given by their Satake
diagram with the different values of d ( cf. section 1 III) and the corresponding
number in the algebraically closed case in M.Sato and T.Kimura- classification
([S-K]). The theorem 6 is verified for all of them except one split case with

Dynkin Diagram (A, Ao) = (Es, a2).

We recall that ([S-K])

(14) : (GL(1) x Sp(3).0 x Az, V(1) x V(14))

(23) (GL(1) x Spin(12).0 x half spin rep., V(1) x V(32))
(29) (GL(1) x E7,0x%,V (1) x Ag, V(1) x V(56)) ( case of [IG 2])

(A, Xo) Satake diagram number in [S-K] class.|In th.6|
O—c—=—0 (14) X
WD SN N (5) X

©

('F-’l:a/l) I (23) X
o f —o—0—0 (29) X

(Es.a2) T (5)

(E71a1) @‘—“’T—)—-O—Q (23) X

(Eg.as) |

T °© (29) X




