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1. Introduction
Suppose that $G$ is a connected Lie group, and $\delta$ an automorphism of order 2 of

$G$ , i.e., $\delta$ is an involution of $G$ . Let us denote by $G^{\delta}$ the subgroup of the fixed points
of the action of $\delta$ on $G$ , and by $G_{\mathrm{o}}^{\delta}$ the identity connected component of $G^{\delta}$ . If $H$ is
a subgroup of $G$ such that

$G_{\mathrm{o}}^{\delta}\subseteq H\subseteq Gs$ ,

the quotient space $H\backslash G$ is called a symmetric space. Thus a symmetric space is
characterized by the data $(G, H, \delta)$ . In this paper we assume that $H$ is open (hence
closed, being a topological group). The group $G$ acts on $H\backslash G$ and one can ask
for the existence of a $G$-invariant measure on $H\backslash G$ . According to [Borb] we know
that when the module function $d_{G}$ of $G$ coincides with the module function $d_{H}$ on
$H$ , then such a measure exists. Indeed, we assume that this condition holds and a
$G$-invariant measure is selected on the quotient $H\backslash G$ . Let $L^{2}(H\backslash G)$ be the Hilbert
space of square integrable measurable functions on $H\backslash G$ , with respect to the chosen
invariant measure. The Plancherel formula gives a decomposition of the regular
representation of $G$ on $L^{2}(H\backslash G)$ as a direct sum of a continuous and a discrete part.
In particular, when $I\mathrm{e}’$ is the compact subgroup of $G$ obtained as the fixed points of a
Cartan involution $\theta$ that commutes with 6, then under the following rank condition
$(*)$ the discrete spectrum is non-empty.

$(*)$ $rank(H\backslash G)=rank(H\cap K\backslash K)$ .

Actually, throughout this paper, we assume that the above rank condition holds.
Based on the above condition the main purpose of this paper is to give a trace

formula for the restriction of the regular represntation on the discrete spectrum. The
general method used in our work is based on the ideas of J. Arthur developed in his
work on the local trace formula. Our formula is not as complete as the local trace
formula of J. Arthur. Nevertheless, since a group is itself a symmetric space, we can
claim that when the symmetric space is attached to a connected reductive algebraic
group over the reals then the trace formula of the present article is a generalization
of the local trace formula of a connected real reductive algebraic group. The trace
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formula in our work is in essence an analytical trace formula. It is an identity which
consists of two expressions, the geometric expansion, and the spectral expansion. In
calculating the spectral expansion we have used the Plancherel formula for $H$ , and in
calculating the $\mathrm{g}\mathrm{e}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\dot{\mathrm{i}}\mathrm{C}$ expansion we have used a version of the Weyl integration
formula for $H$ .

2. A Review of Symmetric Spaces
Suppose that $G$ is a connected reductive Lie group and 5 an involution of $G$ . Let

$G^{\delta}$ be the subgroup of the fixed points of the action of 5 on $G$ , and $G_{\mathrm{o}}^{\delta}$ the identity
connected component of the closed subgroup $G^{\delta}$ . Let $H$ be a subgroup of $G$ such
that:

$G_{\mathrm{o}}^{\delta\delta}\subseteq H\subseteq G$ .
Then the quotient space $H\backslash G$ is called a symmetric space with the isotropy group
$H$ . Here we assume that the isotropy subgroup of the symmetric space is both open
and connected. Depending on the structure of $G$ , and $H$ , the symmetric space $H\backslash G$

carries the structure of a Riemannian space.
It is known that there is a Cartan involution $\theta$ of $G$ which commutes with the

involution $\delta$ (see the work of Berger [Berg]). Assume that $K$ is the maximal compact
subgroup of $G$ defined by the fixed points set of $\theta$ . One is interested in the Lie algebra
decomposition of $G$ according to $\mathrm{t}\mathrm{h}\mathrm{e}\pm 1$ eigenspaces of $\theta$ and $\delta$ . More precisely, let
us denote the derivative of both $\theta$ and 5 by the same letters. Let $\mathfrak{h}$ (resp. $t$ ) be the
$+1$ eigenspace of 5 (resp. $\theta$ ), and $\mathrm{q}$ (resp. $\mathfrak{p}$ ) be the $-1$ eigenspace of 5 (resp. $\theta$ )
on the Lie algebra $\mathrm{g}=L\dot{i}eG$ . Then

$\mathrm{g}=\mathrm{g}_{+}\oplus\alpha_{-}$ ,

where
$\mathrm{g}_{+}=\mathrm{e}\mathrm{n}\mathfrak{h}\oplus \mathfrak{p}\cap \mathrm{q}$,

$9-=\mathrm{t}\cap \mathrm{q}\oplus \mathfrak{p}\mathrm{n}\mathfrak{h}$ .
Observe that $\emptyset+\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{g}$ -are respectively the $+1$ and $-1$ eigenspace of $\delta\theta$ on $\underline{\mathrm{g}}$ .
Let $B$ be the non-degenerate $G$-invariant bilinear form on $\mathrm{g}$ , i.e., the Ifilling form.
Then, it follows that all of the decompositions above are orthogonal direct sum
decompositions $\mathrm{w}\mathrm{i}\dot{\mathrm{t}}\mathrm{h}$ respect to the inner product

$\langle X, \mathrm{Y}\rangle_{\theta}=-B(x, \theta \mathrm{Y})$ .

The rank of symmetric space $H\backslash G$ , is by definition the dimension of a maximal
abelian subspace in $\mathrm{q}$ . Observe that if $K_{H}=K\cap H$ , then the quotient space $K_{H}\backslash K$
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is a symmetric space associated to If with the involution 5. In fact $I\mathrm{f}^{\delta}=K\cap H$ .
Flensted-Jensen [F-J] has shown that if the following rank condition

rank$(H\backslash G)=rank(K_{H\backslash K)}, (1)$

holds, then the regular representation of $G$ on the Hilbert space $L^{2}(H\backslash G)$ has a
discrete spectrum. Thus, it is fundamental to know the decomposition of the reg-
ular rpresentation. let us first give an example. Suppose that $H\backslash G$ is a compact
symmetric space. Then, by a result of Mostow [Mos], it is known. that $G$ must be
compact. This implies in particular that the only part of the s.pectral $\mathrm{d}.$ecom.position
of the

$\mathrm{r}.\mathrm{e}$gular representati.o$\mathrm{n}$ is discrete.
In general, however, the problem of $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ spectral decomposition of the regular

representation is considerably more difficult. For example, for a connected Lie group
as a symmetric space, the problem of the spectral decomposition is solved by Harish-
Chandra using the Plancherel formula. On the other hand, for a symmetric space
$H\backslash G$ the problem is solved in the works [Ban], $[\mathrm{B}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{c}\mathrm{h}]$ , and $[\mathrm{B}\mathrm{a}\mathrm{n}\mathrm{s}_{\mathrm{C}}\mathrm{h}1]$ .

Let us fix a maximal abelian subspace $a_{\mathrm{q}}$ of $\mathrm{p}\cap \mathfrak{g}$ . Let $\triangle^{+}=\triangle^{+}(a\mathrm{f}\mathrm{l},\mathrm{g}_{+})$ be a
positive system of restricted roots for $a_{\mathrm{q}}$ in $9+[\mathrm{H}\mathrm{e}1]$ . Let $A\mathrm{f}\mathrm{l}=exp(a_{\mathrm{q}})$ , and

$a_{\mathrm{r}\pi}^{+_{=\{T\in}}a$ : $\alpha,\theta 0\forall\alpha\in\triangle^{+}$}.

Then, the following Cartan decomposition holds:

$G=HA\mathrm{f}\mathrm{l}+_{K}$ , (2)

where $A_{\mathrm{q}}^{+}=exp(a^{+}\pi)$ . For a proof of this $\mathrm{c}_{\mathrm{a}\mathrm{r}\tan}.$ deCo..mposition which is based on
the geometry of the symmetric space $H\backslash G$ , we refer the reader to [F-J1]. Moreover,
our assumption that $H$ is connected implies that the middle part of the Cartan
decomposition of an element of $G$ is uniquely determined [Banl].

Rather than working with a Levi component, we fix a split component by which
the parabolic subgroups will be determined. More precisely, let us denote by $\prime p$ the
set of all $\delta\theta$-stable parabolic subgroups of $G$ containing $A_{\eta}$ . It is well known that
this set is finite. Given $P\in \mathcal{P}$ , let us write

$P=M_{P}A_{P}N_{P}$ ,

for the corresponding Langlands decomposition. Then, by our assumption, $A_{P}\subseteq A_{\mathrm{q}}$ .
Let us denote by $P(A_{\mathrm{q}})$ the possible non-empty subset of $P$ such that $A_{P}=A_{\mathrm{q}}$ .

Since $G=PK$, an element $x\in G$ can be decomposed as the product

$X=m_{P(x)(x)}a_{P}nP(X)k_{P}(X)$ .
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Let $H_{P}(x)$ be the unique vector in $a_{P}=LieA_{P}$ such that

$a_{P}(x)=e_{\vee}x,p(H_{P}(x))$ .

Then we can write
$x=mp(X)exp(HP(x))nP(X)k_{P(x})$ .

In particular, when $P\in \mathcal{P}(A_{\mathrm{q}})$ , denote the element $H_{P}(x)$ by $H_{P}^{\mathrm{q}}(x)$ . Let us denote
by $\Delta_{P}$ the set of simple roots of $(P, A_{\mathrm{B}})$ .

3. The Expansions of the Kernel
With the above notations we define the regular representation by:

$(R(y)\varphi)(_{X})=\varphi(xy)$ $x,$ $y\in G,$ $\varphi\in L^{2}$ .

In this paper, a test function on $G$ is a compactly supported continuous function on
$G$ . We denote the space of these functions by $\mathcal{H}$ .

Let us denote by $R(f)$ the extension of $R(y)$ to $\mathcal{H}$ . Then $R(f)$ acts on $L^{2}$ by:

$(R(f) \varphi)(X)=\int Gf(y)\varphi(Xy)dy$ , $f\in \mathcal{H}$. (3)

After a change of variable we can write

$(R(f) \varphi)(_{X})=\int_{G}f(X^{-1}y)\varphi(y)dy$ .

Using Fubini’s theorem we can write:

$(R(f) \varphi \mathrm{I}(X)=\int_{H\backslash G}(\int_{H}f(_{X^{-1}}ty)\varphi(ty)dt)dy$ ,

or equivalently

$(R(f) \varphi)(x)=\int_{H\backslash G}(\int_{H}f(x^{-}ty)dt)\varphi(y)1dy$ .

Thus, we have shown that

$(R(f) \varphi)(_{X})=\int_{H\backslash G}(\int_{H}f(X-1ty)dt)\varphi(y)dy$ . (4)

From this we conclude that the kernel is:

$I1’(x, y)– \int_{\sim}Hf(X^{-1}ty)dt$ , $t\in H,$ $x,$ $y\in G$ . (5)
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Let $H_{f\mathrm{e}g}$ be the set of all regular elements of $H$ . An element $\gamma\in H$ is called
elliptic if its centralizer in $H$ is compact modulo $A_{H}^{\mathrm{o}}$ , the identity connected com-
ponent of the split component $A_{H}$ of $H$ . For a regular elliptic element $\gamma$ of $H$ , let
us denote by $\{\gamma\}$ the conjugacy class in $H$ of $\gamma$ . The set of all conjugacy classes
defined in this way is denoted by $E(H)$ . We then write:

$E_{\Gamma \mathrm{e}g}(H)=E(H)\cap H_{\mathrm{r}}\mathrm{e}g$ .

Let us recall that a maximal torus $T$ of $H$ is elliptic if $T/A_{H}^{\mathrm{O}}$ is compact.Since
the following discussion depends on a fixed measure, it is important to explain how
the measure is fixed. One begins by fixing a measure on $A_{H}^{\mathrm{o}}$ . This measure induces
a measure on $A_{H}^{\mathrm{O}}$ , and this in turn determines a canonical measure $d\gamma$ on $E_{\gamma \mathrm{e}g}(H)$ ,
which vanishes on the complement of $H_{\mathrm{r}eg}$ in $E_{reg}$ , and such that:

$\int_{E_{\mathrm{r}eg}(H)}\eta(\gamma)d\gamma=\sum_{\mathrm{f}\tau\}}|W(H, T)|-1\int_{T}\eta(t)dt$ ,

for any continuous function $\eta$ of compact support on $E_{feg}(H)$ . Here $\{T\}$ is a set of
representatives of $H$-conjugacy classes of maximal tori $H$ with elliptic $T$ . Moreover,
$W(H, T)$ is the Weyl group of $(H, T)$ , and $dt$ is the Haar measure on the compact
group $T/A_{H}^{\mathrm{O}}$ (cf. $[\mathrm{A}$ , page 16]).

Suppose that $M_{\mathrm{O}}^{H}$ is a fixed minimal Levi component of $H$ . Let $\mathcal{L}^{H}$ be the set
of all Levi components of $H$ that contains $M_{\mathrm{o}}^{H}$ . Let, $W^{H}$ be the Weyl group of the
pair $(H, A_{H}^{\mathrm{o}})$ . If $M_{H}$ is a Levi component of $H$ , denote by $W^{M_{H}}$ the Weyl group of
the pair $(M_{H}, A_{[mathring]_{H}_{M}})$ .
Lemma 1. Let $D(\gamma)$ be the Weyl discriminant of $\gamma$ , and for each $x\in G$ , let
$g_{x}(t)=f(x^{-1}tX)$ , with $t\in H$ . Then

$K(_{XX},)= \sum_{HMH\in c}|W|\int_{E_{r\mathrm{e}g()}}H\gamma|D()|(\int_{A}0_{H^{\backslash H}})g_{x}(x_{1}-1\gamma x_{1}d_{X_{1})}Md\gamma$ ,

where $|W|=|W^{M_{H}}||W^{H}|^{-1}$ , and $E_{\gamma eg}(M_{H})$ is the same as $E_{f6}(gH)$ but with $H$

replaced by $M_{H}$ .
Proof. For a function $h’\in C_{c}^{\infty}(H)$ we have

$\int_{H}h’(u)du=\sum_{HM_{H\in}\mathcal{L}}|W|\int_{E_{reg}}(M_{H})|D(\gamma)|(\int_{A^{\mathrm{O}}\backslash }H)hJ(u^{-}\gamma udu)H1d\gamma$ .

Now, note that $g_{x}\in C_{c}^{\infty}(H)$ . Thus, the identity can be applied to $g_{x}$ in place of $h’$ .
On the other hand, since

$K(x, x)= \int_{H}g_{x}(\gamma)d\gamma$ ,
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the result follows. $\square$

The expression given by the lemma is the first geometric expansion of the kernel.
We now determine the first spectral expansion of the kernel. To this end, we need
to define the function $h_{x}$ , for each $x\in G$ , by:

$h_{x}(v)= \int_{H}f(x-1vux)du$ , $u,$ $v\in H$.

Then $h_{x}\in C_{\mathrm{c}}^{\infty}(H)$ , and
. $h_{x}(1)=I\mathrm{f}(X, X)$ .

The Plancherel formula gives an expression for $h_{x}(1)$ based on the character of an
induced representation. We do not recall the notaions here, but we refer the reader
to the work of J. Arthur [A] for all undefined notations. The result is:

$h_{x}(1)=M_{H} \sum_{H,\in c}|W|\int_{\Pi_{2}(M_{H})}m(\sigma)t\Gamma(I_{P}(\sigma, h_{x}))Hd\sigma$. (6)

As a consequence we have proved the following result, the first spectral expansion
of the kernel.

Lemma 2. We have:

$IC(X, X)=M_{H} \epsilon c\sum_{H}|W|\int_{\Pi_{2}}\mathrm{t}^{M_{H}}))m(\sigma)tr(I_{P}(\sigma, h_{x})d\sigma H$ ’

where $P_{H}$ denotes a parabolic subgroup of $H$ with the Levi component $M_{H}$ . $\square$

4. The Tkuncation
We first need to define the notion of orthogonal set, in a way suitable for our

purposes.
Let $P,$ $P’\in P(A\mathrm{f}\mathrm{l})$ . Say that $P,$ $P’$ are adjacent if their chambers have an hy-

perplane in common. With respect to $\Delta_{P}$ a finite set of points $\mathrm{Y}_{P}$ in $a_{\mathrm{q}}$ , indexed
by $P\in \mathcal{P}(A_{\mathrm{q}})$ is called $A_{\mathrm{B}}$-orthogonal (or, orthogonal) if for any two adjacent
groups $P,$ $P’$ whose chambers in $a_{\mathrm{B}}$ share the wall determined by the simple root $\alpha$

in $\Delta_{P}\cap(-\triangle_{P’})$ satisfies:
$\mathrm{Y}_{P}-\mathrm{Y}_{P}’=r\alpha \mathrm{v}$ ,

for a real number $r=r(P, P’)$ . When $r>0$ , the set is called positive $A_{\mathrm{q}}$ -orthogonal.
Note that $\alpha^{\vee}$ is the $\mathrm{c}\mathrm{o}$-root associated to the simple root $\alpha\in\triangle p$ (cf. [A2]).

Suppose that $T$ is any point in $a_{\mathrm{q}}$ . Denote by $P_{0}(A_{\mathrm{B}}.).\mathrm{t}$ he set of minimal elements
$\dot{\mathrm{o}}\mathrm{f}P(A_{\mathrm{q}})$ . Let $T_{\mathrm{o}}$ be the unique translate of $T$ under $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ action of the Weyl group
of $(G, A_{\mathrm{q}})$ . Then the set

$\overline{T}=\{T_{\mathrm{o}\mathrm{O}} : P\in p\mathrm{o}(A\mathrm{r})\}$
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is a positive orthogonal set. We assume that $\overline{T}$ is highly regular in the sense that
its distance from any singular hyperplane in $a_{\mathrm{q}}$ is large. Let us write $S_{\mathrm{q}}(T)$ for
the convex hull in $a_{\mathrm{B}}/a_{G}$ of the orthogonal set $\overline{T}$ (note that $a_{G}=LieG=\mathrm{g}$ ). The
truncation method is originally based on the properties of Langlands’ Combinatorial
Lemma and its role in the theory of the Eisenstein series [Lan], [A1], and [Shoi].
The truncation is a process that trnsforms slowly increasing functions to rapidly de-
creasing functions. By this method in the trace formulae one determines a truncated
kernel that has a convergent integral. This has been first applied in the global trace
formula (see [Sho] for more informations in the global non-twisted case, and [Shol]
for the local twisted case). The similar method can be used for the same purpose
in the study of the local trace formula in the non-twisted case [A], and here for the
local trace formula attached to the symmetric spaces.

Let $A_{G}^{\mathrm{o}}$ be the identity connected component of $A_{G}$ . Now, let $x\in G$ be given,
then by the Cartan decomposition of $H\backslash G$ we can write

$x=h(x)a(X)k(x),$ $h(x)\in H,$ $a(x)\in A_{G}^{\mathrm{o}}\backslash G,$ $k(x)\in K$.

We now fix a highly regular point $T\in a_{\mathrm{B}}$ . Let $a(x)\in A_{G}^{\mathrm{O}}\backslash G$ be the middle
component of the Cartan decomposition. Let $u(x, T).\mathrm{b}\mathrm{e}$ the characteristic function
of the set

$\mathcal{U}=\{x\in A\circ\backslash GG : H_{P}(a(X))\in s(\eta\tau)\}$ .
Note that $H_{P}(a(X))$ lies in $logA_{\mathrm{B}}$ . The function $u(x, T)$ is called the truncation
function. This function is applied to the kernel $K(x, x)$ to yield the truncated kernel

$K^{T}(f)= \int_{A_{G}^{\circ}}\backslash GK(_{X,x})u(_{X\tau)},dX$ .

We can now prove:

Lemma 3. The integral defining $K^{T}(f)$ converges.
Proof. Note that $S_{\mathrm{B}}(T)$ is a (large) compact subset of $\mathrm{a}_{\mathrm{B}}/a_{G}$ , hence $u(x, T)$ is the
characteristic function of a (large) compact subset of $A_{G}^{\mathrm{o}}\backslash G$ . $\square$

Lemma 4. with the notations as above we have the following geometric expression
for the kernel $K^{T}(f)$ :

$K^{T}(f)=M_{H\in \mathcal{L}} \sum_{H}|W|\int_{E_{r\mathrm{c}}})K^{T}(\mathit{9}\mathrm{t}^{M}H\gamma,g)d\gamma$,

where $K^{T}(\gamma,g)$ is given by:

$|D( \gamma)|\int_{A_{G}^{0}\backslash G}\int_{A_{M_{H}}^{\mathrm{O}}\backslash H}g_{x}(_{X_{1}}-1\gamma x_{1})u(X, \tau)dx1dx$, (7)
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in which $x\in G,$ $x_{1}\in H$ .
Proof. Substituting the expression for If$(x, X)$ given in Lemma 1, in the definition
$I\mathrm{S}^{-T}(f)$ and then removing the finite summation over $\mathcal{L}^{H}$ , the result follows. $\square$

Similarly, one can prove the following result.

Lemma 5. Let the notations be as above, then the following spectral expansion for
$K^{T}(f)$ holds:

$\sum_{M_{H\in \mathcal{L}^{H}}}|W|\int_{\Pi_{2}(M_{H})}I\zeta\tau(\sigma, h_{x})d\sigma$,

where, $I_{\mathrm{S}}^{\prime T}(\sigma, h_{x})$ is given by:

$m( \sigma)\int A_{G}\mathrm{o}\backslash G(t\Gamma(IPH(\sigma, hx))uX,$ $\tau)d_{X}$ .

$\square$

We still have to modify the expansions above. To do so, let

$u_{\mathrm{B}}(_{X_{1}}, x_{2}, \tau)=\int_{A_{G}^{\mathrm{o}}\backslash A_{\mathrm{Q}}^{\circ}}u(x_{1}-1xa2, T)da$ , (8)

where, $x_{1}\in H,$ $x_{2}\in G,$ $a\in A_{\mathrm{B}}^{\mathrm{O}}$ .

Lemma 6. The following expression for $I\mathrm{f}^{T}(\gamma,g)$ holds:

$|D( \gamma)|\int_{A_{\mathrm{q}}^{\mathrm{O}}\backslash G}\int_{A_{M_{H}}^{\mathrm{o}}\backslash H}g_{x_{2}}(\gamma)u(\mathrm{q}1, x2, T)xdx1dx2$ .

Proof. In (7) one can decompose the integral over $A_{G}^{\mathrm{o}}\backslash G$ in two integrals, one over
$A_{\mathrm{B}}^{\mathrm{o}}\backslash G$ , and the other over $A_{[mathring]_{G}}\backslash A_{\mathrm{q}}\circ$ . Then, change the variable by setting $x_{2}=x_{1}x$ .
from this it follows that

$x_{1}^{-1}x2=X,$ $dx=d_{X}2$ .
hence we have that $I\iota^{\nearrow T}(\gamma,g)$ equals:

$|D( \gamma)|\int_{A_{\mathrm{q}}^{\mathrm{O}}}\backslash c\int_{A_{M_{H}}^{0}}\backslash Hg_{x_{2}}(\gamma)u(X_{1}-1x2, \tau)dx1dx_{2}$ .

To complete the proof decompose the first integral which is with
$\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}_{1}\mathrm{C}-\mathrm{t}$

to $dx_{2}$ , in
two integrals mentioned above. This causes the change of $x_{1}^{-1}x_{2}$ to $x_{1}ax_{2}$ . $\square$

5. Some Geometric Preparations
The central point in the geometric study of the trace formula in this section is

the main geometric lemma, which according to it, the truncated kernel $K^{T}(\gamma, f)$
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can be approximated by a weighted orbital integral. For establishing this lemma,
we first need to define an appropriate orbital integral. This is acheieved by first
introducing an $A_{\mathrm{B}}$-orthogonal set whose associated weight factor will be used in the
definition of the integral. For $P\in \mathcal{P}(A_{\mathrm{B}}),$ $x_{1}\in H$ , and $x_{2}\in G$ , define

$Y_{P}(x_{1,2}X, T)=T+H_{P}(X_{1})-H_{\overline{P}}(x_{2})$ ,

where, $T\in a_{\mathrm{B}},$ and $\overline{P}$ is the opposite parabolic subgroup of $P$ . Then the points

$\mathcal{Y}=\mathcal{Y}_{\mathrm{q}}(x_{1,2}x, T)=\{\mathrm{Y}_{P}(X_{1}, X_{2}, T):P\in \mathcal{P}(A_{\mathrm{q}})\}$, (9)

form an $A_{\mathrm{B}}$-orthogonal set. Let as before (cf. Section 4) $T_{\mathrm{o}}$ be the translate of $T$

under the Weyl group, and

$d(T)=\dot{i}nf\{\alpha(\tau_{\mathrm{o}}) : \alpha\in\triangle_{P}, P\in P(A_{\mathrm{q}})\}$ .

Then it can be shown that $\mathcal{Y}$ is positive if $d(T)$ is large with respect to $x_{1}$ and
$x_{2}$ [A page 30]. To this orthogonal set one associates a weight factor in the same
way discussed in [A page 30], but it will be parameterized by parabolic subgroups
instead of the Levi components. In another word, we have to begin with the function
$\sigma_{\mathrm{B}}=\sigma_{A_{\mathrm{q}}}$ which is the analogue of the function $\sigma_{M}$ of [A (3.8)]. The function $\sigma_{\mathrm{B}}$ is
defined by:

$\sigma_{\mathrm{q}}(X, y)=\sum_{)P\in p\mathrm{t}A_{\mathrm{q}}}(-1)|\hat{\Delta}P|\varphi_{P}(\Lambda x-\mathrm{Y}_{P})$
,

where, $X\in\alpha_{\mathrm{B}}/\alpha_{G}$ , and the undefined notations are to be found in [A page 22]. Now,
let us define the weight factor

$v_{\mathrm{B}}(_{X_{1}}, x_{2}, \tau)=\int_{A_{G}^{\mathrm{O}}\backslash A_{\mathrm{q}}}\mathrm{o}(\sigma_{\gamma}H_{P}(a), y(x_{1}, X2, T))da$ . (10)

Using this weight factor the following weighted orbital integral is defined:

$J^{T}( \gamma,g)=|D(\gamma)|\int_{A_{\mathrm{q}}^{\circ}\backslash }GTgx_{2}(\gamma)v_{\tau}(_{X}1, x2,)dx1dx2$.

As we have already mentioned for the purpose of the trace formula we need to
compare the kernel $IC^{T}(\gamma,g)$ with the orbital integral $J^{T}(\gamma,g)$ . This is essentially
done by the method of approximation. For this method a key is the notion of
the norm, or distance function on the group and the associated symmetric space.
Actually, it turns out that the norm is the same as the height function.

Let $\Lambda:Garrow GL(V)$ be a finite dimensional representation of G.’ and $\{v_{1}, \ldots, v_{n}\}$

a basis of $V$ . The height of any vector

$v= \sum_{i=1}^{n}\lambda_{i}vi$ , $\lambda_{i}\in R$ ,
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is the Euclidean norm $||||’$ of $v$ , i.e.,

$||v||’=( \sum_{i=1}|\lambda i|2)\frac{1}{2}n\wedge\cdot$

Then, the height function (or height) of an element $g\in G$ is defined by:

$||g||’=||\Lambda(g)||’$ .

One can define an height function on $G$ that comes from the inner product of
$\mathrm{g}=LieG$ . Indeed, we can equip $\mathrm{g}$ with the structure of a real $\mathrm{H}\mathrm{i}.1$bert space by
defining the inner product $\langle X, Y\rangle_{\theta}$ , and then the norm

$||X|| \theta=\langle x,x\rangle\frac{1}{\theta 2}$ , $X\in \mathrm{g}$ .

One can also extend this norm to $G$ by defining the Hilbert-Schmidt inner product
of $Ad(x),$ $Ad(y)$ , with $x,$ $y\in G$ as follows:

$(x, y.)=dim(\emptyset)^{-}1tr(\emptyset dA(y)*Ad(x))$,

where the adjoint operator $Ad(y)^{*}$ of $Ad(y)$ is defined with respect to $\langle, \rangle_{\theta}$ and given
by $Ad(\theta(y)^{-}1)$ . Thus we can write

$(x, y)^{-d}-im(_{\mathcal{B}^{-1}})tr_{g}(Ad(x\theta(y-1))$ .

The norm of $x\in G$ is then defined by:

$||x||=(X, x)^{\frac{1}{2}}$ ,

and it satisfies the following basic properties:
(H1) $||xy||\leq(dim\mathrm{g})^{-}1||x||||y||$ , .

(H2) $||x||=||x^{-}|1|=|.|\theta(_{X)}||\geq 1$ ,
(H3) $||k_{1}xk_{2}||=||X||$ , $k_{1},$ $k_{2}\in I\zeta$

(H4) There are constants $c_{1},$ $c_{2}>0$ such that if $x=expX$, with $X\in \mathfrak{p}$ , then

$exp(c_{1}||x||)\leq||X||\leq exp(c_{2}||X||)$ ,

where $||X||$ denotes the norm $||X||_{\theta}$ .
(H5) $||a||\leq||an||$ , $a\in A,$ $n\in N$ .
For a proof of these facts see for example [$\mathrm{B}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{C}\mathrm{h}$ page $112$]

$=$

. In paricular, the
following result shows that for our height function we can take the. above norm on
$G$ .

Lemma 7. The norm $||.||$ on $G$ satisfies all the properties of the height function.
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Proof. We have only to show that $||xy||\leq||x||||y||$ . But, this is done by the
normalization which transforms the property (H1) to the sought inequality [A page
26]. $\square$

As we will see the approximation of the kernel $K^{T}(f)$ by the weighted orbital
integral $J^{T}(\gamma, f)$ is base.$\mathrm{d}$ on the study of the difference

$u_{\mathrm{B}}(x_{1}, x2, T)-v_{\eta}(x_{1,2}x, T)$ .

The approximation of this difference is investigated in the following theorem.

Theorem 1. Let $\beta>0$ be a fixed positive number. Suppose $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\sim\epsilon_{2}$ is a $\mathrm{p}.0$sitive
small number so that from

$||x_{i}||\leq exp(\epsilon_{2}||T||)i=1,2$ . (11)

follows that

$|u_{\mathrm{B}}(x_{1}, X2, \tau)-v_{\mathrm{q}}(X_{1}, x2,\tau)|\leq Cexp(-\epsilon_{1}||T||)$, (12)

for some positive constants $C,$ $\epsilon_{1}$ . Then the constants $C,$ $\epsilon_{1},$ $\epsilon_{2}$ can be chosen such
that (12) holds for all $T$ with $d(T)\geq\beta||T||$ , and all $x_{1},$ $x_{2}$ in the set

$\{x\in G:||x||\leq exp(\epsilon_{2}||\tau||)\}$ . (13)

This theorem is fundamental for the geometric theory of the trace formula and
we devote a major part of the n.ext section to its proof.

6. Proof of Theorem 1, and the Geometric Expansion
We begin this section by a lemma that $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\dot{\mathrm{l}}\mathrm{i}\mathrm{Z}\mathrm{e}\mathrm{S}$ Lemma 5.2 of [A] to a sym-

metric space.

Lemma 8. Suppose that $X,$ $X’$ are two points in $\mathrm{g}$ and $Y,$ $Y_{1}$ are two points in $a_{\mathrm{B}}^{+}$

such that
$exp(X)^{-}1exp(Y)exp(x’)=h(exp(Y1))k$ ,

where $h\in H,$ $k\in K$ . Then,

$||\mathrm{Y}_{1}-\mathrm{Y}||’\leq||x||’+||x’||’$ .

Proof. When the isotropy group in the symmetric space is compact, the Lemma is
proved in [A Lemma 5.2]. We thus assume that the isotropy group inthe symmetric

68



space is non-compact, and also the symmetric space is non-Riemannian. Let $\alpha_{\mathrm{O}}$ be
the extension of $\alpha_{\mathrm{B}}$ to a maximal abelian subspace of $\mathfrak{p}$ . Let $A_{\mathrm{o}}=exp(a_{\circ})+$ . Since
$A_{\mathrm{o}}$ is maximal the following Cartan decomposition also holds:

$G=KA_{\mathrm{o}}K$.
In fact, according to [H-C page 243], if $\ell$ is the rank of the symmetric space $G/K$

then there is
$.$

$\mathrm{a}$ connected abelian Lie subgroup $A_{\ell}$ of $G$ such that

$G=KA\ell K$.

Now, since $\mathrm{Y},$ $Y_{1}$ are elements of $a_{\mathrm{B}}^{+}$ , they also belong to $a_{\mathrm{O}}^{+}$ . Hence, we have to show
that there are elements $k_{1},$ $k_{2}\in K$ so that from

$exp(X)-1exp(Y)exp(X’)=h(exp(\mathrm{Y}1))k$

it follows that the left-hand side of the equality equals to

$k_{1}exp(Y1)k_{2}$ ,

for some $k_{1},$ $k_{2}\in I\mathrm{t}’$ . But, this fact follows from the above Cartan decomposition
for the $\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\dot{\mathrm{i}}\mathrm{C}$ space $G/K$ . The lemma now follows from the proof of [A Lemma
5.2] in the Riemannian case. $\square$

Lemma 9. Let $\mathcal{Y}$ be a $A_{\mathrm{q}}$-orthogonal set. For a parabolic group $P\in \mathcal{P}(A_{\mathrm{q}})$ one
has:

$S_{\mathrm{B}}(y)\cap a_{\mathrm{q}}^{+}=\{X\in a_{\mathrm{q}}^{+} : \overline{\omega}(x-\mathrm{Y})\leq 0,\overline{\omega}\in\hat{\Delta}_{P}\}$ ,

where $Y\in S_{\mathrm{q}}(y)$ .
Proof. The proof is exactly the same as the proof of Lemma 3.1 of [A]. In fact, the
proof of our lemma can even be deduced directly from [A2 Lemma 3.2]. $\square$

To prepare the ground for the proof of the Theorem, we have to invoke a result
of Langlands which is based on his combinatorial lemma, and gives a description of
the quotient space $A_{\mathrm{B}}\backslash A_{G}$ similar to the reduction theory [Sho].

Let $\epsilon$ be a positive number which depends on $G$ and the constant $\beta$ of the
Theorem. In another word $\epsilon=\epsilon(G,\beta)$ . Let $Q\in \mathcal{P}$ , and $A_{\mathrm{q}}(Q, \epsilon)$ be the set

$\{a\in A_{\mathrm{B}}\backslash A_{G} : \sigma_{P}^{Q}(H_{P(a),\tau}\epsilon)_{\mathcal{T}(}QHP(a)-\epsilon\tau Q)=1\}$,

with the notations of [A].

Proposition 1. (i) The weight factor $u_{\eta(xT)}X_{1},2$, equals the sum over $Q\in \mathcal{P}$ of
the integrals

$\sum_{Q\in \mathcal{P}}\int A_{\mathrm{q}}(Q,\epsilon)u(x1-1ax2, T)da$ .
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(ii) The weight factor $v_{\mathrm{B}}(x_{1}, x_{2}, T)$ equals the sum over $Q\in P$ of the integrals

$\sum_{Q\in \mathcal{P}}\int_{A_{\mathrm{q}}\langle Q,\epsilon)}\sigma_{P((a}HP),$
$\mathcal{Y}(x_{1,2}X, \tau))da$ .

Proof. Let us consider the orthogonal set

$\mathrm{Y}(\epsilon)=\{\epsilon\tau_{P} : P\in p(A\tau)\}$ .

According to the consequence of
$\mathrm{L}\mathrm{a}.\mathrm{n}\mathrm{g}‘ \mathrm{l}\mathrm{a}\backslash \mathrm{n}‘ \mathrm{d}\mathrm{s}$

’ combinatorial le.mma, the orthogonal
set $\mathrm{Y}(\epsilon)$ satisfies the property:

$\sum_{Q\in \mathcal{P}}\sigma_{P}(Qx, \mathrm{Y}(\epsilon))\tau_{Q}(X-\epsilon\tau Q)=1\sim$ ’ (14)

for any point $X\in a_{\mathrm{B}}$ . This shows that for a given $Q$ the set $A_{\mathrm{B}}(Q, \epsilon)$ consists of those
points $X=H_{P}(a)$ that satisfy identity (14). Thus when $Q$ varies over. $P$ , we see
that $u_{\mathrm{B}}(x_{1}, x_{2}, T)$ and $v_{\mathrm{q}}(x_{1}, x_{2}, T)$ which are given by the integrals over $a$ in $A_{\mathrm{B}}\backslash A_{G}$

of two compactly supported functions $u(x_{1}^{-1}aX2, T)$ and $\sigma_{P}(Hp(a), y(x_{1}, X_{2}, \tau))$ re-
spectively are decomposed in a finite sum over $\mathcal{P}$ . $\square$

Using the above result one can consider the following integrals

$\int_{A_{\mathrm{q}}(Q,\epsilon}.)au(x_{1}^{-1}aX2, \tau)d$ , (15)

$\int_{A_{\mathrm{q}(Q,)}}\epsilon\sigma_{P}(HP(\mathit{0}), \mathcal{Y}(x1, x_{2}, \tau))da$ , (16)

and try to study their difference. Nevertheless, it is enough to study the difference
between their summands.

We now as.sume that $Q$ is fixed as before, and we also fix an element $a\in A_{\mathrm{q}}(Q, \epsilon)$ .
Let $P_{\mathrm{O}}\in \mathcal{P}(A_{\mathrm{q}})$ be a minimal parabolic subgroup such that $P_{\mathrm{O}}\subset Q$ . Denote by $\overline{Q}$

the opposite parabolic subgroup of $Q$ , and let $H_{\mathrm{o}}(x)$ be the vector $H_{P_{\mathrm{o}}}(x)$ . Since $x_{1}$

also belongs to $G$ , there is an element $t=t_{Q}(x_{1}, x_{2}, a)$ in $A_{\mathrm{B}}$ such that the product

$m_{Q}(x_{1})-1m_{\overline{Q}(}aX_{2})$

can be written as
$k^{-1}tk’$ , $k,$ $k’\in K$,

and $H_{\mathrm{o}}(t)\in\alpha_{\mathrm{B}}^{+}$ (cf. [A page 36]).

Lemma 10. Suppose that $x_{1},$ $x_{2}$ satisfy (11). Then, $\mathcal{Y}_{\mathrm{q}}(x_{1}, x_{2}, \tau)$ (cf. (9)) is a
positive orthogonal set, and the characteristic function

$\sigma_{\mathrm{B}}(H_{P}(a), \mathcal{Y}_{\mathrm{q}}(x_{1}, X_{2}, T))$ , $a\in A_{\mathrm{q}}(Q, \epsilon)$
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equals 1 if and only if the vector

$H_{Q}(t)=-Hq(X_{1})+H_{Q}(a)+H_{\overline{Q}}(x_{2})$

lies in the convex hull $S_{M_{Q}}(T)$ .
Proof. This is exactly proved like Lemma 5.1 of [A]. $\square$

To the elements $k,$ $k’,$ $t$ are associated two elements $X,X’$ of the Lie algebra of $\mathrm{g}$

as in [A pp 34-3.5]. Let

$\zeta=exp(Ad(k)X)$ , $\zeta’=exp(Ad(k’)x’)$ .

Then, there is a point $t_{1}=t_{1,Q}(x_{1}, x_{2}, a)$ in $A_{\mathrm{B}}$ with the property that $H_{\mathrm{o}}(t_{1})\in a_{\eta}^{+}$

such that
$\zeta^{-1}+\zeta’=k_{111}tk^{J}$ , $k_{1},$ $k_{1}’\in K$.

At this stage, by Lemma 8, we see that

$||H_{\mathrm{o}}(t_{1})-H_{\mathrm{o}}(t)||\leq||X||+||X’||$ .

Then from (11), (12) we conclude that

$||H_{\mathrm{o}}(t_{1})-H\circ(t)||\leq Cexp(-\epsilon|’|\tau||)$ ,

for a constant $\epsilon’\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{C}\mathrm{h}$ depends on $\beta,$
$\epsilon_{1},$ $\epsilon_{2}$ . Then the proof of the Theorem follows

from the approximation methods of the volume of certain convex subsets described
in [A pp 41-42]. $\square$

Let us $\mathrm{n}o\mathrm{w}$ return to the study of the geometric expansion. To begin, recall that
$J^{T}(\gamma, f)$ is the weighted orbital integral attached to the weight fac..tor $v(\mathrm{f}\mathrm{l}.X_{1}, x_{2}, \tau)$

and given by:

$|D( \gamma)|\int_{A_{\mathrm{q}}^{\mathrm{Q}}\backslash G}\int_{A_{M_{H}}^{\mathrm{o}}\backslash }H)gx2(\gamma)v_{\tau}(X1,$$x_{2},$ $Tdx1dx2$ .

Let $S$ be a fixed maximal torus in $M_{H}$ which is compact modulo $A_{M_{H}}^{\mathrm{o}}$ , let $S_{teg}=$

$S\cap H_{teg}$ . Now, define

$S(\epsilon, T)=\{x\in S_{reg} : |D(\gamma)|\leq exp(-\epsilon||\tau||)\}$ .

We would like to show that the kernel $K^{T}(f)$ can be estimated by

$J^{T}(f)=M_{H} \epsilon \mathcal{L}^{H}\sum|W|\int_{E_{r\epsilon g}}\mathrm{t}^{M_{H}}))J^{T}(\gamma,gd\gamma$ . (17)
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The idea of the proof is not different from the proof of the similar result which leads
to the geometric expansion of the local trace formula described in [A pp 30-34]. One
shows that for any given $\epsilon>0$ , there is a constant $c$ such that for any $T$ ,

$\int_{S(\epsilon,T)}(|K^{T}(\gamma,g)|+|J^{\tau}(\gamma,g)|)d\gamma\leq Cexp(-\epsilon||T||/2)$ . (18)

In fact, the product $x_{1}^{-1}aX_{2}$ , with $x_{1}\in H,$ $x_{2}\in G$ , and $a\in A_{\eta}^{\mathrm{o}}$ can be written as
.. $\alpha$

$k_{1}bk_{2}$ , where, $k_{1},$ $k_{2}\in I\mathrm{f}$ and $b\in A_{\mathrm{o}}$ (note that $A_{\mathrm{o}}$ is the abelian group introduced
in the proof of Lemma 8), and by using the Cartan decomposition $KA_{\mathrm{O}}K$ . The rest
of the proof then follows from the proof of Lemma 4.8 of [A].

The next step is to study the integral of the absolute value of the difference of
$K^{T}(\gamma, f)$ and $J^{T}(\gamma, f)$ over the set $S-S(\epsilon, T)$ . For this, the following result holds,
and a proof for it is exactly the same as a proof in the local trace formula [A].

$\int_{S-S(\epsilon,T)}|K^{\tau T}(\gamma,g)-J(\gamma,g)|d\gamma\leq c1exp(-\epsilon_{1}||\tau||)$, (19)

where the constant $c_{1}$ is given by

Cvol $(A_{M_{H}} \circ\backslash H)\int_{s_{r\epsilon g}}|D(\gamma)|(\int_{A_{G}^{\mathrm{o}}}\backslash G)gx2(\gamma)dX_{2}d\gamma$ .

From this it follows that for a constant $C’$ and $\epsilon’>0$

$\int_{S}|K^{T}(\gamma,g)-J^{\tau\prime}(\gamma,g)|d\gamma\leq c\prime er\mathrm{c}gxp(-\epsilon||\tau||)$ , (20)

for all $T$ such that $d(T)\geq\beta||T||$ . Hence, we have the following result.

Lemma 11. There are positive cnostants $c”$ and $\epsilon’’$ so that

$|K^{\tau_{(}\tau\prime}f)-J(f)|\leq C’exp(-\epsilon’|’|T||)$

for all $T$ with $d(T)\geq\beta||T||$ . $\square$
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