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FOURIER-JACOBI TYPE SPHERICAL FUNCTIONS ON Sp(2,R);
THE CASE OF P;-PRINCIPAL SERIES AND DISCRETE SERIES
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1.Introduction

In this note, we study a kind of generalized Whittaker models, or equally, of
generalized spherical functions associated with automorphic forms on the real sym-
plectic group of degree two. We call these spherical functions "Fourier-Jacobi type’,
since these are closely connected with the coefficients of the "Fourier-Jacobi expan-
sions’ of (holomorphic or non-holomorphic) automorphic forms. Also these can be
considered as a non-holomorphic analogue of the local Whittaker-Shintani functions
on Sp(2,R) of Fourier-Jacobi type in the paper of Murase and Sugano [6].

2.Preliminaries

2.1.Groups and algebras. We denote by Zs,, the set of integers n such that
n > m. Moreover, we use the convention that unwritten components of a matrix
are zero. '

Let G be the real symplectic group Sp(2, R) of degree two given by

tgdag=Jo=( O 12) detg=1}.
1, 0

Let 8(g) = !5~ (g € G) be a Cartan involution of G and K be the set of fixed points
of 8. Then K becomes a maximal compact subgroup of G which is isomorphic to
the unitary group U(2).

Let g = {X € My(R)|JoX + X J, = 0} be the Lie algebra of G. If we denote
the differential of  again by 6, then we have §(X) = —tX (X € g). Let £ and p be
the +1 and —1 eigenspaces of 8 in g, respectively, and hence

Sp(2,R) = {g e My(R)

Ez{XG( >|A,BeM2R),A——AtB B}
fre(a %)

A, B € My( )tA=A,tB=B}.
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Then we have a Cartan decomposition g = ¢@ p. Of course, ¢ is the Lie algebra of
K which is isomorphic to the unitary algebra u(2).

For a Lie algebra [, we denote by Ic = [®r C the complemﬁcatlon of [.. Let § be
a compact Cartan subalgebra of g given by :

01
S

h= H(91,92)= 16,eR .
—6, =
—0,

Now we identify a linear form §: he — C with (B1,B2) € C? via 8 = Pre1 + Paea,
where. e;(H(61,62)) = v/—16;. Then the set of roots A = A(bc,gc) of (he, gc) is
glven by

A= {i(2 0), £(0,2), £(1,1), £(1, —1)}

Fix a positive root system A* = {(2,0), (0,2), (1,1), (1,-1)}, and put A} and
A7 the set of compact and non-compact positive roots; respectively. Then

AZ_ = {(1»‘_1)}7 A;zl- = {(23 0)7 (07 2)1 (1’ 1)}

If we denote the root space for B € A by 98, then we have a decomposmon pe = |
p+ @ p_ with py = Z,aeA+ gpg and p_ = Z,@eA+ g-p-

Put P; the Jacobi maximal parabolic subgroup of G with the Langlands decom-
position Py = MjAjyNj, where '

My = ¢ Z) € SL(2,R) § ~ {+I} x SL(2,R),
} . 1 zZx
o 1 | .
Ny = n(x,y,z)z 1 'xayVZER i)
‘—y 1/ \ , 1

and Ay = {diag(a,1,a7!,1)|a > 0}. Remark that the unipotent radical Ny of Py
is isomorphic to the 3- dlmensmnal Heisenberg group H;. The Levi part M;A; of
Py acts on Ny via the conjugate action, and M gives the centralizer of the center
Z(Nj) ={n(0,0;2) |z € R} ~ R of Ny in MjA;. Now we define the Jacobi group
Ry by the semidirect product M§ x Ny o~ SL(Q R) x H;; where M; o SL(2 R)
is the identity component of M.

2.2, Representations. First we investigate the irreducible unitary representations
of the Jacobi group Ry. Since Z(Rj) = Z(Nj) ~ R, the central characters of
elements in R 7 and N 7 are parametrized by the real numbers. Then we call an
irreducible unitary representation of Ry and Ny of type m if its central character
is of the form 2+ e2™V=Imz with m € R. Let v € Ny of type m. According to the
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theorem of Stone-von Neumann (cf. Corwin-Greenleaf [1; pp.46-47, 51-52]), v is a
character if m = 0 and v is infinite dimensional if m # 0. Moreover v of type m # 0
is uniquely determined by m up to unitary equivalence. Now we fix an irreducible
unitary representation (vp,,Uy,) of Ny of type m # 0. From the theory of the Weil
representation, (vp,,Uy,) can be extended to a continuous true projective umtary
- representation (Zpm,Unm) of Ry by () = Win(g)vm(n) for i =g-n € MS x Ny
with the Weil representation Wi, on M$ 7- Here 7y, has a factor set o which is a
proper 2-cocycle.

Lemma 2.1. (Satake [7; Appendix I, Proposition 2)) Let Dy, (m # 0) as above.
For every irreducible projective unitary representation w of M$ with factor set ™1,
put p() = m(g) ® Im(R2) for i = g-n € M§ x Nj. Then p is an irreducible unitary
representation of Ry. Conversely, all irreducible unitary representations of Ry of
type m # 0 are obtained in this manner. Moreover p is square-integrable iff  is so.

Let (p, Fp) be an irreducible unitary representa,tion of Ry of type m # 0. From
the above lemma, we can regard (p, .7-}) € Ry as a tensor product representation
(71 ® Dy, Wi, ®U,y,), Here, if we write M9 M3 for the double cover of M3 ~ SL(2,R),
(Um,Up,) is a unitary representation of M 7 X Ny which is extended from (vp,,Up,) €
N as above and (71, Wr, ) is a unitary representation of Mf} which does not factor
through M5. On the other hand, the unitary dual of M} is given as follows.

Proposition 2.2. (cf. Gelbert[2; Lemma 4.1, 4. 2]) The following representations

ezhaust a set of representatives for the equivalence classes of irreducible unitary
representations of SL(2 R).

(1) (unitary principal semes) ’PST, s€v—-1R, 7 =0,1, :l:% except for the case
(s,7)=(0,1). B | o
(2) (complementary sem’es) Cl,0<s<1 for 7=0,1and 0 < s < —21- for
T=x%3 1 '
(3) ((lzmzt of) discrete serzes) DE ke Z>2
(4) (quotient representation) D7, DT.
. . 2 2
(6) The trivial representation of SL(2,R).
In the above, the representations P, CI fort =0, 1, Dk for k € Z>; and (5)
factor through SL(2,R), and the otherwise not. :

Hence we take as (7, 7r1) one of the irreducible unitary representations PJ, C]
with 7 = £ and Dy with k € $Z\Z, k> 1.

Remark 2.5. The Weil rep,resentatlon Wm considered as the representation of M}
‘has the following irreducible decomposition;

DfeDI, ifm>0,

Wm: 2 2
Dy D3, if m <0.
2 2 .

Next, we treat the irreducible unitary representations of K. Since A} is also a
positive system of A(fc, hc), then the set of the AF-dominant weights, and thus
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A

K, is parametrized by the set
A={x= (A, 22) [ X € Z, A1 > Ap}

(¢f. Knapp[4; Theorem 4.28]). We denote by (7, V3) the element of K correspond-
ing to A = (A1, A2) € A. Here dim V) = dy + 1 with dy = \; — Aa.

Both of ps. become K-modules via the adjoint representation of & , and we have
isomorphisms py ~ V(o 0) and p_ =~ V(g _y). For a given irreducible K-module Vi
with the pafameter A = (A1, A2) € A, the tensor product K-modules V) ® p+ and
VA ® p— have the irreducible decomposmons

®py @ Va+s, ®p_ ~ @ Vi-s.
Beat BeAl

For each f € A}, let pB . \®pt — Vasg and P8 : VA®p_ — Vi_g be the
projectors into the irreducible factors of V\ @ p4.

In this note, we consider the following two series of representations of G; one
is the principal series induced from Pj, and the other is the discrete series. We
explain these representations in the remaining of this section.

Let o = (g, D) be a representation of M; ~ {£I} x SL(2,R) with a character
€ : {I} — C* and a discrete series representation D = D¥ (n € Zx5) of SL(2, R),
and take a quasi-character v, (2 € C) of Ay such that v,(diag(a,1,a71,1)) =
a®. Then we can construct a induced representation Ind§ (c®v,®1n,) of G
from the Jacobi maximal parabolic subgroup Py = M JAJN 7 by the usual manner
(¢f. Knapp(4; Chapter VII]), and call Ind§ (0 ®v, ®1y,) the Ps-principal series
representation of G. The following lemma is derived from the Frobenius reciprocity
for induced representations.

" Lemma 2.4. 7, € K with the parameter A = (A1, X2) € A such that A\; < n (resp.
A2 > —n) does not occur in the K-type of Ind§ (0 ®v, ® 1n,) for D =D} (resp.
D, ). The ’corner’ K-types T € K of Ind§ (a ® v, ® 1n,) with the parameter
A € A given below occur with multiplicity one. ' '
(1) A= (n,n) for e(y) = (-1)" and D = D,
(2) A=(n,n—1) fore(y)=—(-1)" and D=D;,
(3) A = (-n,—n) fore(y) = (-1)" and D =D,
(4) A=(-n+1,-n) fore(y) = —(-1)" and D = D
Here v = diag(—1,1,-1,1).

In order to parametrize the discrete series representations of G, we enumerate
all the positive root systems compatible to A7

(I) A+ = {(13'—1)a (29 0)’ (17 1)) (Oa 2)}3

(II) AI'I = {(11 —1)7 (2>O)a (1’ 1)a (07 —2)}7
(IH) ‘ III - {(13 —1)7 (2) O)) (O’ _2): (_17 _1)}a
(IV) | AIV — {(1’ _1)7 (07 _2): ("“17 ”‘1)’ (—2) 0)}
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Let J be a variable running over the set of indices I, II, III, IV, and let us denote
the set of non-compact positive roots for the index J by A}fn = Aj-" — A}, Define
a subset =; of Af-dominant weights by

(11

s={A= (Al,Az), A} — dominant weight | (A, 8) > 0,V3 € A}Ln}

The set UIJV 1 Z7 gives the Harish-Chandra parametrization of the discrete series
representatlon of G. Let us write by 7rA the discrete series representation of G with
the Harish-Chandra parameter A € U J=127- Then 7y is called the holomorphic
discrete series representation if A € Z; and the anti-holomorphic one if A € Epy.
Moreover if A € Z11 U Zqq1, a discrete series representation 7a is called large (in the
sense of Vogan|8]).

The Blattner formula gives the description of the K-types of 7. In particular,
the minimal K-type (7x, V) of 7 is given by the formula A = A — p. + p,,, where
pe (resp. pr) is the half sum of compact (resp. non-compact) positive roots in AT
We call such A the Blattner parameter of 7.

3.Fourier-Jacobi type spherical functions

' 8.1. Radial parts. Let (p,Fp) be an irreducible unitary representation éf Ry
and let (1,V;) be a finite dimensional K-module. We denote by Co% (R\G/K)
the space of smooth functions F': G — F, ® V; with the property

F(rgk) = (p(r)® T(k)"")F(g),  (r, g,‘k)ke Ry xGx K.

Oh the other hand, let C*°(Ay; p,7) be the space of smooth functions ¢ : Ay —
F, ® V; satisfying

| (p(m)@ T‘(fn))go(a):go(a), mERJﬂK-%M;ﬂK, a€Ay.

Because of an Iwasawa decomposition of G, we have G-= RyA;K. Also we remark
that all elements in M7 N K are commutative with a € Aj. Then the restriction to
Ay gives a linear map from C75 (R;\G/K) to C*°(Ay; p, T), which is injective. For
each f € C%.(R;\G/K), we call fl4, € C®(Ay;p,T) the radial part of f, where
|4, means the restriction to A;. o

Let (7/,V;/) be also a finite dimensional K-module. For each C-linear ‘map
u: C5(R\G/K) — C5(R;\G/K), we have a unique C-linear map R(u) :
C*(As;p,7) — C*(As;p,7') with the property (uf)|la, = R(u)(f|a,) for f €
Co (Ry\G/K). We call R(u) the radial part of u.

3.2. Fourier-Jacobi type spherical functions. Let (p, F,) be as above and cons1der
a C*-induced representation C*°Ind§ ,(p) with the representation space

C(RING) ={F:G— F, C%|F(rg)=p(r)F(g), (rg)€ RyxG}

on which G acts by the right translation. Then C5°(R;\G) becomes a smooth
G-module and a (gc, K)-module naturally. Moreover let (7,V;) € K and take an
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irreducible Harish-Chandra module 7 of G with the K-type 7*, where 7* is the
contragredient representation of 7. Now we consider the intertwining space

Tp.x = Hom(g, iy (m, C*°Ind§ (p))

between (g¢, K )-modules and its restriction to the K -type ™ of .

Let i : 7* — 7|k be a K-equivariant map and let i* be the pullback via 3. Then
the map '

| Tpn — Homp (7%, C5°(Rs\G)) = C55 (RA\G/K)

gives the restriction of T' € 7, . to the K-type 7" and we denote the image of T" in
C.(R;\G/K) by T;. Now the space J, (7) of the algebraic Fourier-Jacobi type
spherical functions of type (p,m;7) on G is defined by

Ton(r) = |J AT Te€La).

i€Homg (7*,m| k)

Moreover put
Tya(m)={f € jp,ﬂ(T)’flAJ(diag(a, 1,a7 %, 1)) is of moderate growth as a — co}.

We call f € J; .(7) a Fourier-Jacobi type spherical fuﬁctz’ons of type (p, ;7).
In this note, we investigate the space J; . (7) for the following triplet (p,m;7):

AstreGand € K , we take either the Pj-principal series representation and the
corner K-type or the discrete series representation and the minimal K-type, and
also as p € Ry the one with the non-trivial central character, i.e. of type m # 0.

4.Differential equations

4.1.Differential operators. In this subsection, we introduce some differential op-
erators acting on C55 (R;\G/K). , |

Take an orthonormal basis {X;} of p with respect to the Killing form of g. Now
we define a first order gradient type differential operator

Vor i O (RAG/K) = Coorgag,, (RIAG/K)

by v
Vorf =D Rx,f®Xi,  fe€CS(RNG/K),

where

, X €ge, g€G.

Racf(a) = 5 fla-exatx))|

This differential operator VP,T.is called the Schmid operator. Then V, . can be
decomposed as V}_ &V, with Vi _: C2(R/\G/K) — o ®Ady, (R;\G/K)

psT
corresponding to the decomposition pc = p ®p—. For each 8 € A}, the shift oper-
ator V8 . C° (R;\G/K) — C%, , ,(Rs\G/K) is defined as the composition of

PrTA PyTX PrTAEB
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2., With the projector P*P from Vi, ® p+ into the irreducible component Vs
Vo2 =1z, ® PEVE .
On the other hand, the Casimir element € is defined by @ = 3 X; —>"Y;, where
{Y;} is an orthonormal basis of € with respect to the Killing form of g. It is well

known that 2 is in the center Z(gc) of the universal enveloping algebra of gc.

v:l:

4.2.Differential equations. In this subsection, we consider the system of differ-
ential equations satisfied by the Fourier-Jacobi type spherical functions.

First we discuss the case of the Pj-principal series representation 7 € G and the
corner K-type 7*. It is well known that the Casimir element Q € Z(gc) acts on
7, hence on J, »(7), as the scalar operator xqo (cf. Knapp[4; Corollary 8.14]). Let
™ =Ind§ (0 ® v, ® 1n,) with data o = (g, D}}), £(7) = (=1)", and 7* = 73 be the
corner K-type of w, i.e. A = (—n,—n). Since Tat(2,2) = T(n—2,n—2) € K does not
occur in the K-types of 7 from Lemma 2.4, an element in J, »(7) is annihilated by
the action of the composition of the shift operators

v (6:2) o V(2,0) .

PyTA4(2,0) T P X

(RA\G/K) — (R/\G/K).

P 1')«4-(2 2)

Hence we have a system of differential equations satisfied by f in J, »(7);

. Vﬁ»?fx);u(z,m ngfg)f =0.

Let 7 = Ind§ (0 ® v, ® 1y,) with data o = (¢, D), e(y) = —(~1)", and 7* = 7}
be the corner K-type of 7, i.e. A = (—n+1,—n). Since T)’\k+(1,1) = T(n—2,n—1) € K
does not occur in the K-types of m from Lemma 2.4, therefore an element in 7, (1)
vanishes by the action of the shift operator

5 (RA\G/K) = C. .. (RI\G/K).

P,TA+(1,1) P > PyTx+4(1,1)

Hence we have a system of differential equations satisfied by f in Jpﬂ,("r);

(4.2)

1(0%7‘ 1)4-(1 1)f 0.
For the case with the data o = (¢, D; ), we have similar systems of equations from
the Casimir operator and the shift operators.

Let m = mp be a discrete series representaiton of G with the Harish-Chandra,
parameter A € £y and 7* =73 € K be the minimal K -type of . Now we refer the
following proposition which enables us to identify the intertwining space Iy~ with

a solution space of differential equations for any p € Rj.
Proposition 4.1. (Yamashita [9; Theorem 2.4]) Let 7 = w5 € G and TE=T3 € K
be as above. Then we have a linear isomorphism

S ﬂ ker(V, ﬁ ) C C%(R;\G/K)
BeAt, '
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for any p € Ry. In particular,
Tpn(T) ={F € C35(R)\G/K) | V,2F =0, VBeAf )
Here the index J* means IV, 111, II and I for J =1, IL, IIT and IV, respectively.

5.Result

Solving the systéms of the differential equations given by (4.1), (4.2) and Propo-
sition 4.1, we obtain the following theorem.

Theorem 5.1. Let 7 be a Py-principal series representation (resp. a discrete series
represehtatz'on) of G = Sp(2,R) and 7* be the ’corner’ K-type (resp. the minimal
K-type) of m. For each irreducible unitary representation p of Ry of type m # 0,
we have

dim 7, (1) < 1.

Moreover the radial parts of the functions in J; () are ezpressed by the Meijer’s

G-function Gg:g (:I:

a,a . :
1, %2 or more degenerate similar functions.
b17 bZa b3

ai, az
T

blsb2ab3
parameters a;, b; (1 < ¢ < 2,1 < j < 3) is the many-valued function defined by

the integral
ai, as ) / Hg lr(b )wtdt
b1, b2, b3 27r\/ [T, T(a; —t)

SHERHE

of Mellin-Barnes type, where the contour L is a loop starting and ending at 400
and encircling all poles of I'(b; —t) (1 < j < 3) once in the negative direction. It
is known that, up to constant multiple, Gg:g(x) is the unique solution of the linear
differential equation of 3-rd order ’

Here the Meijer’s G-function Gg:g(x) = G3;§

) with the complex

5 d3 5 d? d
{ ] + () x? ) +a1(:z:)acz- -I—Oéo(il?)}y=0

with .

ap(z) =3 — by — by — by + =,

ai(z) = (1 —b1)(1 — b2)(1 — b3) + bibabs + (3 — a1 — ag)z,

ap(x) = —bibabs + (1 — a1)(1 — ag)z,
which decays exponentially as |z| — oo in ——%w < argr < %w (See the Meijer’s
original paper [5] for details).
Remark 5.2. Let m be a holomorphic discrete series representation of G and 7* be

the minimal K-type of . Moreover, put p = ™ ® I, € RJ as in §2. For each
m # 0, there is at most finitely many p such that dim J; . (7) = 1, and then the ;-
factors of such p’s are the holomorphic discrete series representations of S/'\z,(2, R).
Moreover, the radial parts of the functions in J () are expressed by the function
of the form zPe?® for some constant p, q.
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