FOURIER-JACOBI TYPE SPHERICAL FUNCTIONS ON $Sp(2, \mathbf{R})$; THE CASE OF P_J -PRINCIPAL SERIES AND DISCRETE SERIES

東大・数理 平野 幹 (Miki Hirano)

Contents

- 1. Introduction
- 2. Preliminaries
- 3. Fourier-Jacobi type spherical functions
- 4. Differential equations
- 5. Result

1.Introduction

In this note, we study a kind of generalized Whittaker models, or equally, of generalized spherical functions associated with automorphic forms on the real symplectic group of degree two. We call these spherical functions 'Fourier-Jacobi type', since these are closely connected with the coefficients of the 'Fourier-Jacobi expansions' of (holomorphic or non-holomorphic) automorphic forms. Also these can be considered as a non-holomorphic analogue of the local Whittaker-Shintani functions on $Sp(2, \mathbf{R})$ of Fourier-Jacobi type in the paper of Murase and Sugano [6].

2. Preliminaries

2.1. Groups and algebras. We denote by $\mathbf{Z}_{\geq m}$ the set of integers n such that $n \geq m$. Moreover, we use the convention that unwritten components of a matrix are zero.

Let G be the real symplectic group $Sp(2, \mathbf{R})$ of degree two given by

$$Sp(2, \mathbf{R}) = \left\{ g \in M_4(\mathbf{R}) \mid {}^t g J_2 g = J_2 = \begin{pmatrix} 0 & 1_2 \\ -1_2 & 0 \end{pmatrix}, \det g = 1 \right\}.$$

Let $\theta(g) = {}^t \bar{g}^{-1}$ $(g \in G)$ be a Cartan involution of G and K be the set of fixed points of θ . Then K becomes a maximal compact subgroup of G which is isomorphic to the unitary group U(2).

Let $\mathfrak{g} = \{X \in M_4(\mathbf{R}) \mid J_2X + {}^tXJ_2 = 0\}$ be the Lie algebra of G. If we denote the differential of θ again by θ , then we have $\theta(X) = -{}^t\bar{X}$ $(X \in \mathfrak{g})$. Let \mathfrak{k} and \mathfrak{p} be the +1 and -1 eigenspaces of θ in \mathfrak{g} , respectively, and hence

$$\mathfrak{k} = \left\{ X \in \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \middle| A, B \in M_2(\mathbf{R}), {}^t A = -A, {}^t B = B \right\},$$

$$\mathfrak{p} = \left\{ X \in \begin{pmatrix} A & B \\ B & -A \end{pmatrix} \middle| A, B \in M_2(\mathbf{R}), {}^t A = A, {}^t B = B \right\}.$$

Then we have a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Of course, \mathfrak{k} is the Lie algebra of K which is isomorphic to the unitary algebra $\mathfrak{u}(2)$.

For a Lie algebra \mathfrak{l} , we denote by $\mathfrak{l}_{\mathbb{C}} = \mathfrak{l} \otimes_{\mathbf{R}} \mathbf{C}$ the complexification of \mathfrak{l} . Let \mathfrak{h} be a compact Cartan subalgebra of \mathfrak{g} given by

$$\mathfrak{h} = \left\{ H(\theta_1, \theta_2) = \left(\begin{array}{c|c} & \theta_1 \\ \hline -\theta_1 \\ -\theta_2 \end{array} \right) \middle| \theta_i \in \mathbf{R} \right\}.$$

Now we identify a linear form $\beta: \mathfrak{h}_{\mathbb{C}} \to \mathbf{C}$ with $(\beta_1, \beta_2) \in \mathbf{C}^2$ via $\beta = \beta_1 e_1 + \beta_2 e_2$, where $e_i(H(\theta_1, \theta_2)) = \sqrt{-1}\theta_i$. Then the set of roots $\Delta = \Delta(\mathfrak{h}_{\mathbb{C}}, \mathfrak{g}_{\mathbb{C}})$ of $(\mathfrak{h}_{\mathbb{C}}, \mathfrak{g}_{\mathbb{C}})$ is given by

$$\Delta = \{\pm(2,0), \pm(0,2), \pm(1,1), \pm(1,-1)\}.$$

Fix a positive root system $\Delta^+ = \{(2,0), (0,2), (1,1), (1,-1)\}$, and put Δ_c^+ and Δ_n^+ the set of compact and non-compact positive roots, respectively. Then

$$\Delta_c^+ = \{(1, -1)\}, \qquad \Delta_n^+ = \{(2, 0), (0, 2), (1, 1)\}.$$

If we denote the root space for $\beta \in \Delta$ by \mathfrak{g}_{β} , then we have a decomposition $\mathfrak{p}_{\mathbb{C}} = \mathfrak{p}_{+} \oplus \mathfrak{p}_{-}$ with $\mathfrak{p}_{+} = \sum_{\beta \in \Delta_{n}^{+}} \mathfrak{g}_{\beta}$ and $\mathfrak{p}_{-} = \sum_{\beta \in \Delta_{n}^{+}} \mathfrak{g}_{-\beta}$.

Put P_J the Jacobi maximal parabolic subgroup of G with the Langlands decomposition $P_J = M_J A_J N_J$, where

$$M_{J} = \left\{ \begin{pmatrix} \varepsilon & b \\ \hline c & \varepsilon \end{pmatrix} \middle| \varepsilon \in \{\pm 1\}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbf{R}) \right\} \simeq \{\pm I\} \times SL(2, \mathbf{R}),$$

$$N_{J} = \left\{ n(x, y; z) = \begin{pmatrix} 1 & y & b \\ \hline 1 & 1 & c \\ \hline & -y & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & z & x \\ \hline & 1 & x \\ \hline & 1 & 1 \end{pmatrix} \middle| x, y, z \in \mathbf{R} \right\},$$

and $A_J = \{ \operatorname{diag}(a, 1, a^{-1}, 1) \mid a > 0 \}$. Remark that the unipotent radical N_J of P_J is isomorphic to the 3-dimensional Heisenberg group \mathcal{H}_1 . The Levi part $M_J A_J$ of P_J acts on N_J via the conjugate action, and M_J gives the centralizer of the center $Z(N_J) = \{n(0,0;z) \mid z \in \mathbf{R}\} \simeq \mathbf{R}$ of N_J in $M_J A_J$. Now we define the Jacobi group R_J by the semidirect product $M_J^{\circ} \ltimes N_J \simeq SL(2,\mathbf{R}) \ltimes \mathcal{H}_1$, where $M_J^{\circ} \simeq SL(2,\mathbf{R})$ is the identity component of M_J .

2.2.Representations. First we investigate the irreducible unitary representations of the Jacobi group R_J . Since $Z(R_J) = Z(N_J) \simeq \mathbf{R}$, the central characters of elements in \hat{R}_J and \hat{N}_J are parametrized by the real numbers. Then we call an irreducible unitary representation of R_J and N_J of type m if its central character is of the form $z \mapsto e^{2\pi\sqrt{-1}mz}$ with $m \in \mathbf{R}$. Let $\nu \in \hat{N}_J$ of type m. According to the

theorem of Stone-von Neumann (cf. Corwin-Greenleaf [1; pp.46-47, 51-52]), ν is a character if m=0 and ν is infinite dimensional if $m\neq 0$. Moreover ν of type $m\neq 0$ is uniquely determined by m up to unitary equivalence. Now we fix an irreducible unitary representation (ν_m, \mathcal{U}_m) of N_J of type $m\neq 0$. From the theory of the Weil representation, (ν_m, \mathcal{U}_m) can be extended to a continuous true projective unitary representation $(\tilde{\nu}_m, \mathcal{U}_m)$ of R_J by $\tilde{\nu}_m(\tilde{n}) = W_m(g)\nu_m(n)$ for $\tilde{n} = g \cdot n \in M_J^\circ \times N_J$ with the Weil representation W_m on M_J° . Here $\tilde{\nu}_m$ has a factor set α which is a proper 2-cocycle.

Lemma 2.1. (Satake [7; Appendix I, Proposition 2]) Let $\tilde{\nu}_m$ ($m \neq 0$) as above. For every irreducible projective unitary representation π of M_J° with factor set α^{-1} , put $\rho(\tilde{n}) = \pi(g) \otimes \tilde{\nu}_m(\tilde{n})$ for $\tilde{n} = g \cdot n \in M_J^\circ \ltimes N_J$. Then ρ is an irreducible unitary representation of R_J . Conversely, all irreducible unitary representations of R_J of type $m \neq 0$ are obtained in this manner. Moreover ρ is square-integrable iff π is so.

Let $(\rho, \mathcal{F}_{\rho})$ be an irreducible unitary representation of R_J of type $m \neq 0$. From the above lemma, we can regard $(\rho, \mathcal{F}_{\rho}) \in \hat{R}_J$ as a tensor product representation $(\pi_1 \otimes \tilde{\nu}_m, \mathcal{W}_{\pi_1} \otimes \mathcal{U}_m)$. Here, if we write \widetilde{M}_J° for the double cover of $M_J^{\circ} \simeq SL(2, \mathbf{R})$, $(\tilde{\nu}_m, \mathcal{U}_m)$ is a unitary representation of $\widetilde{M}_J^{\circ} \ltimes N_J$ which is extended from $(\nu_m, \mathcal{U}_m) \in \hat{N}_J$ as above and $(\pi_1, \mathcal{W}_{\pi_1})$ is a unitary representation of \widetilde{M}_J° which does not factor through M_J° . On the other hand, the unitary dual of \widetilde{M}_J° is given as follows.

Proposition 2.2. (cf. Gelbert[2; Lemma 4.1, 4.2]) The following representations exhaust a set of representatives for the equivalence classes of irreducible unitary representations of $\widetilde{SL}(2, \mathbf{R})$.

- (1) (unitary principal series) \mathcal{P}_s^{τ} , $s \in \sqrt{-1}\mathbf{R}$, $\tau = 0, 1, \pm \frac{1}{2}$ except for the case $(s, \tau) = (0, 1)$.
- (2) (complementary series) C_s^{τ} , 0 < s < 1 for $\tau = 0, 1$ and $0 < s < \frac{1}{2}$ for $\tau = \pm \frac{1}{2}$.
- (3) ((limit of) discrete series) \mathcal{D}_k^{\pm} , $k \in \frac{1}{2} \mathbb{Z}_{\geq 2}$.
- (4) (quotient representation) $\mathcal{D}_{\frac{1}{2}}^-$, $\mathcal{D}_{\frac{1}{2}}^+$.
- (5) The trivial representation of $SL(2, \mathbf{R})$.

In the above, the representations \mathcal{P}_s^{τ} , \mathcal{C}_s^{τ} for $\tau = 0, 1, \mathcal{D}_k^{\pm}$ for $k \in \mathbf{Z}_{\geq 1}$ and (5) factor through $SL(2, \mathbf{R})$, and the otherwise not.

Hence we take as $(\pi_1, \mathcal{W}_{\pi_1})$ one of the irreducible unitary representations \mathcal{P}_s^{τ} , \mathcal{C}_s^{τ} with $\tau = \pm \frac{1}{2}$ and \mathcal{D}_k^{\pm} with $k \in \frac{1}{2} \mathbf{Z} \setminus \mathbf{Z}$, $k \geq \frac{1}{2}$.

Remark 2.3. The Weil representation W_m considered as the representation of \widetilde{M}_J° has the following irreducible decomposition;

$$W_m = \left\{ egin{array}{ll} \mathcal{D}_{rac{1}{2}}^+ \oplus \mathcal{D}_{rac{3}{2}}^+, & ext{if } m > 0, \ \mathcal{D}_{rac{1}{2}}^- \oplus \mathcal{D}_{rac{3}{2}}^-, & ext{if } m < 0. \end{array}
ight.$$

Next, we treat the irreducible unitary representations of K. Since Δ_c^+ is also a positive system of $\Delta(\mathfrak{k}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$, then the set of the Δ_c^+ -dominant weights, and thus

K, is parametrized by the set

$$\Lambda = \{ \lambda = (\lambda_1, \lambda_2) \mid \lambda_i \in \mathbf{Z}, \lambda_1 \ge \lambda_2 \}$$

(cf. Knapp[4; Theorem 4.28]). We denote by $(\tau_{\lambda}, V_{\lambda})$ the element of \hat{K} corresponding to $\lambda = (\lambda_1, \lambda_2) \in \Lambda$. Here dim $V_{\lambda} = d_{\lambda} + 1$ with $d_{\lambda} = \lambda_1 - \lambda_2$.

Both of \mathfrak{p}_{\pm} become K-modules via the adjoint representation of K, and we have isomorphisms $\mathfrak{p}_+\simeq V_{(2,0)}$ and $\mathfrak{p}_-\simeq V_{(0,-2)}.$ For a given irreducible K-module V_λ with the parameter $\lambda = (\lambda_1, \lambda_2) \in \Lambda$, the tensor product K-modules $V_{\lambda} \otimes \mathfrak{p}_+$ and $V_{\lambda} \otimes \mathfrak{p}_{-}$ have the irreducible decompositions

$$V_{\lambda} \otimes \mathfrak{p}_{+} \simeq \bigoplus_{\beta \in \Delta_{n}^{+}} V_{\lambda + \beta}, \qquad V_{\lambda} \otimes \mathfrak{p}_{-} \simeq \bigoplus_{\beta \in \Delta_{n}^{+}} V_{\lambda - \beta}.$$

For each $\beta \in \Delta_n^+$, let $P^{\beta}: V_{\lambda} \otimes \mathfrak{p}_+ \to V_{\lambda+\beta}$ and $P^{-\beta}: V_{\lambda} \otimes \mathfrak{p}_- \to V_{\lambda-\beta}$ be the projectors into the irreducible factors of $V_{\lambda} \otimes \mathfrak{p}_{\pm}$.

In this note, we consider the following two series of representations of G; one is the principal series induced from P_J , and the other is the discrete series. We explain these representations in the remaining of this section.

Let $\sigma = (\varepsilon, D)$ be a representation of $M_J \simeq \{\pm I\} \times SL(2, \mathbf{R})$ with a character $\varepsilon: \{\pm I\} \to \mathbf{C}^{\times}$ and a discrete series representation $D = \mathcal{D}_n^{\pm} \ (n \in \mathbf{Z}_{\geq 2})$ of $SL(2, \mathbf{R})$, and take a quasi-character ν_z $(z \in \mathbb{C})$ of A_J such that $\nu_z(\operatorname{diag}(a,1,a^{-1},1)) =$ a^z . Then we can construct a induced representation $\operatorname{Ind}_{P_J}^G(\sigma\otimes\nu_z\otimes 1_{N_J})$ of Gfrom the Jacobi maximal parabolic subgroup $P_J = M_J A_J N_J$ by the usual manner (cf. Knapp[4; Chapter VII]), and call $\operatorname{Ind}_{P_J}^G(\sigma \otimes \nu_z \otimes 1_{N_J})$ the P_J -principal series representation of G. The following lemma is derived from the Frobenius reciprocity for induced representations.

Lemma 2.4. $\tau_{\lambda} \in \hat{K}$ with the parameter $\lambda = (\lambda_1, \lambda_2) \in \Lambda$ such that $\lambda_1 < n$ (resp. $\lambda_2 > -n$) does not occur in the K-type of $\operatorname{Ind}_{P_J}^G(\sigma \otimes \nu_z \otimes 1_{N_J})$ for $D = \mathcal{D}_n^+$ (resp. \mathcal{D}_n^-). The 'corner' K-types $\tau_{\lambda} \in \hat{K}$ of $\operatorname{Ind}_{P_J}^G(\sigma \otimes \nu_z \otimes 1_{N_J})$ with the parameter $\lambda \in \Lambda$ given below occur with multiplicity one.

- (1) $\lambda = (n,n)$ for $\varepsilon(\gamma) = (-1)^n$ and $D = \mathcal{D}_n^+$,
- (2) $\lambda = (n, n-1)$ for $\varepsilon(\gamma) = -(-1)^n$ and $D = \mathcal{D}_n^+$,
- (3) $\lambda = (-n, -n)$ for $\varepsilon(\gamma) = (-1)^n$ and $D = \mathcal{D}_n^-$,
- (4) $\lambda = (-n+1, -n)$ for $\varepsilon(\gamma) = -(-1)^n$ and $D = \mathcal{D}_n^-$.

Here $\gamma = \text{diag}(-1, 1, -1, 1)$.

In order to parametrize the discrete series representations of G, we enumerate all the positive root systems compatible to Δ_{c}^{+} :

- $\Delta_{\rm I}^+ = \{(1, -1), (2, 0), (1, 1), (0, 2)\},\$ (I)
- (II)
- (III)
- $\Delta_{\text{II}}^{+} = \{(1, -1), (2, 0), (1, 1), (0, -2)\},\$ $\Delta_{\text{III}}^{+} = \{(1, -1), (2, 0), (0, -2), (-1, -1)\},\$ $\Delta_{\text{IV}}^{+} = \{(1, -1), (0, -2), (-1, -1), (-2, 0)\}.$ (IV)

Let J be a variable running over the set of indices I, II, III, IV, and let us denote the set of non-compact positive roots for the index J by $\Delta_{J,n}^+ = \Delta_J^+ - \Delta_c^+$. Define a subset Ξ_J of Δ_c^+ -dominant weights by

$$\Xi_J = \{ \Lambda = (\Lambda_1, \Lambda_2), \ \Delta_c^+ - \text{dominant weight} \ | \ \langle \Lambda, \beta \rangle > 0, \forall \beta \in \Delta_{J,n}^+ \}.$$

The set $\bigcup_{J=I}^{IV} \Xi_J$ gives the Harish-Chandra parametrization of the discrete series representation of G. Let us write by π_{Λ} the discrete series representation of G with the Harish-Chandra parameter $\Lambda \in \bigcup_{J=I}^{IV} \Xi_J$. Then π_{Λ} is called the holomorphic discrete series representation if $\Lambda \in \Xi_I$ and the anti-holomorphic one if $\Lambda \in \Xi_{IV}$. Moreover if $\Lambda \in \Xi_{II} \cup \Xi_{III}$, a discrete series representation π_{Λ} is called large (in the sense of Vogan[8]).

The Blattner formula gives the description of the K-types of π_{Λ} . In particular, the minimal K-type $(\tau_{\lambda}, V_{\lambda})$ of π_{Λ} is given by the formula $\lambda = \Lambda - \rho_c + \rho_n$, where ρ_c (resp. ρ_n) is the half sum of compact (resp. non-compact) positive roots in Δ_J^+ . We call such λ the Blattner parameter of π_{Λ} .

3. Fourier-Jacobi type spherical functions

3.1. Radial parts. Let $(\rho, \mathcal{F}_{\rho})$ be an irreducible unitary representation of R_J and let (τ, V_{τ}) be a finite dimensional K-module. We denote by $C_{\rho,\tau}^{\infty}(R_J \backslash G/K)$ the space of smooth functions $F: G \to \mathcal{F}_{\rho} \otimes V_{\tau}$ with the property

$$F(rgk) = (\rho(r) \otimes \tau(k)^{-1})F(g), \qquad (r, g, k) \in R_J \times G \times K.$$

On the other hand, let $C^{\infty}(A_J; \rho, \tau)$ be the space of smooth functions $\varphi : A_J \to \mathcal{F}_{\rho} \otimes V_{\tau}$ satisfying

$$(\rho(m) \otimes \tau(m))\varphi(a) = \varphi(a), \qquad m \in R_J \cap K = M_J^{\circ} \cap K, \ a \in A_J.$$

Because of an Iwasawa decomposition of G, we have $G = R_J A_J K$. Also we remark that all elements in $M_J^{\circ} \cap K$ are commutative with $a \in A_J$. Then the restriction to A_J gives a linear map from $C_{\rho,\tau}^{\infty}(R_J\backslash G/K)$ to $C^{\infty}(A_J;\rho,\tau)$, which is injective. For each $f \in C_{\rho,\tau}^{\infty}(R_J\backslash G/K)$, we call $f|_{A_J} \in C^{\infty}(A_J;\rho,\tau)$ the radial part of f, where $|_{A_J}$ means the restriction to A_J .

Let $(\tau', V_{\tau'})$ be also a finite dimensional K-module. For each \mathbf{C} -linear map $u: C^{\infty}_{\rho,\tau}(R_J\backslash G/K) \to C^{\infty}_{\rho,\tau'}(R_J\backslash G/K)$, we have a unique \mathbf{C} -linear map $\mathcal{R}(u): C^{\infty}(A_J; \rho, \tau) \to C^{\infty}(A_J; \rho, \tau')$ with the property $(uf)|_{A_J} = \mathcal{R}(u)(f|_{A_J})$ for $f \in C^{\infty}_{\rho,\tau}(R_J\backslash G/K)$. We call $\mathcal{R}(u)$ the radial part of u.

3.2. Fourier-Jacobi type spherical functions. Let $(\rho, \mathcal{F}_{\rho})$ be as above and consider a C^{∞} -induced representation $C^{\infty} \operatorname{Ind}_{R_{J}}^{G}(\rho)$ with the representation space

$$C_{\rho}^{\infty}(R_{J}\backslash G) = \{F: G \to \mathcal{F}_{\rho}, \ C^{\infty} \mid F(rg) = \rho(r)F(g), \ (r,g) \in R_{J} \times G\}$$

on which G acts by the right translation. Then $C^{\infty}_{\rho}(R_J \setminus G)$ becomes a smooth G-module and a $(\mathfrak{g}_{\mathbb{C}}, K)$ -module naturally. Moreover let $(\tau, V_{\tau}) \in \hat{K}$ and take an

irreducible Harish-Chandra module π of G with the K-type τ^* , where τ^* is the contragredient representation of τ . Now we consider the intertwining space

$$\mathcal{I}_{\rho,\pi} := \operatorname{Hom}_{(\mathfrak{g}_{\mathbb{C}},K)}(\pi, C^{\infty} \operatorname{Ind}_{R_J}^G(\rho))$$

between $(\mathfrak{g}_{\mathbb{C}}, K)$ -modules and its restriction to the K-type τ^* of π .

Let $i: \tau^* \to \pi|_K$ be a K-equivariant map and let i^* be the pullback via i. Then the map

$$\mathcal{I}_{\rho,\pi} \xrightarrow{i^*} \operatorname{Hom}_K(\tau^*, C_{\rho}^{\infty}(R_J \backslash G)) \simeq C_{\rho,\tau}^{\infty}(R_J \backslash G / K)$$

gives the restriction of $T \in \mathcal{I}_{\rho,\pi}$ to the K-type τ^* and we denote the image of T in $C^{\infty}_{\rho,\tau}(R_J\backslash G/K)$ by T_i . Now the space $\mathcal{J}_{\rho,\pi}(\tau)$ of the algebraic Fourier-Jacobi type spherical functions of type $(\rho,\pi;\tau)$ on G is defined by

$$\mathcal{J}_{
ho,\pi}(au) := \bigcup_{i \in \operatorname{Hom}_K(au^*,\pi|_K)} \{T_i \mid T \in \mathcal{I}_{
ho,\pi}\}.$$

Moreover put

$$\mathcal{J}_{\rho,\pi}^{\circ}(\tau) = \left\{ f \in \mathcal{J}_{\rho,\pi}(\tau) \middle| f|_{A_J}(\operatorname{diag}(a,1,a^{-1},1)) \text{ is of moderate growth as } a \to \infty \right\}.$$

We call $f \in \mathcal{J}_{\rho,\pi}^{\circ}(\tau)$ a Fourier-Jacobi type spherical functions of type $(\rho,\pi;\tau)$.

In this note, we investigate the space $\mathcal{J}_{\rho,\pi}^{\circ}(\tau)$ for the following triplet $(\rho,\pi;\tau)$: As $\pi \in \hat{G}$ and $\tau^* \in \hat{K}$, we take either the P_J -principal series representation and the corner K-type or the discrete series representation and the minimal K-type, and also as $\rho \in \hat{R}_J$ the one with the non-trivial central character, i.e. of type $m \neq 0$.

4. Differential equations

4.1. Differential operators. In this subsection, we introduce some differential operators acting on $C_{\rho,\tau}^{\infty}(R_J\backslash G/K)$.

Take an orthonormal basis $\{X_i\}$ of \mathfrak{p} with respect to the Killing form of \mathfrak{g} . Now we define a first order gradient type differential operator

$$\nabla_{\rho,\tau}: C^{\infty}_{\rho,\tau}(R_J\backslash G/K) \to C^{\infty}_{\rho,\tau\otimes \mathrm{Ad}_{\mathfrak{p}_C}}(R_J\backslash G/K)$$

by

$$\nabla_{\rho,\tau} f = \sum_{i} R_{X_i} f \otimes X_i, \qquad f \in C^{\infty}_{\rho,\tau}(R_J \backslash G/K),$$

where

$$R_X f(g) = \left. \frac{d}{dt} f(g \cdot \exp(tX)) \right|_{t=0}, \quad X \in \mathfrak{g}_{\mathbb{C}}, \ g \in G.$$

This differential operator $\nabla_{\rho,\tau}$ is called the Schmid operator. Then $\nabla_{\rho,\tau}$ can be decomposed as $\nabla_{\rho,\tau}^+ \oplus \nabla_{\rho,\tau}^-$ with $\nabla_{\rho,\tau}^{\pm} : C_{\rho,\tau}^{\infty}(R_J \backslash G/K) \to C_{\rho,\tau \otimes \mathrm{Ad}_{\mathfrak{p}_{\pm}}}^{\infty}(R_J \backslash G/K)$ corresponding to the decomposition $\mathfrak{p}_{\mathbb{C}} = \mathfrak{p}_+ \oplus \mathfrak{p}_-$. For each $\beta \in \Delta_n^+$, the shift operator $\nabla_{\rho,\tau_{\lambda}}^{\pm\beta} : C_{\rho,\tau_{\lambda}}^{\infty}(R_J \backslash G/K) \to C_{\rho,\tau_{\lambda\pm\beta}}^{\infty}(R_J \backslash G/K)$ is defined as the composition of

 $\nabla^{\pm}_{\rho,\tau_{\lambda}} \text{ with the projector } P^{\pm\beta} \text{ from } V_{\tau_{\lambda}} \otimes \mathfrak{p}_{\pm} \text{ into the irreducible component } V_{\tau_{\lambda\pm\beta}}; \\ \nabla^{\pm\beta}_{\rho,\tau_{\lambda}} = (1_{\mathcal{F}_{\rho}} \otimes P^{\pm\beta}) \nabla^{\pm}_{\rho,\tau_{\lambda}}.$

On the other hand, the Casimir element Ω is defined by $\Omega = \sum X_i - \sum Y_j$, where $\{Y_j\}$ is an orthonormal basis of \mathfrak{k} with respect to the Killing form of \mathfrak{g} . It is well known that Ω is in the center $Z(\mathfrak{g}_{\mathbb{C}})$ of the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$.

4.2. Differential equations. In this subsection, we consider the system of differential equations satisfied by the Fourier-Jacobi type spherical functions.

First we discuss the case of the P_J -principal series representation $\pi \in \hat{G}$ and the corner K-type τ^* . It is well known that the Casimir element $\Omega \in Z(\mathfrak{g}_{\mathbb{C}})$ acts on π , hence on $\mathcal{J}_{\rho,\pi}(\tau)$, as the scalar operator χ_{Ω} (cf. Knapp[4; Corollary 8.14]). Let $\pi = \operatorname{Ind}_{P_J}^G(\sigma \otimes \nu_z \otimes 1_{N_J})$ with data $\sigma = (\varepsilon, \mathcal{D}_n^+), \ \varepsilon(\gamma) = (-1)^n$, and $\tau^* = \tau_{\lambda}^*$ be the corner K-type of π , i.e. $\lambda = (-n, -n)$. Since $\tau_{\lambda+(2,2)}^* = \tau_{(n-2,n-2)} \in \hat{K}$ does not occur in the K-types of π from Lemma 2.4, an element in $\mathcal{J}_{\rho,\pi}(\tau)$ is annihilated by the action of the composition of the shift operators

$$\nabla^{(0,2)}_{\rho,\tau_{\lambda+(2,0)}} \circ \nabla^{(2,0)}_{\rho,\tau_{\lambda}} : C^{\infty}_{\rho,\tau_{\lambda}}(R_J \backslash G/K) \to C^{\infty}_{\rho,\tau_{\lambda+(2,2)}}(R_J \backslash G/K).$$

Hence we have a system of differential equations satisfied by f in $\mathcal{J}_{\rho,\pi}(\tau)$;

(4.1)
$$\begin{cases} \Omega f = \chi_{\Omega} f, \\ \nabla_{\rho, \tau_{\lambda} + (2,0)}^{(0,2)} \circ \nabla_{\rho, \tau_{\lambda}}^{(2,0)} f = 0. \end{cases}$$

Let $\pi = \operatorname{Ind}_{P_J}^G(\sigma \otimes \nu_z \otimes 1_{N_J})$ with data $\sigma = (\varepsilon, \mathcal{D}_n^+)$, $\varepsilon(\gamma) = -(-1)^n$, and $\tau^* = \tau_{\lambda}^*$ be the corner K-type of π , i.e. $\lambda = (-n+1, -n)$. Since $\tau_{\lambda+(1,1)}^* = \tau_{(n-2,n-1)} \in \hat{K}$ does not occur in the K-types of π from Lemma 2.4, therefore an element in $\mathcal{J}_{\rho,\pi}(\tau)$ vanishes by the action of the shift operator

$$\nabla_{\rho,\tau_{\lambda+(1,1)}}^{(1,1)}: C_{\rho,\tau_{\lambda}}^{\infty}(R_J\backslash G/K) \to C_{\rho,\tau_{\lambda+(1,1)}}^{\infty}(R_J\backslash G/K).$$

Hence we have a system of differential equations satisfied by f in $\mathcal{J}_{\rho,\pi}(\tau)$;

(4.2)
$$\begin{cases} \Omega f = \chi_{\Omega} f, \\ \nabla_{\rho, \tau_{\lambda+(1,1)}}^{(1,1)} f = 0. \end{cases}$$

For the case with the data $\sigma = (\varepsilon, \mathcal{D}_n^-)$, we have similar systems of equations from the Casimir operator and the shift operators.

Let $\pi = \pi_{\Lambda}$ be a discrete series representation of G with the Harish-Chandra parameter $\Lambda \in \Xi_J$ and $\tau^* = \tau_{\lambda}^* \in \hat{K}$ be the minimal K-type of π . Now we refer the following proposition which enables us to identify the intertwining space $\mathcal{I}_{\rho,\pi}$ with a solution space of differential equations for any $\rho \in \hat{R}_J$.

Proposition 4.1. (Yamashita [9; Theorem 2.4]) Let $\pi = \pi_{\Lambda} \in \hat{G}$ and $\tau^* = \tau_{\lambda}^* \in \hat{K}$ be as above. Then we have a linear isomorphism

$$\mathcal{I}_{\rho,\pi} \simeq \bigcap_{\beta \in \Delta_{J^*,n}^+} \ker(\nabla_{\rho,\tau}^{-\beta}) \subset C_{\rho,\tau}^{\infty}(R_J \backslash G/K)$$

for any $\rho \in \hat{R}_J$. In particular,

$$\mathcal{J}_{\rho,\pi}(\tau) = \left\{ F \in C^{\infty}_{\rho,\tau}(R_J \backslash G/K) \mid \nabla^{-\beta}_{\rho,\tau} F = 0, \quad \forall \beta \in \Delta^+_{J^*,n} \right\}.$$

Here the index J^* means IV, III, II and I for J = I, II, III and IV, respectively.

5.Result

Solving the systems of the differential equations given by (4.1), (4.2) and Proposition 4.1, we obtain the following theorem.

Theorem 5.1. Let π be a P_J -principal series representation (resp. a discrete series representation) of $G = Sp(2, \mathbf{R})$ and τ^* be the 'corner' K-type (resp. the minimal K-type) of π . For each irreducible unitary representation ρ of R_J of type $m \neq 0$, we have

$$\dim \mathcal{J}_{\rho,\pi}^{\circ}(\tau) \leq 1.$$

Moreover the radial parts of the functions in $\mathcal{J}_{\rho,\pi}^{\circ}(\tau)$ are expressed by the Meijer's G-function $G_{2,3}^{3,0}\left(x \middle| \begin{array}{c} a_1, a_2 \\ b_1, b_2, b_3 \end{array}\right)$ or more degenerate similar functions.

Here the Meijer's G-function $G_{2,3}^{3,0}(x)=G_{2,3}^{3,0}\left(x\left|\begin{array}{c}a_1,a_2\\b_1,b_2,b_3\end{array}\right)$ with the complex parameters $a_i,\ b_j\ (1\leq i\leq 2,\ 1\leq j\leq 3)$ is the many-valued function defined by the integral

$$G_{2,3}^{3,0}(x) = G_{2,3}^{3,0}\left(x \middle| a_1, a_2 \atop b_1, b_2, b_3\right) = \frac{1}{2\pi\sqrt{-1}} \int_L \frac{\prod_{j=1}^3 \Gamma(b_j - t)}{\prod_{i=1}^2 \Gamma(a_i - t)} x^t dt$$

of Mellin-Barnes type, where the contour L is a loop starting and ending at $+\infty$ and encircling all poles of $\Gamma(b_j - t)$ $(1 \le j \le 3)$ once in the negative direction. It is known that, up to constant multiple, $G_{2,3}^{3,0}(x)$ is the unique solution of the linear differential equation of 3-rd order

$$\left\{ x^3 \frac{d^3}{dx^3} + \alpha_2(x)x^2 \frac{d^2}{dx^2} + \alpha_1(x)x \frac{d}{dx} + \alpha_0(x) \right\} y = 0$$

with

$$\alpha_2(x) = 3 - b_1 - b_2 - b_3 + x,$$

$$\alpha_1(x) = (1 - b_1)(1 - b_2)(1 - b_3) + b_1b_2b_3 + (3 - a_1 - a_2)x,$$

$$\alpha_0(x) = -b_1b_2b_3 + (1 - a_1)(1 - a_2)x,$$

which decays exponentially as $|x| \to \infty$ in $-\frac{3}{2}\pi < \arg x < \frac{1}{2}\pi$ (See the Meijer's original paper [5] for details).

Remark 5.2. Let π be a holomorphic discrete series representation of G and τ^* be the minimal K-type of π . Moreover, put $\rho = \pi_1 \otimes \tilde{\nu}_m \in \hat{R}_J$ as in §2. For each $m \neq 0$, there is at most finitely many ρ such that dim $\mathcal{J}_{\rho,\pi}^{\circ}(\tau) = 1$, and then the π_1 -factors of such ρ 's are the holomorphic discrete series representations of $\widetilde{SL}(2, \mathbf{R})$. Moreover, the radial parts of the functions in $\mathcal{J}_{\rho,\pi}^{\circ}(\tau)$ are expressed by the function of the form $x^p e^{qx}$ for some constant p, q.

REFERENCES

- 1. Corwin, L., Greenleaf, F. P., Representations of Nilpotent Lie Groups and their Applications Part1: Basic Theory and Examples, Cambridge studies in advanced mathematics, vol.18, Cambridge University Press, 1990.
- 2. Gelbert, S. S., Weil's Representation and the Spectrum of the Metaplectic Group, Lecture Note in Math., vol.530, Springer Verlag, 1976.
- 3. Hirano, M., Fourier-Jacobi type spherical functions on $Sp(2, \mathbf{R})$, Thesis Univ. of Tokyo (1998).
- 4. Knapp, A. W., Representation Theory of Semisimple Groups; An Overview Based on Examples, Princeton Univ. Press, 1986.
- 5. Meijer, C. S., On the G-function. I-VIII, Indag. Math. 8 (1946), 124–134, 213–225, 312–324, 391–400, 468–475, 595–602, 661–670, 713–723.
- 6. Murase, A., Sugano, T., Whittaker-Shintani Functions on the Symplectic Group of Fourier-Jacobi Type, Compositio Math. 79 (1991), 321-349.
- 7. Satake, I., Unitary Representations of a Semi-Direct Product of Lie Groups on $\bar{\partial}$ -Cohomology Spaces, Math. Ann. 190 (1971), 177–202.
- 8. Vogan, D. A., Gelfand-Kirillov Dimension for Harish-Chandra Modules, Invent. Math. 48 (1978), 75–98.
- 9. Yamashita, H., Embeddings of Discrete Series into Induced Representations of Semisimple Lie Groups I-General Theory and the Case of SU(2, 2), Japan J. Math. 16 (1990), 31–95.

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, TOKYO, 153, JAPAN

E-mail address: hirano@ms406ss5.ms.u-tokyo.ac.jp