FOURIER-JACOBI TYPE SPHERICAL FUNCTIONS ON $Sp(2,\mathbb{R})$;
THE CASE OF P_J-PRINCIPAL SERIES AND DISCRETE SERIES

東大・数理 平野 攤 (MIKI HIRANO)

Contents
1. Introduction
2. Preliminaries
3. Fourier-Jacobi type spherical functions
4. Differential equations
5. Result

1. Introduction
In this note, we study a kind of generalized Whittaker models, or equally, of
generalized spherical functions associated with automorphic forms on the real sym-
plectic group of degree two. We call these spherical functions 'Fourier-Jacobi type',
since these are closely connected with the coefficients of the 'Fourier-Jacobi expan-
sions' of (holomorphic or non-holomorphic) automorphic forms. Also these can be
considered as a non-holomorphic analogue of the local Whittaker-Shintani functions
on $Sp(2,\mathbb{R})$ of Fourier-Jacobi type in the paper of Murase and Sugano [6].

2. Preliminaries

2.1. Groups and algebras. We denote by $\mathbb{Z}_{\geq m}$ the set of integers n such that
n $\geq m$. Moreover, we use the convention that unwritten components of a matrix
are zero.

Let G be the real symplectic group $Sp(2,\mathbb{R})$ of degree two given by

$$Sp(2,\mathbb{R}) = \left\{ g \in M_4(\mathbb{R}) \mid {}^t gJ_2 g = J_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \det g = 1 \right\}.$$

Let $\theta(g) = {}^t g^{-1}$ ($g \in G$) be a Cartan involution of G and K be the set of fixed points
of θ. Then K becomes a maximal compact subgroup of G which is isomorphic to
the unitary group $U(2)$.

Let $\mathfrak{g} = \{ X \in M_4(\mathbb{R}) \mid J_2 X + {}^t X J_2 = 0 \}$ be the Lie algebra of G. If we denote
the differential of θ again by θ, then we have $\theta(X) = -{}^t X$ ($X \in \mathfrak{g}$). Let \mathfrak{k} and \mathfrak{p} be
the $+1$ and -1 eigenspaces of θ in \mathfrak{g}, respectively, and hence

$$\mathfrak{k} = \left\{ X \in \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \mid A, B \in M_2(\mathbb{R}), {}^t A = -A, {}^t B = B \right\},$$

$$\mathfrak{p} = \left\{ X \in \begin{pmatrix} A & B \\ B & -A \end{pmatrix} \mid A, B \in M_2(\mathbb{R}), {}^t A = A, {}^t B = B \right\}.$$
Then we have a Cartan decomposition \(g = \mathfrak{k} \oplus \mathfrak{p} \). Of course, \(\mathfrak{k} \) is the Lie algebra of \(K \) which is isomorphic to the unitary algebra \(u(2) \).

For a Lie algebra \(\mathfrak{l} \), we denote by \(\mathfrak{l}_C = \mathfrak{l} \otimes \mathbb{R} \mathbb{C} \) the complexification of \(\mathfrak{l} \). Let \(\mathfrak{h} \) be a compact Cartan subalgebra of \(\mathfrak{g} \) given by

\[
\mathfrak{h} = \left\{ H(\theta_1, \theta_2) = \begin{pmatrix} \theta_1 & \theta_2 \\ -\theta_1 & -\theta_2 \end{pmatrix} \middle| \theta_i \in \mathbb{R} \right\}.
\]

Now we identify a linear form \(\beta : \mathfrak{h}_C \to \mathbb{C} \) with \((\beta_1, \beta_2) \in \mathbb{C}^2\) via \(\beta = \beta_1 e_1 + \beta_2 e_2 \), where \(e_i(H(\theta_1, \theta_2)) = \sqrt{-1}\theta_i \). Then the set of roots \(\Delta = \Delta(\mathfrak{h}_C, \mathfrak{g}_C) \) of \((\mathfrak{h}_C, \mathfrak{g}_C)\) is given by

\[
\Delta = \{ \pm(2,0), \pm(0,2), \pm(1,1), \pm(1,-1) \}.
\]

Fix a positive root system \(\Delta^+ = \{(2,0), (0,2), (1,1), (1,-1)\} \), and put \(\Delta^+_c \) and \(\Delta^+_n \) the set of compact and non-compact positive roots, respectively. Then

\[
\Delta^+_c = \{(1,-1)\}, \quad \Delta^+_n = \{(2,0), (0,2), (1,1)\}.
\]

If we denote the root space for \(\beta \in \Delta \) by \(\mathfrak{g}_\beta \), then we have a decomposition \(\mathfrak{p}_C = \mathfrak{p}_+ \oplus \mathfrak{p}_- \) with \(\mathfrak{p}_+ = \sum_{\beta \in \Delta^+_c} \mathfrak{g}_\beta \) and \(\mathfrak{p}_- = \sum_{\beta \in \Delta^+_n} \mathfrak{g}_\beta \).

Put \(P_J \) the Jacobi maximal parabolic subgroup of \(G \) with the Langlands decomposition \(P_J = M_J A_J N_J \), where

\[
M_J = \left\{ \begin{pmatrix} \varepsilon & a & b \\ \alpha & \varepsilon & d \\ \gamma & c & \varepsilon \end{pmatrix} \varepsilon \in \{\pm1\}, \begin{pmatrix} a & b \\ \alpha & d \\ c & \gamma \end{pmatrix} \in SL(2, \mathbb{R}) \right\} \simeq \{\pm I\} \times SL(2, \mathbb{R}),
\]

\[
N_J = \left\{ n(x, y; z) = \begin{pmatrix} 1 & y & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & z & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\},
\]

and \(A_J = \{ \text{diag}(a, 1, a^{-1}, 1) \mid a > 0 \} \). Remark that the unipotent radical \(N_J \) of \(P_J \) is isomorphic to the 3-dimensional Heisenberg group \(\mathcal{H}_1 \). The Levi part \(M_J A_J \) of \(P_J \) acts on \(N_J \) via the conjugate action, and \(M_J \) gives the centralizer of the center \(Z(N_J) = \{ n(0,0; z) \mid z \in \mathbb{R} \} \simeq \mathbb{R} \) of \(N_J \) in \(M_J A_J \). Now we define the Jacobi group \(R_J \) by the semidirect product \(M_J^o \ltimes N_J \simeq SL(2, \mathbb{R}) \ltimes \mathcal{H}_1 \), where \(M_J^o \simeq SL(2, \mathbb{R}) \) is the identity component of \(M_J \).

\[2.2.\text{Representations.}\] First we investigate the irreducible unitary representations of the Jacobi group \(R_J \). Since \(Z(R_J) = Z(N_J) \simeq \mathbb{R} \), the central characters of elements in \(R_J \) and \(N_J \) are parametrized by the real numbers. Then we call an irreducible unitary representation of \(R_J \) and \(N_J \) of type \(m \) if its central character is of the form \(z \mapsto e^{2\pi \sqrt{-1} m z} \) with \(m \in \mathbb{R} \). Let \(\nu \in N_J \) of type \(m \). According to the
theorem of Stone-von Neumann (cf. Corwin-Greenleaf [1; pp.46-47, 51-52]), ν is a character if $m = 0$ and ν is infinite dimensional if $m \neq 0$. Moreover ν of type $m \neq 0$ is uniquely determined by m up to unitary equivalence. Now we fix an irreducible unitary representation (ν_m, U_m) of N_J of type $m \neq 0$. From the theory of the Weil representation, (ν_m, U_m) can be extended to a continuous true projective unitary representation $(\hat{\nu}_m, \hat{U}_m)$ of R_J by $\hat{\nu}_m(\hat{n}) = W_m(g)\nu_m(n)$ for $\hat{n} = g \cdot n \in \hat{M}_J \ltimes \hat{N}_J$ with the Weil representation W_m on M_J. Here $\hat{\nu}_m$ has a factor set α which is a proper 2-cocycle.

Lemma 2.1. (Satake [7; Appendix I, Proposition 2]) Let $\hat{\nu}_m$ $(m \neq 0)$ as above. For every irreducible projective unitary representation π of \hat{M}_J with factor set α^{-1}, put $\rho(\tilde{n}) = \pi(g) \otimes \hat{\nu}_m(\tilde{n})$ for $\tilde{n} = g \cdot n \in \hat{M}_J \ltimes \hat{N}_J$. Then ρ is an irreducible unitary representation of \hat{R}_J. Conversely, all irreducible unitary representations of \hat{R}_J of type $m \neq 0$ are obtained in this manner. Moreover ρ is square-integrable iff π is so.

Let (ρ, F_ρ) be an irreducible unitary representation of R_J of type $m \neq 0$. From the above lemma, we can regard $(\rho, F_\rho) \in \hat{R}_J$ as a tensor product representation $(\pi_1 \otimes \hat{\nu}_m, \mathcal{W}_{\pi_1} \otimes \hat{U}_m)$. Here, if we write \overline{M}_J for the double cover of M and \mathcal{W}_{π_1} is a unitary representation of $\overline{M}_J \ltimes \hat{N}_J$ which is extended from $(\nu_m, U_m) \in \hat{N}_J$ as above and $(\pi_1, \mathcal{W}_{\pi_1})$ is a unitary representation of \overline{M}_J which does not factor through \hat{M}_J. On the other hand, the unitary dual of \overline{M}_J is given as follows.

Proposition 2.2. (cf. Gelbert[2; Lemma 4.1, 4.2]) The following representations exhaust a set of representatives for the equivalence classes of irreducible unitary representations of $SL(2, \mathbb{R})$.

1. (unitary principal series) \mathcal{P}_s^τ, $s \in \sqrt{-1} \mathbb{R}$, $\tau = 0, 1, \pm \frac{1}{2}$ except for the case $(s, \tau) = (0, 1)$.
2. (complementary series) \mathcal{C}_s^τ, $0 < s < 1$ for $\tau = 0, 1$ and $0 < s < \frac{1}{2}$ for $\tau = \pm \frac{1}{2}$.
3. ((limit of) discrete series) \mathcal{D}_k^\pm, $k \in \frac{1}{2} \mathbb{Z}_{\geq 2}$.
4. (quotient representation) \mathcal{D}_k^\pm, \mathcal{D}_k^+.
5. (The trivial representation of $SL(2, \mathbb{R})$.

In the above, the representations $\mathcal{P}_s^\tau, \mathcal{C}_s^\tau$ for $\tau = 0, 1$, \mathcal{D}_k^\pm for $k \in \mathbb{Z}_{\geq 1}$ and (5) factor through $SL(2, \mathbb{R})$, and the otherwise not.

Hence we take as $(\pi_1, \mathcal{W}_{\pi_1})$ one of the irreducible unitary representations $\mathcal{P}_s^\tau, \mathcal{C}_s^\tau$ with $\tau = \pm \frac{1}{2}$ and \mathcal{D}_k^\pm with $k \in \frac{1}{2} \mathbb{Z} \setminus \mathbb{Z}, k \geq \frac{1}{2}$.

Remark 2.3. The Weil representation W_m considered as the representation of \overline{M}_J has the following irreducible decomposition;

$$W_m = \begin{cases} \mathcal{D}_k^+ \oplus \mathcal{D}_k^-, & \text{if } m > 0, \\ \mathcal{D}_k^+ \oplus \mathcal{D}_k^-, & \text{if } m < 0. \end{cases}$$

Next, we treat the irreducible unitary representations of K. Since Δ^+_c is also a positive system of $\Delta(\mathfrak{k}_C, \mathfrak{h}_C)$, then the set of the Δ^+_c-dominant weights, and thus
\(\hat{K} \), is parametrized by the set

\[
\Lambda = \{ \lambda = (\lambda_1, \lambda_2) \mid \lambda_i \in \mathbb{Z}, \lambda_1 \geq \lambda_2 \}
\]

(cf. Knapp[4; Theorem 4.28]). We denote by \((\tau_{\lambda}, V_{\lambda})\) the element of \(\hat{K} \) corresponding to \(\lambda = (\lambda_1, \lambda_2) \in \Lambda \). Here \(\dim V_{\lambda} = d_\lambda + 1 \) with \(d_\lambda = \lambda_1 - \lambda_2 \).

Both of \(p_\pm \) become \(K \)-modules via the adjoint representation of \(K \), and we have isomorphisms \(p_+ \simeq V_{(2,0)} \) and \(p_- \simeq V_{(0,-2)} \). For a given irreducible \(K \)-module \(V_{\lambda} \) with the parameter \(\lambda = (\lambda_1, \lambda_2) \in \Lambda \), the tensor product \(K \)-modules \(V_{\lambda} \otimes p_+ \) and \(V_{\lambda} \otimes p_- \) have the irreducible decompositions

\[
V_{\lambda} \otimes p_+ \cong \bigoplus_{\beta \in \Delta^+_n} V_{\lambda+\beta}, \quad V_{\lambda} \otimes p_- \cong \bigoplus_{\beta \in \Delta^-_n} V_{\lambda-\beta}.
\]

For each \(\beta \in \Delta^+_n \), let \(P^\beta : V_{\lambda} \otimes p_+ \to V_{\lambda+\beta} \) and \(P^{-\beta} : V_{\lambda} \otimes p_- \to V_{\lambda-\beta} \) be the projectors into the irreducible factors of \(V_{\lambda} \otimes p_\pm \).

In this note, we consider the following two series of representations of \(G \); one is the principal series induced from \(P_J \), and the other is the discrete series. We explain these representations in the remaining of this section.

Let \(\sigma = (\epsilon, D) \) be a representation of \(M_J \simeq \{ \pm I \} \times SL(2, \mathbb{R}) \) with a character \(\epsilon : \{ \pm I \} \to \mathbb{C}^\times \) and a discrete series representation \(D = D^\pm_n \ (n \in \mathbb{Z}_{\geq 2}) \) of \(SL(2, \mathbb{R}) \), and take a quasi-character \(\nu_z \ (z \in \mathbb{C}) \) of \(A_J \) such that \(\nu_z(\text{diag}(a, 1, a^{-1}, 1)) = a^z \). Then we can construct a induced representation \(\text{Ind}_{P_J}^{G}(\sigma \otimes \nu_z \otimes 1_{N_J}) \) of \(G \) from the Jacobi maximal parabolic subgroup \(P_J = M_J A_J N_J \) by the usual manner (cf. Knapp[4; Chapter VII]), and call \(\text{Ind}_{P_J}^{G}(\sigma \otimes \nu_z \otimes 1_{N_J}) \) the \(P_I \)-principal series representation of \(G \). The following lemma is derived from the Frobenius reciprocity for induced representations.

Lemma 2.4. \(\tau_{\lambda} \in \hat{K} \) with the parameter \(\lambda = (\lambda_1, \lambda_2) \in \Lambda \) such that \(\lambda_1 < n \) (resp. \(\lambda_2 > -n \)) does not occur in the \(K \)-type of \(\text{Ind}_{P_J}^{G}(\sigma \otimes \nu_z \otimes 1_{N_J}) \) for \(D = D^+_n \) (resp. \(D^-_n \)). The 'corner' \(K \)-types \(\tau_{\lambda} \in \hat{K} \) of \(\text{Ind}_{P_J}^{G}(\sigma \otimes \nu_z \otimes 1_{N_J}) \) with the parameter \(\lambda \in \Lambda \) given below occur with multiplicity one.

1. \(\lambda = (n, n) \) for \(\epsilon(\gamma) = (-1)^n \) and \(D = D^+_n \),
2. \(\lambda = (n, n-1) \) for \(\epsilon(\gamma) = (-1)^{n-1} \) and \(D = D^-_n \),
3. \(\lambda = (-n, n) \) for \(\epsilon(\gamma) = (-1)^{-n} \) and \(D = D^+_n \),
4. \(\lambda = (-n, -n) \) for \(\epsilon(\gamma) = (-1)^{-n} \) and \(D = D^-_n \).

Here \(\gamma = \text{diag}(-1, 1, -1, 1) \).

In order to parametrize the discrete series representations of \(G \), we enumerate all the positive root systems compatible to \(\Delta^c_+ \):

1. \(\Delta^+_I = \{(1, -1), (2, 0), (1, 1), (0, 2)\} \),
2. \(\Delta^+_II = \{(1, -1), (2, 0), (1, 1), (0, -2)\} \),
3. \(\Delta^+_III = \{(1, -1), (2, 0), (0, -2), (-1, -1)\} \),
4. \(\Delta^+_IV = \{(1, -1), (0, -2), (-1, -1), (-2, 0)\} \).
Let J be a variable running over the set of indices I, II, III, IV, and let us denote the set of non-compact positive roots for the index J by $\Delta_{J,n}^{+} = \Delta_{J}^{+} - \Delta_{c}^{+}$. Define a subset Ξ_{J} of Δ_{c}^{+}-dominant weights by

$$\Xi_{J} = \{ \Lambda = (\Lambda_1, \Lambda_2), \Delta_{c}^{+} - \text{dominant weight} \mid \langle \Lambda, \beta \rangle > 0, \forall \beta \in \Delta_{J,n}^{+} \}.$$

The set $\bigcup_{J=1}^{IV} \Xi_{J}$ gives the Harish-Chandra parametrization of the discrete series representation of G. Let us write by π_{Λ} the discrete series representation of G with the Harish-Chandra parameter $\Lambda \in \bigcup_{J=1}^{IV} \Xi_{J}$. Then π_{Λ} is called the holomorphic discrete series representation if $\Lambda \in \Xi_{I}$ and the anti-holomorphic one if $\Lambda \in \Xi_{IV}$. Moreover if $\Lambda \in \Xi_{II} \cup \Xi_{III}$, a discrete series representation π_{Λ} is called large (in the sense of Vogan[8]).

The Blattner formula gives the description of the K-types of π_{Λ}. In particular, the minimal K-type $(\tau_{\Lambda}, V_{\Lambda})$ of π_{Λ} is given by the formula $\lambda = \Lambda - \rho_{c} + \rho_{n}$, where ρ_{c} (resp. ρ_{n}) is the half sum of compact (resp. non-compact) positive roots in Δ_{J}^{+}. We call such λ the Blattner parameter of π_{Λ}.

3. Fourier-Jacobi type spherical functions

3.1. Radial parts. Let $(\rho, \mathcal{F}_{\rho})$ be an irreducible unitary representation of R_{J} and let (τ, V_{τ}) be a finite dimensional K-module. We denote by $C_{\rho,\tau}^{\infty}(R_{J}\backslash G/K)$ the space of smooth functions $F: G \rightarrow \mathcal{F}_{\rho} \otimes V_{\tau}$ with the property

$$F(rgk) = (\rho(r) \otimes \tau(k)^{-1})F(g), \quad (r, g, k) \in R_{J} \times G \times K.$$

On the other hand, let $C^{\infty}(A_{J}; \rho, \tau)$ be the space of smooth functions $\varphi: A_{J} \rightarrow \mathcal{F}_{\rho} \otimes V_{\tau}$ satisfying

$$(\rho(m) \otimes \tau(m))\varphi(a) = \varphi(a), \quad m \in R_{J} \cap K = M_{J}^{o} \cap K, \quad a \in A_{J}.$$

Because of an Iwasawa decomposition of G, we have $G = R_{J} A_{J} K$. Also we remark that all elements in $M_{J}^{o} \cap K$ are commutative with $a \in A_{J}$. Then the restriction to A_{J} gives a linear map from $C_{\rho,\tau}^{\infty}(R_{J}\backslash G/K)$ to $C^{\infty}(A_{J}; \rho, \tau)$, which is injective. For each $f \in C_{\rho,\tau}^{\infty}(R_{J}\backslash G/K)$, we call $f|_{A_{J}} \in C^{\infty}(A_{J}; \rho, \tau)$ the radial part of f, where $|_{A_{J}}$ means the restriction to A_{J}.

Let $(\tau', V_{\tau'})$ be also a finite dimensional K-module. For each C-linear map $u: C_{\rho,\tau}^{\infty}(R_{J}\backslash G/K) \rightarrow C_{\rho',\tau'}^{\infty}(R_{J}\backslash G/K)$, we have a unique C-linear map $\mathcal{R}(u): C^{\infty}(A_{J}; \rho, \tau) \rightarrow C^{\infty}(A_{J}; \rho, \tau')$ with the property $(uf)|_{A_{J}} = \mathcal{R}(u)(f|_{A_{J}})$ for $f \in C_{\rho,\tau}^{\infty}(R_{J}\backslash G/K)$. We call $\mathcal{R}(u)$ the radial part of u.

3.2. Fourier-Jacobi type spherical functions. Let $(\rho, \mathcal{F}_{\rho})$ be as above and consider a C^{∞}-induced representation $C^{\infty}\text{Ind}_{R_{J}}^{G}(\rho)$ with the representation space

$$C_{\rho}^{\infty}(R_{J}\backslash G) = \{ F: G \rightarrow \mathcal{F}_{\rho}, \quad C^{\infty} \mid F(rg) = \rho(r)F(g), \quad (r, g) \in R_{J} \times G \}$$

on which G acts by the right translation. Then $C_{\rho}^{\infty}(R_{J}\backslash G)$ becomes a smooth G-module and a (\mathfrak{g}_{C}, K)-module naturally. Moreover let $(\tau, V_{\tau}) \in \hat{K}$ and take an
irreducible Harish-Chandra module π of G with the K-type τ^*, where τ^* is the contragredient representation of τ. Now we consider the intertwining space

$$I_{\rho,\pi} := \text{Hom}_{(g_C, K)}(\pi, C^\infty \text{Ind}^G_{R_J} (\rho))$$

between (g_C, K)-modules and its restriction to the K-type τ^* of π.

Let $i : \tau^* \to \pi|_K$ be a K-equivariant map and let i^* be the pullback via i. Then the map

$$I_{\rho,\pi} \overset{i^*}{\rightarrow} \text{Hom}_K(\tau^*, C^\infty_{\rho}(R_J \backslash G)) \simeq C^\infty_{\rho,\tau}(R_J \backslash G/K)$$

gives the restriction of $T \in I_{\rho,\pi}$ to the K-type τ^* and we denote the image of T in $C^\infty_{\rho,\tau}(R_J \backslash G/K)$ by T_i. Now the space $J_{\rho,\pi}(\tau)$ of the algebraic Fourier-Jacobi type spherical functions of type $(\rho, \pi; \tau)$ on G is defined by

$$J_{\rho,\pi}(\tau) := \bigcup_{i \in \text{Hom}_K(\tau^*, \pi|_K)} \{T_i \mid T \in I_{\rho,\pi}\}.$$

Moreover put

$$J_{\rho,\pi}^\circ(\tau) = \{f \in J_{\rho,\pi}(\tau) \mid f|_{A_J}(\text{diag}(a, 1, a^{-1}, 1)) \text{ is of moderate growth as } a \to \infty\}.$$

We call $f \in J_{\rho,\pi}^\circ(\tau)$ a Fourier-Jacobi type spherical functions of type $(\rho, \pi; \tau)$.

In this note, we investigate the space $J_{\rho,\pi}^\circ(\tau)$ for the following triplet $(\rho, \pi; \tau)$: As $\pi \in \hat{G}$ and $\tau^* \in \hat{K}$, we take either the P_J-principal series representation and the corner K-type or the discrete series representation and the minimal K-type, and also as $\rho \in \hat{R}_J$ the one with the non-trivial central character, i.e. of type $m \neq 0$.

4. Differential equations

4.1. Differential operators. In this subsection, we introduce some differential operators acting on $C^\infty_{\rho,\tau}(R_J \backslash G/K)$.

Take an orthonormal basis $\{X_i\}$ of p with respect to the Killing form of g. Now we define a first order gradient type differential operator

$$\nabla_{\rho,\tau} : C^\infty_{\rho,\tau}(R_J \backslash G/K) \to C^\infty_{\rho,\tau \otimes \text{Ad}_{g_C}}(R_J \backslash G/K)$$

by

$$\nabla_{\rho,\tau} f = \sum_i R_{X_i} f \otimes X_i, \quad f \in C^\infty_{\rho,\tau}(R_J \backslash G/K),$$

where

$$R_X f(g) = \frac{d}{dt} f(g \cdot \exp(tX)) \bigg|_{t=0}, \quad X \in g_C, \ g \in G.$$

This differential operator $\nabla_{\rho,\tau}$ is called the Schmid operator. Then $\nabla_{\rho,\tau}$ can be decomposed as $\nabla_{\rho,\tau}^+ \oplus \nabla_{\rho,\tau}^-$ with $\nabla_{\rho,\tau}^+ : C^\infty_{\rho,\tau}(R_J \backslash G/K) \to C^\infty_{\rho,\tau \otimes \text{Ad}_{g_C}}(R_J \backslash G/K)$ corresponding to the decomposition $p_C = p_+ \oplus p_-$ for each $\beta \in \Delta_n^+$, the shift operator $\nabla_{\rho,\tau,\lambda}^\pm : C^\infty_{\rho,\tau}(R_J \backslash G/K) \to C^\infty_{\rho,\tau \pm \beta}(R_J \backslash G/K)$ is defined as the composition of
with the projector $P^{\pm \rho}_{\tau, \lambda}$ from $V_{\tau, \lambda} \otimes \mathfrak{p}_{\pm}$ into the irreducible component $V_{\tau, \lambda \pm \rho}$;

\[\nabla^{\pm}_{\rho_{\tau, \lambda}} = (1_{\mathfrak{g}} \otimes P^{\pm \rho}_{\tau, \lambda}) \nabla^{\pm}_{\rho_{\tau, \lambda}}. \]

On the other hand, the Casimir element Ω is defined by $\Omega = \sum X_i - \sum Y_j$, where \(\{Y_j\} \) is an orthonormal basis of \mathfrak{f} with respect to the Killing form of \mathfrak{g}. It is well known that Ω is in the center $Z(\mathfrak{g}_C)$ of the universal enveloping algebra of \mathfrak{g}_C.

4.2. Differential equations. In this subsection, we consider the system of differential equations satisfied by the Fourier-Jacobi type spherical functions.

First we discuss the case of the P_J-principal series representation $\pi \in \widehat{G}$ and the corner K-type τ^*. It is well known that the Casimir element $\Omega \in Z(\mathfrak{g}_C)$ acts on π, hence on $J_{\rho, \pi}(\tau)$, as the scalar operator χ_{Ω} (cf. Knapp\cite{4}; Corollary 8.14]). Let $\pi = \text{Ind}_{\mathbb{P}J}^{\mathbb{P}J}(\sigma \otimes \nu \otimes 1_{N_J})$ with data $\sigma = (\varepsilon, D_n^+)$, $\varepsilon(\gamma) = (-1)^n$, and $\tau^* = \tau^{\star}_{\lambda}$ be the corner K-type of π, i.e. $\lambda = (-n, -n)$.

Since $\tau^{\star}_{\lambda+1, 1} = \tau_{(n-1, n-1)} \in \hat{K}$ does not occur in the K-types of π from Lemma 2.4, an element in $J_{\rho, \pi}(\tau)$ is annihilated by the action of the composition of the shift operators

\[\nabla^{(0,2)}_{\rho, \tau, \lambda+2, 0} \circ \nabla^{(2,0)}_{\rho, \tau, \lambda} : C^\infty_{\rho, \tau, \lambda}(R_J \backslash G/K) \to C^\infty_{\rho, \tau, \lambda+2, 0}(R_J \backslash G/K). \]

Hence we have a system of differential equations satisfied by f in $J_{\rho, \pi}(\tau)$;

\begin{align}
\begin{cases}
\Omega f = \chi_{\Omega} f, \\
\nabla^{(0,2)}_{\rho, \tau, \lambda+2, 0} \circ \nabla^{(2,0)}_{\rho, \tau, \lambda} f = 0.
\end{cases}
\end{align}

(4.1)

Let $\pi = \text{Ind}_{\mathbb{P}J}^{\mathbb{P}J}(\sigma \otimes \nu \otimes 1_{N_J})$ with data $\sigma = (\varepsilon, D_n^+)$, $\varepsilon(\gamma) = (-1)^n$, and $\tau^* = \tau^{\star}_{\lambda}$ be the corner K-type of π, i.e. $\lambda = (-n+1, -n)$. Since $\tau^{\star}_{\lambda+1, 1} = \tau_{(n-2, n-2)} \in \hat{K}$ does not occur in the K-types of π from Lemma 2.4, therefore an element in $J_{\rho, \pi}(\tau)$ vanishes by the action of the shift operator

\[\nabla^{(1,1)}_{\rho, \tau, \lambda+1, 1} : C^\infty_{\rho, \tau, \lambda}(R_J \backslash G/K) \to C^\infty_{\rho, \tau, \lambda+1, 1}(R_J \backslash G/K). \]

Hence we have a system of differential equations satisfied by f in $J_{\rho, \pi}(\tau)$;

\begin{align}
\begin{cases}
\Omega f = \chi_{\Omega} f, \\
\nabla^{(1,1)}_{\rho, \tau, \lambda+1, 1} f = 0.
\end{cases}
\end{align}

(4.2)

For the case with the data $\sigma = (\varepsilon, D_{n-})$, we have similar systems of equations from the Casimir operator and the shift operators.

Let $\pi = \pi_{\Lambda}$ be a discrete series representation of G with the Harish-Chandra parameter $\Lambda \in \Xi_J$ and $\tau^* = \tau^{\star}_{\lambda} \in \hat{K}$ be the minimal K-type of π. Now we refer the following proposition which enables us to identify the intertwining space $I_{\rho, \pi}$ with a solution space of differential equations for any $\rho \in \mathcal{R}_J$.

Proposition 4.1. (Yamashita\cite{9}; Theorem 2.4]) Let $\pi = \pi_{\Lambda} \in \widehat{G}$ and $\tau^* = \tau^{\star}_{\lambda} \in \hat{K}$ be as above. Then we have a linear isomorphism

\[I_{\rho, \pi} \simeq \bigcap_{\beta \in \Delta_{J^*, n}} \ker(\nabla^{-\beta}_{\rho, \tau}) \subset C^\infty_{\rho, \tau}(R_J \backslash G/K) \]
for any \(\rho \in \hat{R}_J \). In particular,
\[
J_{\rho, \pi}(\tau) = \{ F \in C^\infty_{\rho, \tau}(R_J \backslash G/K) \mid \nabla^{-\beta}_F F = 0, \ \forall \beta \in \Delta^+_J \cdot n \}.
\]
Here the index \(J^* \) means IV, III, II and I for \(J = \text{I}, \text{II}, \text{III} \) and \(\text{IV} \), respectively.

5. Result
Solving the systems of the differential equations given by (4.1), (4.2) and Proposition 4.1, we obtain the following theorem.

Theorem 5.1. Let \(\pi \) be a \(P_J \)-principal series representation (resp. a discrete series representation) of \(G = \text{Sp}(2, \mathbb{R}) \) and \(\tau^* \) be the 'corner' \(K \)-type (resp. the minimal \(K \)-type) of \(\pi \). For each irreducible unitary representation \(\rho \) of \(R_J \) of type \(m \neq 0 \), we have
\[
\dim J^0_{\rho, \pi}(\tau) \leq 1.
\]
Moreover the radial parts of the functions in \(J^0_{\rho, \pi}(\tau) \) are expressed by the Meijer's \(G \)-function \(G^{3,0}_{2,3}(x \mid b_1, b_2, b_3) \) or more degenerate similar functions.

Here the Meijer's \(G \)-function \(G^{3,0}_{2,3}(x) = G^{3,0}_{2,3}(x \mid b_1, b_2, b_3) \) with the complex parameters \(a_i, b_j (1 \leq i \leq 2, 1 \leq j \leq 3) \) is the many-valued function defined by the integral
\[
G^{3,0}_{2,3}(x) = G^{3,0}_{2,3}(x \mid b_1, b_2, b_3) = \frac{1}{2\pi \sqrt{-1}} \int_L \frac{\prod_{j=1}^{3}(b_j - t)}{\prod_{i=1}^{2}(a_i - t)} x^{t} dt
\]
of Mellin-Barnes type, where the contour \(L \) is a loop starting and ending at \(+\infty \) and encircling all poles of \(\Gamma(b_j - t) \) \((1 \leq j \leq 3) \) once in the negative direction. It is known that, up to constant multiple, \(G^{3,0}_{2,3}(x) \) is the unique solution of the linear differential equation of 3-rd order
\[
\left\{ x^3 \frac{d^3}{dx^3} + \alpha_2(x) x^2 \frac{d^2}{dx^2} + \alpha_1(x) x \frac{d}{dx} + \alpha_0(x) \right\} y = 0
\]
with
\[
\begin{align*}
\alpha_2(x) &= 3 - b_1 - b_2 - b_3 + x, \\
\alpha_1(x) &= (1 - b_1)(1 - b_2)(1 - b_3) + b_1 b_2 b_3 + (3 - a_1 - a_2)x, \\
\alpha_0(x) &= -b_1 b_2 b_3 + (1 - a_1)(1 - a_2)x,
\end{align*}
\]
which decays exponentially as \(|x| \to \infty \) in \(-\frac{3}{2}\pi < \arg x < \frac{1}{2}\pi \) (See the Meijer's original paper [5] for details).

Remark 5.2. Let \(\pi \) be a holomorphic discrete series representation of \(G \) and \(\tau^* \) be the minimal \(K \)-type of \(\pi \). Moreover, put \(\rho = \pi_1 \otimes \tilde{\nu}_m \in \hat{R}_J \) as in \(\S 2 \). For each \(m \neq 0 \), there is at most finitely many \(\rho \) such that \(\dim J^0_{\rho, \pi}(\tau) = 1 \), and then the \(\pi_1 \)-factors of such \(\rho \)'s are the holomorphic discrete series representations of \(\widetilde{SL}(2, \mathbb{R}) \). Moreover, the radial parts of the functions in \(J^0_{\rho, \pi}(\tau) \) are expressed by the function of the form \(x^pe^{q\tau} \) for some constant \(p, q \).
REFERENCES

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, TOKYO, 153, JAPAN

E-mail address: hirano@ms406ss5.ms.u-tokyo.ac.jp