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Magnetic Scattering at Low Energy in Two Dimensions

MLAE B 2558 (Hideo Tamura)

We consider the low—energy scattering for Schrédinger operators with magnetic fields
compactly supported in two dimensions. We study the asymptotic behavior at low energy
of scattering amplitudes. As a direct application, we also discuss the behavior of scattering
amplitudes for scattering by magnetic fields with small support. The results obtained
strongly depend on the total flux of magnetic fields under consideration.

1. Magnetic scattering at low energy

We work in the two dimensional space R? with generic point z = (z1,z2). Let
b(z), V(z) € C(R* — R) be given magnetic and electric fields with compact sup-
port and let -

A(z) = (a1(z), ax(z)) € Coo(R2 - R2)7 'V x A= 010y — Bhay = b,

be a magnetic potential associated with b. We consider the Hamiltonian

H=HA,V)=(~iV-A?2+V= SZj(—ia,. —a)2+ V.

j=1

This operator admits a unique self-adjoint realization in L?(R?). We denote by the same
notation H this realization with domain D(H) = H?(R?) (Sobolev space). The total flux
a of field b is defined by

a=(2m)7! /b(:c) dz.

For brevity, we assume that
0<a<l

The argument extends to the case that o € Z is not an integer.

The magnetic potential A(z) associated with field b(z) is not uniquely determined, but
the Hamiltonians with the same magnetic field are unitarily equivalent under the gauge
transformation A — A + Vg. Thus we fix the magnetic potential as

A(z) = (~Byp(2), Brp(2)),

where

p(z) = (2m)" [ loglz — y|by) dy.

As is easily seen, A(z) behaves like

A(2) = Ba(z) + O(|2]7%),  Ba(2) = af—z2/|zf*, 21/ I2*),
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as |z| — oco. It should be noted that A(z) never decays faster than O(|z|™') at infinity,
even if b(z) is assumed to be of compact support. Thus the difference H — Hj between
H and the free Hamiltonian Hy = —A belongs to the long-range perturbation class.
Nevertheless we know ([5]) that the ordinary wave operators

Wi (H, Hy) = s — lim exp(itH) exp(—itHo) : L3R — L*(R?
exit and are asymptotically complete
RBH(W_(H, HO)) = R'an(W+(Ha HO))

Hence the scattering matrix S(\; H, Hp) : L*(S') — L*(S') at energy A > 0, S? being
the unit circle, can be defined as a unitary operator. Let S(w’,w;}), (o',w) € ST x S1,
denote the integral kernel of S(\; H, Hp). Then the scattering amplitude f(w — w'; X) for
scattering from incident direction w into final one w’ at energy A > 0 is defined by

flw— ;) =) (S, w; A) = (v —w))
with ¢()) = (2m/ivV ) V2. |

The aim here is to study the behavior as A — 0 of scattering amplitude f(w — w’; ).
The behavior strongly depends on the resonance space & at zero energy of H. The
resonance space &; is defined as ’

& ={ue L2, (R?: Hu=0}/&

where L2(R?) denotes the weighted L2 space L*(R?; (1+|z[?)*dz) and & = {u € L*(R?) :
Hu = 0} is the zero eigenspace of H. If the flux o of field b is not an integer, then it is
shown that dim&; < 2. When dim &, = 2, & is spanned by a pair (pg, p1) of functions
taking the form

p(z) =rve? +g, v=|l —al,

with some g; € L2(R?), where (r, 8) denotes the polar coordinates over R®. If dim & =1,
then &; is spanned by a linear combination

pa) = cor® +er 1"’ + g, g e LX(R),

and the asymptotic formula as A — 0 of f(w — w'; X) takes various forms according to
the value  and the ratio ¢ = ¢1/¢p.

Theorem 1.1 Assume thatb, V € C°(R? — R) are real smooth functions with com-
pact support and that the total flur o of magnetic field b satisfies 0 < o < 1. Let &, denote
the resonance space at zero energy of H = H(A,V). Set c()) = (2/ivV/X)/? again and
define . . ;
fa(w' —w) = (cos am — 1)6(w' — w) — (sin am/2m) Fo(w' — w),

where F(0) = v.p.e?/(e® —1), and the coordinates over S' are identified with the azimuth
angles from the positive z; axis. Then the scattering amplitude f(w — w'; A) for scattering
from initial direction w to final one w' at energy X obeys the following asymptotic formula
as A — 0. ' ‘ g : : v
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(1) If dim &, = 2, then

flw—u'52) =c(N) (fa(w’ —w)+ (i/7)sinar (1 — ei(“"_“’)) + 0(1)) .

(2) Assume that dim&, = 1. Let
p=cor®+cr e L g ge L}(RY),

be a resonance function spanning £,. Then one has :
(Z) Assume that 0 < a < 1/2. Ifcy # 0, then

flw = i3) = ) (fal’ ~w) + (i/7) sin o + o(1)
and if co = 0, then
flw = 32) = e) (falo —w) = (i/m)siname™ ™) 1 o(1)).
(i5) Assume that a = 1/2. Setc=c;/cy (c =00 if cg=0). Then

i(1—2e ™) (1 + ce™)
0% [P R 0(1)) )

flw— ;X)) = c(A) (fa(w'—w) +

(112) Assume that 1/2 < a < 1. Ifc; # 0, then
Flw = wi2) = o) (fal’ —w) = (i/m)siname’™ ) + o(1))
and if ¢, = 0, then
F@ = &52) = o) (fale’ —w) + (i/m) sinam + o(1))..
(3) Assume that dim &, = 0. Then
Fw = w52) = ¢) (falw’ —w) + o(1)).

If V(z) = 0, then we can show that the solution to equation Hu = 0 with u € L? | (R?)
identically vanishes. Hence dim &; = 0 and it follows that

flw =5 2) =c(N) (fal@ —w;A) +0(1)), A—0.

The leading term just coincides with the scattering amplitude calculated by [1] (see [6]
also) for the Hamiltonian - ‘

Hy = (—iV = Ba)*, Ba(2) = a(~za/|z*, 21/ |2[?), (1.1)

with domain
D(H,) = {u € L*(R*) : Hyu € L*(R?), lim u =0},

where Hou = (—iV — B,)2u is understood in D’ (in the distributional sense).
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The scattering amplitude f(w — w’; A) is represented through the resolvent
R(A+10;H) = ?Hcl) R\ +ig;H), R(z)=(H — _z)"l,

and the problem is reduced to analysing the behavior at low energy of the resolvent
R(\ + i0; H). A lot of works have been already done on the behavior of resolvents at
low energy in the case of short-range potential scattering. An extensive list of related
literatures can be found in the book [3]. The proof of the above theorem is, in principle,
based on the idea developed in Jensen-Kato [4], althogh several technical improvements
are required at many stages. The standard way to analyse the behavior of resolvents at
low energy is based on the relation

R(A +i0; H) = (Id + R(\ + i0; Ho) (H — Ho))‘i R(X + 40; Hy) (1.2)

obtained from the resolvent identity, where Id stands for the identity operator. For the
case of scattering by magnetic fields, the difference H — Hj is not necessarily of short—
range class even for the field b(z) compactly suppoted, as previously stated. The resolvent
identity does not work for the pair (H, Hp). On the other hand, H — H, becomes a
perturbation of short-range class for the Hamiltonian H, defined by (1.1), but the domain
D(H,,) does not coincide with that of H. It should be noted that even the form domains
of these operators are different. This makes it difficult to use the resolvent identity for
the pair (H, H,) also. Thus we take a slightly different approach. We introduce a certain
auxiliary operator
| Ko = (—iV — XooBa)z,

where X (T), 7 = ||, is a smooth real function vanishing near the origin and taking the
value Yo, = 1 for r > 1 large enough. By definition, K, has the same domain as H, and
the difference W = H — K|, belongs to the short-range class. In addition, K, admits the
partial wave expansion in angular momentum. This enables us to expand R(X + ¢0; K,)
asymptotically in A, 0 < A < 1, small enough and to analyse the behavior at low energy
of resolvent R(\ + i0; H) in question through relation (1 2} applied to the pair (H, Ka,).

The details are discussed in [7].

2. Scattering by magnetic fields with small support

As a simple application of Theorem 1.1, we discuss the scattering by magnetic fields
with small support. Let b(z), V(z) € CP(R?® — R) and A(z), V x A= b, be as above.
We set

be(z) = €72b(z/e), Velz) =€ *V(z/e), Aelz)=e"A(z/e)

for 0 < € < 1, and we consider the Hamiltonian
H.=H(A., Vi) = (—iV — A)* + V..

As is easily seen, V x A = b, and the field b, preserves the flux

(2m)~ /b
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We denote by f.(w — w’; \) the scattering amplitude for the pair (H, Hp). By making a
change z/e — z of variables, f.(w — w';\) can be easily shown to satisfy the relation

fo(w ——ﬂu’;A) = Vef(w — w'; Ae?)

and hence the asymptotic behavior as € — 0 of fo(w — w’;A), A > 0 being fixed, is
obtained as an immediate consequence of Theorem 1.1. As ¢ — 0, A.(z) — B,(z) and
b.(z) — 2mad(z) in D'. Thus the scaled Hamiltonian H., is formally convergent to the
Hamiltonian '
| HOa = (—zV - Ba)27 D(HOa) = CSO(R2 \ {0})7

with §-like magnetic field at the origin. We are concerned with the relation between the
limit lim,_,o fo(w — w’; A) and the scattering amplitude for the Hamiltonian obtained as
a self-adjoint extension of Hy,.

We denote by Hg, the closure of Hy,. This is symmetric, but is not self-adjoint. Let
¥, = Ker(Hy, F1). Then ¥ is spanned by 94, [ = 0,1, where

¢+l($) — nKV(e—iﬂ'/tLr)eilB, ’lﬁ_l(x) ;:'Tleiuw/zKy(e'mMr)eilB

with the modified Bessel function K,(z) = (im/2)e®"/2H,(iz). The constant 7, > 0 is
determined by normalization ||t)1||z2(z2) = 1, and the phase factor ™2 is taken so that
Yy —%_; — 0 as r — 0. Thus the closure Hy, has its deficiency indices (2,2). By the
general theory due to Krein, Hy, has a family of self-adjoint extensions parameterized
by 2 x 2 unitary mapping from one deficiency space to the othere one. Let

a —b

U=U(n,a,b):em<b 5)’ laf? + b =1, neR, abeC,

be a 2 x 2 unitary matrix. We denote by the same notation U-the mapping U : ¥, — ¥_
defined by ' '
n Uy = €0+ €191, Yy = ePro + €194y,
with %(ép,&1) = Ut(ep,e1). Then, for given U = U(n,a,b), there exists a self-adjoint
extension HY such that ’
ng = —H—QQ'U + Z’g[q_ - lU'(/)+
with domain

DHY) = {u € L*(R?) :u=v+v, + Uy, v € D(Hpa), ¥4 € T4}

The unitary matrix U(, a,b) specifies the boundary condition at the origin. If, for exam-
ple, U = U(0,—1,0), then the domain D(HY) is given by

D(HY) = {u € L*(R?) : Hyou € L*(R?), lim u(z) = 0},

and this extension coincides with H, defined by (1.1). We denote by fY(w — w';\) the
scattering amplitude for the pair (HY, Hp). It is defined through the asymptotic behavior

u(z) = eV 4 fU(w — o /\)éi o121 4 0(1)), =1, |z| > o0,
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of the solution u(z) to equation (Hpe — A)u = 0, where u(z) satisfies the boundary
condition specified by U(n,a,b) at the origin. The scattering amplitude fU(w — w';\)
has been calculated in the recent work [2] and it takes a rather complicated form. We
do not copy the explicit form obtained there. If, in particular, U = U(0,—1,0), then
fU(w — w5 A) = ¢(A) falw'—w). As previously stated, this is just the scattering amplitude

calculated by [1, 6]. According to the results in [2], we obtain the following theorem.

Theorem 2.1 Let the notations and assumptions be as in Theorem 1.1. |

(1) If dim & = 2, then
lng £, (0 = '3 3) = £ = /3 )
with U = U(mw/2,exp(i(1/2 — a)7),0).

(2) Assume that dim&; = 1. Then one has :
() Assume that 0 < a < 1/2. Ifcg # 0, then
lim fo(w = o;A) = fY( = o3 )
with U = U((1 — a/2)7, exp(—tam/2),0), and if cg = O, then
lin(l]fg(w — W) = fl(w—u;N)
with U :‘U((1/2‘+ a/2)m, exp(i(1 — a)7/2),0).
(22) Assume that o = 1/2 and set c = c¢1/co again. Then
lim fe(w = w5 A) = fY(w - w;A)

with U = U(3m/4,a,b), where

a—i 1_7’,1——[c|2 - 2ic
T2\ 1R T T VR + )
(212) Assume that 1/2 < a < 1. Ifc; # 0, then
| lim felw = w52 = fY(w—uw'; )
with U = U((1/2 + a/2)7,exp(i(1 — a)7/2),0), and if c; = 0, then
lim folw—a5A) = fY(w— w5 A)
with U = U((1 — a/2)m, exp(—tan/2),0).
(3) Assume that dim&; = 0. Then
i fo(o = 0/53) = 2w — )

with U = U(0, —1,0).
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If @ = 1/2, then the theorem above shows that the limit Hamiltonian HY is realized
through the unitary matrix U(n, a,b) with b # 0. This means the lack of conservation of
angular momentum in the limit € — 0. For example, incoming particles with only I = 0
as angular momentum may have angular momentum ! = 1 after scattering by the field b,
with support small enough.

The low—energy analysis for magnetic Schrédinger operators with long-range perturba-
tions is important in showing the resolvent convergence in norm of the scaled Hamiltonian
H, to some self-adjoint extension of Hy, and in studying the spectral structure of H..
The matter will be discussed in detail elsewhere.
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