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CRITICAL NONLINEAR WAVE EQUATIONS
IN FRACTIONAL ORDER SOBOLEV SPACES

T. OZAWA (MNE #D)

Department of Mathematics, Hokkaido University

In this note I describe some recent work on nonlinear wave equations, done jointly

with M. Nakamura [20, 21]. We consider the nonlinear wave equations of the form
Ofu— Au = f(u) (1)

where u is a complex-valued function of (t,z) € R x R”, 8, = 9/0t, A is the
Laplacian in R”, and f is a complex-valued function, a typical form of which is the

single power interaction

Flu) = Aluu | )

with A € Rand 1 < p < co.
There is a large literature on the Cauchy problem for the equation (1) and
on the asymptotic behavior in time of the global solutions (3, 4, 7-12, 14, 15,
24, 25, 28 and references therein]. The Cauchy problem for (1) has been studied
‘mainly in the space of classical solutions and in the energy space, while there
arises a new interest in the treatment of the Cauchy problem in the Sobolev spaces
H* = (1—A)~*/2[2(R") of fractional order s with0 < s <n /2. In connection with
the H* theory for (1) with (2), a homogeneity argument indicates that the power p
in (2) is critical [resp. subcritical] at the level of H* if and only if p = 1+4/(n — 2s)
[resp. p < 1+ 4/(n — 2s)]. Though the critical power p = 1 + 4/(n — 2s) at the
level of H* is the same at that of nonlinear Schrédinger equations (2, 6, 13, 17, 18,
26], it would be natural to regard the power as p = 1+ 4/((n — 1) — 2(s — 1/2)) by

the following reasons. |

(i) In view of the sharp decay estimates for the free wave and Schrédinger equa-

" tions, there is a natural shift in the corresponding space dimensions with difference
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by one. This implies that results in the nonlinear wave equations should be often
compatible with the corresponding results in the nonlinear Schriidinger equations by -
reducing the space dimension by one. The origin of the discrepancy may be traced
back to the rank of the Hessian of phase functions in the oscillatory integrals for
fundamental solutions. |

(ii) In view of the Strichartz estimates in the diagonal case [28] there is a natural
shift in the corresponding regularity requirements on the data with difference by
one half. '

(iii) In view of the symmetry groups acting oﬁ the associated Lagrangeans, the
conformal powers of the nonlinear wave and Schrédinger equations are given re-
spectively by p = 1 + 4/(n — 1) and p = 1 + 4/n, while the corresponding space of
data are given respectively by H/2 and L2. |

By the arguments above, we could expect the H*® theory for (1) at the level
compatible with that of the nonlinear Schrédinger equations in the critical case
where p = 1+ 4/(n — 2s) with 1/2 < s < n/2. This in turn implies that n > 2
and 1+4/(n—1) < p < oo and that the critical power p = 1+ 4/(n — 2s) loses its
meaning at the level of H™/2.

The purpose of this note is twofold. The first is to make the H* theory for (1) -
complete with the whole admissible range 1/2 < s < n/2. This means that we
intend to extend the results of Lindblad and Sogge [15] to the spaces with higher
regularity with the notion of criticality preserved. The second is to examine the
critical phenomenon as the index s grows to n/2 and to construct the H n/2 theory
for (1) with critical nonlinearity of specific growth at infinity.

As regards the H?® theory with 0 < s < n/2, the power behavior of the non-
linearity determines the order of the Sobolev space where smallness of the data is
imposed to ensure the existence and uniqueness of global H* solutions. This is
" the right phenomenon, as is usual with other nonlinear evolution equations with
dilation structure, such as the nonlinear heat and Schrodinger equations with single
power interaction and the Navier-Stokes equations. |

In contrast, when s > n/2, no specific beha,vwr of nonlinearity is required of the
H* theory for (1) at least locally in time. In fact, when s > n/2, for the existence
and uniqueness of local H* solutions one has only to assume that f € C*(C;C) with

£(0) = 0, where differentiability refers to the real sense and k is the largest integer
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less than or equal to s [19]. The proof depends on the usual Sobolev embedding

H? «— L™ for s > n/2 in an essential way.

The case s = n/2 may therefore be regarded as the borderline in two aspects:
(1) No power behavior of interaction amounts to the critical nonlinearity at the
level of H™2. (2) Poitwise control of solutions falls beyond the scope of the H™/2
theory, so that any argument similar to that of the H* theory with‘s > n/2 breaks

down even for local theory without specific behavior of interaction.

In addition to the critical phenomena described above, H™/2 solutions deserve

attention as finite energy solutions for n = 2 and as strong solutions for n = 4.

We prove the existence and uniqueness of global H™? solutions to (1) with
small Cauchy data under the nonlinearity of exponential type. This is reminiscent
* of Trudinger’s inequality which replaces-the Sobolev embedding in the limiting case
~ on the basis of the exponential estimates in terms of functions in the critical order
Sobolev space H™'? [16, 22, 23, 27, 29].

To state the results precisely, we use the following notation. For any r with
1 <r < oo, L™ = L"(R") denotes the Lebesgue space on R™. For any s € R and
any r with 1 < r < 0o, H¥ = (1 — A)~%/2L" denotes the Sobolev space defined
in terms of Bessel potentials. For any s € R and any r,m with 1 < r,m < oo,
B}, denotes the Besov space defined as the space of distributions u such that
{297 ¢p; % u; LT[ }32, € ¢™, where {¢;} is a dyadic decomposition on R™. For any
s € R and any r with 1 < 7 < oo, H? denotes the homogeneous Sobolev space
defined as the space of classes of distributions © modulo polynomials such that
(=A)~%/2y € L". For any s € R and any r,m with 1 <r,m < oo, Bf,, denotes
the homogeneous Besov space defined as the space of classes of distributions u
modulo polynomials such that {297 |[)); *u; L7|[}32 _, € €™, where {¢;} is a dyadic
decomposition on R”\{O}; We refer to [1, 8, 30] for general information on Besov
and Triebel-Lizorkin spaces and their homogeneous counterparts. For simplicity,

we put H® = H§, H® = H3, B = ﬁ’z,Bﬁ = Bf.’z. For any interval / C R and any
Banach space X we denote by C(I; X) the space of strongly continuous functions
from I to X and by L9(I; X) the space of strongly measurable functions u from 1

to X such that ||lu(-); X|| € LY(I). The Cauchy problem for the equation (1) with
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data (u(0), 0;u(0)) = (¢, ) will be treated in the form of the integral equation
) t
u(®) = K@+ KOo+ [ K= 0)f ), 3)

where K (t) = w™!sintw, K(t) = costw, and w = (—A)Y/2. To treat the Cauchy
problem both at finite and infinite times on the basis of the free unitary group in
the generalized energy space, we formally differentiate (3) in time and introduce

the following system of equations

(aﬁi)) =U(?) (z) + t: U(t—t) ( f(u(zt,)))dt’, | (4)

where ( ulto) ) = U(to) (g) is the prescribed Cauchy data at time ¢y and

dru(to)
v = <—£§?(t) fgg) B eXpt<¥S)2 é)

is a unitary group in the Hilbert spaces £ = H*® Hs 1 if 1/2 < s < n/2 and
E™? = (H™/2 0 H1/2) @ (H™/2-1 0 H~1/2). The equation (4) will be studied in
the space X* with 1/2 < s < n/2 defined as

X*=C®;E)n (] LYR;Bfe B
(1/4,1/rp)EA »

if1/2 < s <n/2, and
xn/2 — (Cﬂ Loo)(R;Es) A qu(]R; (Bg)z—l)/2 N Bgo) ® (B((ng—3)/2 A B(—I—Ol))
where qo = 2(n + 1)/(n — 1),

A ={(1/q,1/r,p); (1/q,1/r) € Ao, 0< p<s, 0<1/q<n/2-s}
Ao ={(1/q,1/7); 0<1/q,1/r <1/2, (1/q,1/r) #(1/2,1/2 - 1/(n — 1)),
1/r+2/((n - 1)q) <1/2}.

For the nonlinear interaction behaving as a power p at zero, we introduce the

following assumption.
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(A)y f € C*¥(C;C) and f9(0) = 0 for any j with 0 < j < k. There exists a
constant C such that for all 21,2, € C B

C(lz P51 + 2P 5 1) 2y — 2o ifp>k+1,

(k) _ f(k)
06 - 0 < { o fp< kil

Here f() denotes any of the j-th order derivatives of | f with respect to z and Z
and |f()| denotes the maximum of the moduli of those derivatives. Single power
interaction (2) satisfies (A)x with 0 < k < p.

For the nonlinear interaction having an exponential growth at infinity, we intro-

duce the following assumption.

B) fecA(C;C), £(0) = 0. There exist two positive constants A and C such
that for all z€ C
£/ (2)] < Cl2* D exp(Alz[?).

Moreover,

177(2)] < Clz|Y3 exp(M|2]?) ifn =4,
Maxa<ksn/all f®) (2)] < Cexp(A2f?) if n > 5.
With the notation above we now state the main results in this paper. For any s

with 1/2 < s < n/2 and £ > 0, we denote by E7 the closed ball in £° with the

center at zero and radius €.

Theorem I (Critical case at the level of H® with 1/2 < s <n/2).
Let n > 2. Let s and p satisfy
1/2 <s<n/2,
[s] <p=1+4/(n—2s).
Let f satisfy (A)s)- Then there exists € > 0 with the following property.

(1) For any (¢,1) € E? at to = 0 the equation (4) has a unique solution (u,Ju) €
- X*®. Moreover, there exist two pairs of asymptotic states (¢+,%+) € E® such that

o)y o



24

ast — +o0. _
(2) For any (¢4+,%4) € EZ at tg = +00 [resp. (¢_,¥_) € E? at tg = —oo] the
equation (4) has a unique solution (u,0yu) € X* satisfying (5)4 [resp. (5)-].

Theorem II (Critical case at the level of H™/2).

Letn > 2. Let f satisfy (B). Then there exists € > Q with the following property.
(1) For any (¢,v) € E™M? atty =0 the equation (4) has a unique solution (u, 0;u) €
X™/2, Moreover, there exist two pairs of asymptotic states (¢+,%+) € E™? such

that )
W(gay) ~UO(S2)iEm2—0 ©)=
as t — £00.

(2) For any (¢+,%+) € EM? at to = 400 [resp. (¢p_,9¥_) € E/? satisfying (6)y
[resp. (6)-].

Remark 1. The theorems above shows the existence and asymptotic complete-
ness of the wave operators W, : (¢4,¢¥+) — (u(0),0;u(0)) = (¢,%) defined on
small asymptotic states in F* with 1/2 < s < n/2. The scattering operator S is -
then defined as S = W;l o W,.

Remark 2. A part of Theorem I is proved by Pecher [24] and Lindblad-Sogge
[15] in the cases where s = 1 with 3 < n < 5 and 1/2 < s < 3/2 with n > 2,
respectively. There are several results on the ill-posedness for (1) with s < 1/2 [14,
15].

- Remark 3. The power p = 1+4/(n—2s) comes out as a critical one in He@H*1
in the sense that ||(u,dyu); H® @ H*"!|| is invariant under the dilation u +— uy if
and only if s = n/2 — 2/(p — 1), where uy(t,z) = A= @=Du(A~1¢, A~1z), A > 0.
‘We note here that u — u, leaves (1) with (2) invariant in the sense that u solves

(1) with (2) if and only if ux does.

- Remark 4. The argument in Remark 3 makes sense oniy when s < n/2 and
loses its meaning when s = n/2 for instance. In view of Trudinger’s inequality the
growth rate as exp()\|z[2) at infinity seems to be optimal at the level of H™/2. We

note that the L norm is out of control of the H™'2 norm even when the latter is

infinitesimally small.
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We now give a sketch of the proofs. As usual the method depends on a partial
contraction argument on (4) in the space X° where the Strichartz type estimates

for the free propagatpr fit naturally. To be more specific we use the inequality

P

where (1/q,1/r) € Ag and s = p+n(1/2 —1/r) — 1/q, and its inhomogeneous
version [10, 15, 28]. We combine those Strichartz estimates with the inequality in

we) ("’);LG(R; Bre BeY| < C (g);Esn,

the following

Proposition 1 [17]. Let p and s satisfy 1 < p < co and 0 < s < p. Let
¢,r,msatisfy 1 <£<r <00,2<r,m< 00,1/ =1/r+ (p—1)/m. Let f satisty
f € CBI(C;C). Then

[1£(uw); Bill < Cliw; Bo,|1P~|[u; B2l

The basic estimates that the required iteraction scheme goes though are completed
by embedding theorems and convexity inequalities for the homogeneous Besov
spaces. For the proof of Theorem II we expand the exponential nonlinearity, esti-
mate individual L? noems, and consider the convergence of the resulting series of
norms. For that purpose we need information on the growth rate in p of the L?
estimate in terms of the H®/2 norm. To be more specific we use the inequalities in

the following

Proposition 2 [18]. Let 1 <r < co. Then there exists a constant Cy such that
for any q with r < q < oo the following estimates hold.

s L] < CogM/#Hr=2)/@a)||y; Fm/2||1="/4|ju; LT]|7/9,
llu; BOI| < CogH/+(r=2/a) |ju; F™/2|1=7/9 ju; BY|[™/4.

The proof of Proposition 1 follows closely that of [6, Lemma 3.4] in the sense
that it depends on an equivalent norm on the homogeneous Beson spaces in terms
of modulus of continuity with differences of second order, though actual proof is -

rather involved because of higher derivatives of functions coming from derivatives
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of the composite function f o u. Proposition 2 follows from a sharp form of the
Hardy-Littlewood-Sobolev inequality [22; Inequa;h'ty (2.6)] and convexity inequal-
ities between homogeneous Besov and Sobolev spaces. See [18] for details. The
corresponding results have been obtained in [17, 18] for the nonlinear Schrodinger

equations in the fractional order Sobolev spaces.

References

[1] J. Bergh and J. Lofstrém, “Interpolation Spaces,” Springer-Verlag,

~ Berlin-Heidelberg-New York, 1976 |

[2] T. Cazenave, F. B. Weissler, The Cauchy problem for the critical nonlinear
Schrodinger equation in H*, Nonlinear Analysis, TMA, 14(1990), 807-836.

[3] V. Georgiev, P. P. Schirmer, Global ezistence of low i‘egulam'ty solutions of non-
linear wave equations, Math. Z., 219(1995), 1-19.

[4] J. Ginibre, Scattering theory in the energy space for a class of nonlinear wave
equation, Advanced Studies in Pure Mathematics, 23(1994), 83-103.

[5] J. Ginibre, An Introduction to Nonlinear Schrodinger Equations, in “Nonlinear
Waves,” GAKUTO International Series, Mathematical Sciences and Applica-
tions, 10(1997), 85-133.

(6] J. Ginibre, T. Ozawa, G. Velo, On the existence of the wave operators for a
class of nonlinear Schrodinger equations, Ann. Inst. Henri Poincaré, Physique
théorique, 60(1994), 211-239.

(7] J.Ginibre, A. Soffer, G.Velo, The global Cauchy problem for the critical non-
linear wave equation, J. Funct. Anal., 110(1992), 96-130.

[8] J. Ginibre, G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon
equation, Math. Z., 189(1985), 487-505.

[9] J. Ginibre, G. Velo, Regularity of solutions of critical and subcritical nonlinear
wave equations, Nonlinear Analysis, Theory, Methods & Applications, 22(1994),
No.1, 1-19.

[10] J. Ginibre, G. Velo, Generulized Strichartz inequalities for the wave equation, J.
Funct. Anal., 133(1995), 50-68.

[11] L. V. Kapitanski, Weak and yet weaker solutions of semilinear wave equations,
Commun. PDE 19(1994), 1629-1676.

[12] L. V. Kapitanski, Global and unique weak solutions of nonlinear wave equations,

Mathematical Research Letters, 1(1994), 211-223.



[13]

14]

[15]

[16]

7]

18]

[19]

[20]

21]

[22]

[23]

24]

[25]

[26]

[27]

28]

27

T.Kato, On nonlinear Schrodinger equations II. H?®-solutions and unconditional
well-posedness, J.d’Anal.Math., 67(1995), 281-306.

H. Lindblad, A sharp counterezample to the local existence of low-regularity
solutions to nonlinear wave equations, Duke Math. J., 72(1993), 503-539. |
H. Lindblad, D. Sogge, On existence and scattering with minimal regularity for
semilinear wave equations, J. Funct. Anal., 130(1995), 357-426.

J.Moser, A sharp form of an inequality by N.Trudinger, Indiana Univ.Math.J.
20 (1971) 1077-1092. '

M. Nakamura, T. Ozawa, Low energy scattering for nonlinear Schrédinger equa-
tions in fractional order Sobolev spaces, Rev. Math. Phys., 9(1997), 397-410.
M. Nakamura, T. Ozawa, Nonlinear Schridinger equations in the Sobolev space
of critical order, J. Funct. Anal., (in press).

M. Nakamura, T. Ozawa, The Cauchy problem for nonlinear wave equations in
the Sobolev space of critical order, Discrete and Continuous Dynamical Systems
(in press). |

M. Nakamura, T. Ozawa, The Cauchy problem for nonlinear wave equations in
the homogeneous Sobolev space, Ann. Inst. Henri Poincaré, Physique théorique
(in press).

M. Nakamura, T. Ozawa, Global solutions in the critical Sobolev space for the
wave equations with nonlinearity of exponential growth (preprint).

T. Ozawa, On critical cases of Sobolev’s inequalities, J. Funct. Anal., 127(1995),
259-269.

T. Ozawa, Charuacterization of deinger ’s inequality, J. Inequal. Appl., 1(1997),
369-374. |

H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equa-
tion, Math. Z., 185(1984), 261-270.

H. Pecher, Local solutions of semilinear wave equations in HstL Math. Methods
Appl. Sci., 19(1996), 145-170.

H. Pecher, Solutions of semilinear Schridinger equations in H°®, Ann. Inst.
Henri Poincaré, Physique théorique, 67 (1997), 259-296.

R. S. Strichartz, A note on Trudinger’s ertension of Sobolev’s inequalities,
Indiana Univ. Math. J. 21(1972), 841-842.

R. S. Strichartz, Restrictions of Fourier transforms to quadretic surfaces and



28

decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.

[29] M. Struwe, Critical points of embeddings of Hy™ into Orlicz spaces, Ann. Inst.
Henri Pointcaré, Analyse nonlinéaire 5(1988), 425-464.

[30] H. Triebel, “Theory of Function Spaces,” Birkhduser, 1983.

(31] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J.
Math. Mech. 17(1967), 473-483.



