NOTE ON A PAPER OF N. IWASAKI

阪大理学研究科 西谷 達雄 (TATSUO NISHITANI)

1. Introduction

Let P(x, D) be a differential operator of order m defined in an open set Ω in \mathbb{R}^n with principal symbol $p(x, \xi)$ which can be factorized as

$$p(x,\xi) = \prod_{j=1}^{m} q_j(x,\xi), \quad q_j(x,\xi) = \xi_1 - \lambda_j(x,\xi')$$

where $q_j(x,\xi)$ are real valued pseudodifferential symbol of order 1 and $x=(x_1,x')=(x_1,x_2,...,x_n),\ \xi=(\xi_1,\xi')=(\xi_1,\xi_2,...,\xi_n)$. We assume that the characteristics of q_j intersects normally and non-involutively each other, that is

$$\{q_i, q_j\} \neq 0$$
 on $q_i = q_j = 0$ for $i \neq j$

where $\{q_i, q_j\}$ denotes the Poisson bracket of q_i and q_j .

According to Iwasaki [2], we define the signature of a triplet (q_i, q_j, q_k) at z^0 where $q_i(z^0) = q_j(z^0) = q_k(z^0) = 0$. Let us say that three real numbers a, b, c have the same sign if they are simultaneously positive or simultaneously negative. We say $\operatorname{sgn}(q_i, q_j, q_k)(z^0) = + \operatorname{if} \{q_i, q_j\}(z^0), \{q_j, q_k\}(z^0), \{q_k, q_i\}(z^0) \text{ have the same sign and } \operatorname{sgn}(q_i, q_j, q_k)(z^0) = - \operatorname{otherwise.}$

When m = 3, in [2], Iwasaki proved that in order that the Cauchy problem of P(x, D) is well posed the lower order terms must verify additional conditions at z^0 more than Ivrii-Petkov condition if $\operatorname{sgn}(q_1, q_2, q_3)(z^0) = +$. On the other hand, in [3] we proved that if the propagation cone at every triple characteristic is transversal to the doubly characteristic set and the lower order terms verify the Ivrii-Petkov condition then the Cauchy problem is well posed.

Here we recall that the localization p_{z^0} of p is the first non-trivial term in the Taylor expansion of p at z^0 which is a hyperbolic polynomial on $T_{z^0}(T^*\Omega)$ with respect to $\Theta = -H_{x^1} \in T_{z^0}(T^*\Omega)$ (see [1]) where H_f denotes the Hamilton vector field of $f \in C^{\infty}(T^*\Omega)$. The propagation cone at z^0 is the dual cone of the hyperbolic

cone $\Gamma(p_{z^0}, \Theta)$ (for the definition, see [1]) with respect to the canonical symplectic structure on $T_{z^0}(T^*\Omega)$ induced by the 2-form $d\xi \wedge dx$.

In this note we show that, when m=3 the condition $\operatorname{sgn}(q_1,q_2,q_3)(z^0)=-$ is equivalent to that the propagation cone at z^0 is transversal to the doubly characteristic set (Corollary 2.4). Let m>3. At z^0 where $q_j(z^0)=0$, $1\leq j\leq m$ we can induce an order relation on the set $\{q_1,...,q_m\}$ provided that $\operatorname{sgn}(q_i,q_j,q_k)(z^0)=-$ for every triplet (q_i,q_j,q_k) . Using this order relation we give another formulation of the condition that the propagation cone at z^0 intersects transversally to the doubly characteristic set (Theorem 2.3).

2. Result

Let $q_i(x,\xi)$ be classical pseudodifferential symbols of order 1 defined near z^0 where $q_j(z^0) = 0$ and assume that the differentials dq_j are linearly independent at z^0 . Let

(2.1)
$$p(x,\xi) = \prod_{j=1}^{m} q_j(x,\xi)$$

and assume that $p(x,\xi)$ is (microlocally) hyperbolic with respect to Θ . Thus we may suppose that $q_i(x,\xi)$ are real-valued and $dq_i(\Theta) > 0$ at z^0 . Then it is clear that

$$\Gamma(p_{z^0},\Theta) = \{X \in T_{z^0}(T^*\Omega) | dq_j(X) > 0, \forall j\}.$$

Denoting by $C(p_{z^0}, \Theta)$ the propagation cone at z^0 we easily see that

$$C(p_{z^0}, \Theta) = \{ X \in T_{z^0}(T^*\Omega) | X = \sum \alpha_j H_{q_j}(z^0), \ \alpha_j \ge 0 \}.$$

To simplify notations we write Γ_{z^0} and C_{z^0} for $\Gamma(p_{z^0}, \Theta)$ and $C(p_{z^0}, \Theta)$ respectively. Let $S_{ij} = \{(x, \xi) | q_i(x, \xi) = q_j(x, \xi) = 0\}$ for $i \neq j$ and define the map π_{ij} ;

$$\pi_{ij}: T_{z^0}(T^*\Omega) \ni X \mapsto (dq_i(X), dq_j(X)) \in \mathbf{R}^2.$$

Then we have

Lemma 2.1. Assume that $\{q_{\mu}, q_{\nu}\}(z^0) \neq 0$ for every pair $\mu, \nu, \mu \neq \nu$. Then we have

$$(2.2) C_{z^0} \cap T_{z^0} S_{ij} = \{0\}$$

if and only if $\pi_{ij}(C_{z^0})$ is a proper cone in \mathbb{R}^2 . Moreover this is equivalent to

$$-H_{c_iq_i+c_jq_j}(z^0)\in\Gamma_{z^0}$$

with some $c_i, c_j \in \mathbf{R}$.

Proof. We assume that $C_{z^0} \cap T_{z^0}S_{ij} = \{0\}$. We examine that $\pi_{ij}(C_{z^0})$ is a proper cone in \mathbf{R}^2 . Otherwise $\pi_{ij}(C_{z^0})$ would contain a line. Thus there exist $0 \neq X_k = \sum \alpha_{k\mu}\pi_{ij}(H_{q_{\mu}}), k = 1, 2$ such that $X_1 + X_2 = 0$. This implies that

$$Y = \sum (\alpha_{1\mu} + \alpha_{2\mu}) H_{q_{\mu}} \in T_{z^0} S_{ij}.$$

Since $\sum (\alpha_{1\mu} + \alpha_{2\mu}) > 0$ and hence $Y \neq 0$ this contradicts the assumption. Conversely assume that $\pi_{ij}(C_{z^0})$ is a proper cone in \mathbf{R}^2 . Let $X = \sum \alpha_{\mu} H_{q_{\mu}}(z^0) \in C_{z^0} \cap T_{z^0} S_{ij}$. From $dq_i(X) = dq_j(X) = 0$ it follows that

$$\sum \alpha_{\mu} \pi_{ij}(H_{q_{\mu}}) = 0.$$

Since $\pi_{ij}(H_{q_{\mu}}) \neq 0$ we have $\alpha_{\mu} = 0$ and hence X = 0. That is $C_{z^0} \cap T_{z^0} S_{ij} = \{0\}$. We next assume that $Z = -H_{c_i q_i + c_j q_j}(z^0) \in \Gamma_{z^0}$ with some $c_i, c_j \in \mathbf{R}$ so that

$$dq_{\mu}(Z) = c_i dq_i(H_{q_{\mu}}) + c_j dq_j(H_{q_{\mu}}) > 0, \ \forall \mu.$$

This shows that $\pi_{ij}(C_{z^0})$ is a proper cone in \mathbf{R}^2 . Conversely we assume that $\pi_{ij}(C_{z^0})$ is a proper cone. Then we can choose c_i, c_j such that

$$<(c_i, c_j), \pi_{ij}(H_{q_{\mu}})> = (c_i dq_i + c_j dq_j)(H_{q_{\mu}}) > 0, \ \forall \mu.$$

This proves $-H_{c_iq_i+c_jq_j}(z^0) \in \Gamma_{z^0}$. Hence the assertion.

Let us set $a_{\mu\nu}=\{q_{\mu},q_{\nu}\}(z^0)$ and we express the condition (2.2) in terms of $a_{\mu\nu}$. Note that $Z=a_{\alpha\beta}H_{q_{\gamma}}+a_{\beta\gamma}H_{q_{\alpha}}+a_{\gamma\alpha}H_{q_{\beta}}\in T_{z^0}S_{\alpha\beta\gamma}$ where

$$S_{\alpha\beta\gamma} = \{(x,\xi)|q_{\alpha}(x,\xi) = q_{\beta}(x,\xi) = q_{\gamma}(x,\xi) = 0\}.$$

If $a_{\alpha\beta}$, $a_{\beta\gamma}$, $a_{\gamma\alpha}$ have the same sign then it follows that $Z \in C_{z^0}$ which contradicts to $C_{z^0} \cap T_{z^0} S_{\alpha\beta} = \{0\}$. Thus if (2.2) holds for every pair $i, j \ (i \neq j)$ then one has $\operatorname{sgn}(q_{\alpha}, q_{\beta}, q_{\gamma})(z^0) = -$ for every triplet (α, β, γ) (cf. Lemma 4.1 in [4]).

We say that $q_{\alpha} \gg q_{\beta}$ if $a_{\alpha\beta} > 0$ or $\alpha = \beta$. Assuming that $\operatorname{sgn}(q_{\alpha}, q_{\beta}, q_{\gamma})(z^{0}) = -$ for every triplet (α, β, γ) , the relation \gg becomes an order relation which is easily verified.

Lemma 2.2. Assume that $\operatorname{sgn}(q_{\alpha}, q_{\beta}, q_{\gamma})(z^{0}) = -$ for every triplet (α, β, γ) . Let $q_{i} \gg q_{j}$. Then $\pi_{ij}(C_{z^{0}})$ is a proper cone if and only if

$$\frac{a_{\nu i}}{a_{\nu j}} > \frac{a_{\mu i}}{a_{\mu j}}$$

for every q_{ν} , q_{μ} with $q_{\nu} \ll q_{j} \ll q_{i} \ll q_{\mu}$.

Proof. Recall that $\pi_{ij}(H_{q_{\kappa}}) = (a_{\kappa i}, a_{\kappa j})$. Note that $(a_{\kappa i}, a_{\kappa j})$ lies in the first, the third and the second quadrant if $q_i \ll q_{\kappa}$, $q_{\kappa} \ll q_j$ and $q_j \ll q_{\kappa} \ll q_i$ respectively. Let

$$\min_{q_{\mu},q_{i}\ll q_{\mu}} rac{a_{\mu j}}{a_{\mu i}} = rac{a_{\mu_{0} j}}{a_{\mu_{0} i}}.$$

Then it is easy to see that the condition

$$<(a_{\mu_0 j}, -a_{\mu_0 i}), (a_{\nu i}, a_{\nu j})> = a_{\mu_0 j} a_{\nu i} - a_{\mu_0 i} a_{\nu j} > 0$$

for every ν with $q_{\nu} \ll q_{j}$ is necessary and sufficient for $\pi_{ij}(C_{z^{0}})$ to be a proper cone. This proves the assertion.

Theorem 2.3. Let m > 3. Then the following two conditions are equivalent.

- (i) $C_{z^0} \cap T_{z^0} S_{ij} = \{0\} \text{ for every } i, j \ (i \neq j).$
- (ii) $\operatorname{sgn}(q_i, q_j, q_k)(z^0) = -$ for every triplet (i, j, k) and for every quadruplet $(\alpha, \beta, \gamma, \delta)$ with $q_{\alpha} \ll q_{\beta} \ll q_{\gamma} \ll q_{\delta}$ we have

$$\frac{\{q_{\alpha}, q_{\gamma}\}(z^{0})}{\{q_{\alpha}, q_{\beta}\}(z^{0})} > \frac{\{q_{\delta}, q_{\gamma}\}(z^{0})}{\{q_{\delta}, q_{\beta}\}(z^{0})}.$$

Proof. It is clear from Lemma 2.2.

Corollary 2.4. Let m = 3. Then the following two conditions are equivalent.

- (i) $C_{z^0} \cap T_{z^0} S_{ij} = \{0\} \text{ for every } i, j \ (i \neq j).$
- (ii) $\operatorname{sgn}(q_1, q_2, q_3)(z^0) = -.$

REFERENCES

- 1. M.F.Atiyah, R.Bott and L.Gårding, Lacunas for hyperbolic differential operators with constant coefficients I, Acta Math. 124 (1970), 109-189.
- 2. N.Iwasaki, Bicharacteristic curves and wellposedness for hyperbolic equations with non involutive multiple characteristics, J. Math. Kyoto Univ. 34 (1994), 41-46.
- 3. K.Kajitani, S.Wakabayashi and T.Nishitani, The Cauchy problem for hyperbolic operators of strong type, Duke Math. J. 75 (1994), 1-56.
- 4. T.Nishitani, Propagation of singularities for hyperbolic operators with transverse propagation cone, Osaka J. Math. 27 (1990), 1-16.