On a density of the set of primes dividing the generalized Fibonacci numbers (Number Theory and its Applications)

Author(s)
Kohno, Yoshifumi; Nakahara, Toru; Ok, Bo Myoung

Citation
数理解析研究所講究録 1998 (1060): 172-175

Issue Date
1998-08

URL
http://hdl.handle.net/2433/62361

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
On a density of the set of primes dividing the generalized Fibonacci numbers

By

Yoshifumi KOHNO, Toru NAKAHARA and Bo Myoung OK

Abstract J. C. Lagarias showed the set of prime numbers which divide some Lucas number L_n has positive density using Hasse's method [H]. In his paper he found several results for certain other special second-order linear recurrences [L], [W]. So we will research similar phenomena for slightly generalized second-order linear recurrences.

1 Introduction

In this note we will try to generalize a result of Lagalias on some second-order linear recurrences. Our method will be controlled by Hasse’s one. Then we have to check whether these recurrences satisfy Hasse’s conditions or not.

Now, any irreducible second-order recurrence $\{U_n\}$ whose terms U_n are rational numbers can be expressed in the form

$$U_n = \alpha \theta^n + \bar{\alpha} \bar{\theta}^n,$$

where α and θ are in the quadratic field K generated by the roots of the characteristic polinomial of $\{U_n\}$, and $\bar{\alpha}, \bar{\theta}$ are the algebraic conjugates of α, θ in K.

Hasse’s conditions are as follows:

1. $\theta/\bar{\theta} = \pm \phi^k$, where $k = 1$ or 2 for some ϕ in K,
2. $\bar{\alpha}/\alpha = \zeta^j$, where ζ is a root of unity in K and j is an integer.

We put $S_U = \{ p : p \text{ is a prime and } p | U_n \text{ for some } n \}$. These particular recurrences $\{U_n\}$, which satifiy the above conditions (1) and (2), have a special property.

Definition 1 A set Σ of primes is a Chebotarev set if and only if there is some finite normal extension L of the rationals Q such that a prime p is in Σ iff the Artin symbol $\left[\frac{L}{Q} \right] (p)$ is in specified conjugacy classes of the Galois group $Gal(L/Q)$.

Definition 2 Density $d(S_U)$ is defined

$$\lim_{X \to \infty} \frac{\#S_{U,X}}{\#P_X} = d(S_U),$$

where $\#S_{U,X} = \#\{ p ; p \in S_U, p < X \}$ and $\#P_X = \#\{ p ; p \text{ is a prime, } p < X \} \sim \frac{X}{\log X}$.

Property 1 Both the set S of primes and its complement

$$\bar{S} = \{ p : p \text{ is a prime and } p \notin S \}$$

have a decomposition into disjoint countable unions of Chebotarev sets of primes. That is

$$S = \bigcup_{j=1}^{\infty} S^{(j)}, \quad \bar{S} = \bigcup_{j=1}^{\infty} \bar{S}^{(j)},$$

where $S^{(j)}$ and $\bar{S}^{(j)}$ are Chebotarev sets. Then the densities of the sets satisfy

$$\sum_{j=1}^{\infty} d(S^{(j)}) + \sum_{j=1}^{\infty} d(\bar{S}^{(j)}) = 1.$$

If S is any set of primes having Property 1, then S has a natural density $d(S)$ given by

$$d(S) = \sum_{j=1}^{\infty} d(S^{(j)}).$$

2 Known results

Hasse and Lagarias obtained the following prime densities for several types of sequences:

Theorem 1 (H. Hasse [H]) For the sequence $\{V_n\} = \{2^n + 1\}$, the set of primes

$$S_V = \{ p : p \text{ is a prime and } p \text{ divides } 2^n + 1 \text{ for some } n \geq 0 \}$$

$$= \{ p \in \mathbb{P} ; p | V_n \text{ for some } n \}.$$

has density $d(S_V) = \frac{17}{24}$.

Hasse’s result actually covers all the sequences

$$\{ A_n \} = \{ a^n + 1 \mid n \geq 0 \},$$

where a is an integer ≥ 3, and the density of the associated set $S_A = \{ p \in \mathbb{P} : p | A_n \text{ for some } n \}$ is

$$d(S_A) = \frac{2}{3}.$$

Theorem 2 (J. C. Lagarias [L]) For the sequence $\{L_n\} (L_{n+1} = L_n + L_{n-1}, \ L_1 = 2, \ L_2 = 1)$, the set of primes

$$S_L = \{ p \in \mathbb{P} ; p | L_n \text{ for some } n \}$$

has density $d(S_L) = \frac{2}{3}$.

Theorem 3 (J. C. Lagarias [L2]) For the sequence \(\{W_n\} \) \((W_n = 5W_{n-1} - 7W_{n-2}, W_0 = 1, W_1 = 2)\), the set of primes

\[S_W = \{ p \in P : p | W_n \text{ for some } n \} \]

has density \(d(S_W) = \frac{3}{4} \).

Lagarias considered

\(\{A_n(m)\}, \ {B_n(m)\} \) \((m \text{ : fixed})\)

where both series admit the condition:

\[U_n = mU_{n-1} - U_{n-2} \]

with \(A_0(m) = B_0(m) = 1, A_1(m) = m + 1, B_1(m) = m - 1 \), to which Hasse's method is applicable. In the cases of fields \(K = Q(\sqrt{m^2 - 4}) \), for the following sets of primes:

\[S_A(m) = \{ p \in P : p | A_n(m) \text{ for some } n \}, \]
\[S_B(m) = \{ p \in P : p | B_n(m) \text{ for some } n \}, \]

it is known that \(d(S_A(m)) = d(S_B(m)) = \frac{1}{3} \).

3 Theorem

Let

\(\{U_n\} \) \((U_n = mU_{n-1} + U_{n-2}, U_0 = 2, U_1 = m)\),

be a second-order linear recurrence, where we assume that \(D = m^2 + 4 \) is a prime discriminant of \(K = Q(\sqrt{D}) \). Then we have

Theorem 4 For the sequence \(\{U_n\} \) \((U_n = mU_{n-1} + U_{n-2}, U_0 = 2, U_1 = m)\), the set of primes

\[S_U = \{ p \in P : p | U_n \text{ for some } n \} \]

has density \(d(S_U) = \frac{2}{3} \).

Remark 1 In the case of \(m = 1 \), the theorem above coincides with Theorem 2. We can prove Theorem 4 by a similar way to Theorem 2.

Acknowledgements The authors would like to express their sincere thanks to Prof. Attila Pethő at Kossuth Lajos University in Debrecen for references [L].
References

Yoshifumi Kohno
Department of Engineering Systems and Technology
Course of Science and Engineering
Graduate School of Saga University
Saga 840, JAPAN
E-mail address: kono@ms.saga-u.ac.jp

Toru Nakahara
Department of Mathematics
Faculty of Science and Engineering
Saga University
Saga 840, JAPAN
E-mail address: nakahara@ma.is.saga-u.ac.jp

Bo Myoung Ok
Department of Engineering Systems and Technology
Course of Science and Engineering
Graduate School of Saga University
Saga 840, JAPAN
E-mail address: ok@ms.saga-u.ac.jp