<table>
<thead>
<tr>
<th>Title</th>
<th>Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers (Number Theory and its Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Duverney, Daniel; Nishioka, Keiji; Nishioka, Kumiko; Shiokawa, Iekata</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1998, 1060: 91-100</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62370</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

Department: 京都大学学術情報リポジトリ

Kyoto University Research Information Repository

京都大学

KYOTO UNIVERSITY
Transcendence of Rogers–Ramanujan continued fraction and reciprocal sums of Fibonacci numbers

Daniel Duverney
Keiji Nishioka
Kumiko Nishioka
Iekata Shiokawa

This is a report on the recent work of Duverney, Ke. Nishioka, Ku. Nishioka, and the author [11] concerning the title of this paper. Let $P(q)$, $Q(q)$, $R(q)$ be the Ramanujan’s functions defined by

$$P(q) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n)q^n = 1 - 24 \sum_{n=1}^{\infty} \frac{nq^n}{1 - q^n},$$

$$Q(q) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n)q^n = 1 + 240 \sum_{n=1}^{\infty} \frac{n^3q^n}{1 - q^n},$$

$$R(q) = 1 - 540 \sum_{n=1}^{\infty} \sigma_5(n)q^n = 1 - 540 \sum_{n=1}^{\infty} \frac{n^5q^n}{1 - q^n},$$

which are the classical Eisenstein series $E_2(q), E_4(q), E_6(q)$ respectively, where $\sigma_i(n) = \sum_{d|n}d^i$. Mahler [17] proved the algebraically independency of the functions $P(q), Q(q), R(q)$ over $\mathbb{C}(q)$. Letting $'$ denote the derivation $q^d\frac{d}{dq}$, we have

$$P' = \frac{1}{12}(P^2 - Q), \quad Q' = \frac{1}{3}(PQ - R), \quad R' = \frac{1}{2}(PR - Q^2)$$

(cf. [15; Theorem 5.3]). We put

$$\Delta = \frac{1}{1728}(Q^3 - R^2), \quad J = \frac{Q^3}{\Delta}.$$

The modular function $j(\tau)$ is described as $j(\tau) = J(q)$, where $q = e^{2\pi i \tau}, \text{Im}\tau > 0$. Barré–Serieix, Diaz, Gramain, and Philibert [3] proved the transcendency of the value $J(\alpha)$ for any $\alpha \in \overline{\mathbb{Q}}, 0 < |\alpha| < 1$. By the equalities

$$\frac{J'}{J} = -\frac{R}{Q}, \quad \frac{J''}{J'} = \frac{1}{6}P - \frac{2}{3} \frac{R}{Q} - \frac{1}{2} \frac{Q^2}{R},$$
we have $Q \in \mathbb{Q}(J, J', J'')$, and hence

$$\mathbb{Q}(P, Q, R) = \mathbb{Q}(J, J', J'') = K,$$ say.

We note that K is a differential field, i.e., closed under the derivation 't'. Now we state

Nesterenko's theorem ([19], [20]). If $\alpha \in \mathbb{C}$, $0 < |\alpha| < 1$, then

$$\text{trans.deg}_\mathbb{Q} \mathbb{Q}(\alpha, P(\alpha), Q(\alpha), R(\alpha)) \geq 3.$$

Corollary 1. If $\alpha \in \overline{\mathbb{Q}}$, $0 < |\alpha| < 1$, then each of the following set

1) $P(\alpha), Q(\alpha), R(\alpha)$, 2) $J(\alpha), J'(\alpha), J''(\alpha)$ are algebraically independent.

Corollary 2. The numbers π, e^π, and $\Gamma(1/4)$ are algebraically independent.

Let $\eta(q)$ be the eta function defined by

$$\eta(q) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n),$$

which is known to satisfy

$$\eta(q)^{24} = \Delta(q).$$

Corollary 3. If $\alpha \in \overline{\mathbb{Q}}$, $0 < |\alpha| < 1$, then

$$\text{trans.deg}_\mathbb{Q} \mathbb{Q}(\alpha, \eta(\alpha), \eta'(\alpha), \eta''(\alpha)) \geq 3.$$

In particular, the infinite product $\prod_{n=1}^{\infty} (1-\alpha^n)$ is transcendental for any $\alpha \in \overline{\mathbb{Q}}$, $0 < |\alpha| < 1$.

Let $\vartheta_3, \vartheta = \vartheta_4, \vartheta_2$ be Jacobi's theta series defined by

$$\vartheta_3 = 1 + 2 \sum_{n=1}^{\infty} q^{n^2}, \quad \vartheta = 1 + 2 \sum_{n=1}^{\infty} (-1)^n q^{n^2}, \quad \vartheta_2 = 2q^{1/4} \sum_{n=1}^{\infty} q^{n(n-1)}.$$

Corollary 4 (Bertrand [5]). Let $y = y(q)$ be one of $\vartheta_3, \vartheta, \vartheta_2$. If $\alpha \in \overline{\mathbb{C}}$, $0 < |\alpha| < 1$, then

$$\text{trans.deg}_\mathbb{Q} \mathbb{Q}(\alpha, y(\alpha), y'(\alpha), y''(\alpha)) \geq 3.$$

In particular, the number $\sum_{n=1}^{\infty} \alpha^{n^2}$ is transcendental for any $\alpha \in \overline{\mathbb{Q}}$, $0 < |\alpha| < 1$.
We note that Corollary 4 provides the best possible results as y is known to satisfy an algebraic differential equations of the third order defined over \mathbb{Q} (cf. Jacobi [13]). A survey on Nesterenko’s theorem can be found in Waldschmidt [23].

The following lemmas are useful to prove the transcendency of some numbers related to modular functions.

Lemma 1([10]). Let $\alpha \in \overline{\mathbb{Q}}$, $0 < |\alpha| < 1$. If a nonconstant function $f(q)$ is algebraic over K and defined at α, then $f(\alpha)$ is transcendental.

Lemma 2([10]). Let $y = y(q)$ be one of the functions $\eta, \vartheta_3, \vartheta, \vartheta_2$. Then $y(q^k)$, $y'(q^k)$, $y''(q^k)$, ... are algebraic over K for any positive integer k.

The Rogers–Ramanujan continued fraction $RR(q)$ is defined by

$$RR(q) = 1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \ldots}}}$$

which is known to have the expressions

$$RR(q) = \frac{\sum_{k=0}^{\infty} q^{k^2}}{\sum_{k=0}^{\infty} (1-q)(1-q^2)\cdots(1-q^k)} = \prod_{k=0}^{\infty} \frac{(1-q^{5k+2})(1-q^{5k+3})}{(1-q^{5k+1})(1-q^{5k+4})}$$

(cf. [4; Chap. 16, Entry 15, 38(iii)]). Irrationality measures for some values of this continued fraction were given by Osgood [21] and Shiokawa [22]. The latter proved that for any integer $d \geq 2$ there is a constant $C = C(d) > 0$ such that

$$|RR\left(\frac{1}{d}\right) - \frac{p}{q}| > Cq^{-2B/\sqrt{\log q}}$$

for all integers $p, q (\geq 2)$, where $B = \sqrt{\log d}$. Matala–Aho [18] obtained some higher degree irrationality results. For example, $RR((\sqrt{5} - 1)/2) \notin \mathbb{Q}(\sqrt{5})$.

Theorem 1([11]). The Rogers–Ramanujan continued fraction $RR(\alpha)$ is transcendental for any $\alpha \in \overline{\mathbb{Q}}$, $0 < |\alpha| < 1$.
Proof. Let
\[F(q) = \frac{q^{1/5}}{1 + 1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \frac{q^4}{1 + \cdots}}}}}, \]
then
\[\frac{1}{F(q)} - F(q) - 1 = q^{-1/5} \prod_{n=1}^{\infty} \frac{1 - q^{n/5}}{1 - q^{5n}} = \frac{\eta(q^{1/5})}{\eta(q^5)} \]
(see [4; p.85]). Applying Lemma 1 and 2 to the function \(f(q) = \eta(q)/\eta(q^{25}) \), we see that \(f(\alpha) \) is transcendental for any \(\alpha \in \overline{\mathbb{Q}} \), \(0 < |\alpha| < 1 \), and so is \(F(\alpha) \) from the formula above.

We give here further examples of continued fractions whose transcendence can be easily deduced from Lemma 1 and 2. For any \(\alpha \in \overline{\mathbb{Q}} \), \(0 < |\alpha| < 1 \), the following continued fractions (i), (ii), (iii) are transcendental:

(i) \[\frac{1}{1 + \frac{\alpha}{1 + \frac{\alpha^2}{1 + \frac{\alpha^3}{1 + \frac{\alpha^4}{1 + \frac{\alpha^5}{1 + \cdots}}}}} = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad V_n = \alpha^n + \beta^n. \]

Theorem 2([11]). If \(\alpha \beta = \pm 1 \), then the numbers
\[\sum_{n=1}^{\infty} \frac{1}{U_{2s}}, \quad \sum_{n=1}^{\infty} \frac{1}{V_{2s}} \]
are transcendental for any positive integer \(s \).

Theorem 3([11]). If \(\alpha \beta = 1 \), then the number
\[\sum_{n=1}^{\infty} \frac{1}{V_{2s}^n} \]
is transcendental for any positive integer \(s \).
Theorem 4 ([11]). If $\alpha \beta = -1$, then the number
\[
\sum_{n=1}^{\infty} \frac{1}{U_{2n-1}^{s}}
\]
is transcendental for any positive integer s.

In the special case of $s = 1$, these theorems are proved in [10] by direct calculation without using Lemma 3 below.

For the proof, we need another lemma. Let
\[
k = \vartheta_{3}^{2}(q)/\vartheta_{3}^{2}(q)
\]
be the modulus of the complete elliptic integrals
\[
K = \int_{0}^{1} \frac{dt}{\sqrt{(1 - t^{2})(1 - k^{2}t^{2})}}, \quad E = \int_{0}^{1} \frac{\sqrt{1 - k^{2}t^{2}}}{\sqrt{1 - t^{2}}} dt,
\]
of the first and the second kind, respectively. Then we have
\[
\frac{K}{\pi} = \frac{1}{2} \vartheta_{3}^{2}(q), \quad \frac{E}{\pi} = \frac{K}{\pi} + \frac{\pi}{K} \vartheta'(q),
\]
where $\vartheta' = q \frac{d\vartheta}{dq}$ (cf. [6; (2.1.13), (2.3.17)]).

Lemma 3 ([11]). Let s be any positive integer and let
\[
f_{2s}(q) = \sum_{n=1}^{\infty} \frac{1}{(q^{-n} - q^{n})^{2s}}, \quad g_{s}(q) = \sum_{n=1}^{\infty} \frac{1}{(q^{-n} + q^{n})^{s}}.
\]
Then $f_{2s}(q), f_{2s}(q^{2}), g_{s}(q)$, and $g_{s}(q^{2})$ are algebraic over the field $\mathbb{Q}(P(q), Q(q), R(q))$.

Proof. Let s be a positive integer. We put
\[
I_{2s} = \sum_{n=1}^{\infty} \cosh^{2s}(n\pi c) = \sum_{n=1}^{\infty} \left(\frac{2}{q^{-n} - q^{n}} \right)^{2s}, \quad q = e^{-\pi c},
\]
\[
\Pi_{s} = \sum_{n=1}^{\infty} \sech^{s}(n\pi c) = \sum_{n=1}^{\infty} \left(\frac{2}{q^{-n} + q^{n}} \right)^{s},
\]
so that
\[
f_{2s}(q) = 2^{-2s}I_{2s}, \quad g_{s}(q) = 2^{-s}\Pi_{s}.
\]
Then Zucker [26] obtained expansions of I_{2s}, II_{s}, and II_{2s+1} as polynomials of k, K/π, and E/π with rational coefficients, which can be found in Table 1(i), 1(ii), and 1(vi) in [26], respectively. Hence the lemma follows from Lemma 2.

Proof of Theorem 2. If $\alpha\beta = 1$, then we have

$$
(\alpha - \beta)^{-2s} \sum_{n=1}^{\infty} \frac{1}{U_{2n}^{2s}} = \sum_{n=1}^{\infty} \frac{1}{(\beta^{-n} - \beta^{n})^{2s}} = f_{2s}(\beta),
$$

$$
\sum_{n=1}^{\infty} \frac{1}{V_{2n}^{2s}} = \sum_{n=1}^{\infty} \frac{1}{(\beta^{-n} + \beta^{n})^{2s}} = g_{2s}(\beta),
$$

and the results follow from Lemma 3 and 1. If $\alpha\beta = -1$, then we have

$$
(\alpha - \beta)^{-2s} \sum_{n=1}^{\infty} \frac{1}{U_{2n}^{2s}} = \sum_{n=1}^{\infty} \frac{1}{((-\beta)^{-n} - \beta^{n})^{2s}}
$$

$$
= \sum_{n=1}^{\infty} \frac{1}{((-\beta)^{-2n} - \beta^{2n})^{2s}} + \sum_{n=1}^{\infty} \frac{1}{((-\beta)^{-2n+1} - \beta^{2n+1})^{2s}}
$$

$$
= f_{2s}(\beta^2) + g_{2s}(\beta) - g_{2s}(\beta^2),
$$

$$
\sum_{n=1}^{\infty} \frac{1}{V_{2n}^{2s}} = \sum_{n=1}^{\infty} \frac{1}{((-\beta)^{-n} + \beta^{n})^{2s}}
$$

$$
= \sum_{n=1}^{\infty} \frac{1}{(\beta^{-2n} + \beta^{2n})^{2s}} + \sum_{n=1}^{\infty} \frac{1}{((-\beta)^{-2n+1} + \beta^{2n+1})^{2s}}
$$

$$
= g_{2s}(\beta^2) + f_{2s}(\beta) - f_{2s}(\beta^2).
$$

Proof of Theorem 3.

$$
\sum_{n=1}^{\infty} \frac{1}{V_{n}^{s}} = \sum_{n=1}^{\infty} \frac{1}{(\beta^{-n} + \beta^{n})^{s}} = g_{s}(\beta).
$$

Proof of Theorem 4.

$$
(\alpha - \beta)^{-2s} \sum_{n=1}^{\infty} \frac{1}{U_{2n-1}^{2s}} = g_{2s}(\beta) - g_{2s}(\beta^2),
$$

$$
(\alpha - \beta)^{-(2s-1)} \sum_{n=1}^{\infty} \frac{1}{U_{2n-1}^{2s-1}} = - \sum_{n=1}^{\infty} \frac{1}{(\beta^{-(2n-1)} + \beta^{2n-1})^{2s-1}}
$$

$$
= -g_{2s-1}(\beta) + g_{2s-1}(\beta^2).$$
Fibonacci numbers \(\{F_n\}_{n \geq 1} \) and Lucas numbers \(\{L_n\}_{n \geq 1} \) are defined by
\[
F_0 = 0, \quad F_1 = 1, \quad F_{n+2} = F_{n+1} + F_n \quad (n \geq 0),
\]
\[
L_0 = 2, \quad L_1 = 1, \quad L_{n+2} = L_{n+1} + L_n \quad (n \geq 0),
\]
and written as
\[
F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad L_n = \alpha^n + \beta^n \quad (n \geq 0),
\]
where
\[
\alpha = \frac{1 + \sqrt{5}}{2}, \quad \beta = \frac{1 - \sqrt{5}}{2}.
\]

Corollary([11]). The numbers
\[
\sum_{n=1}^{\infty} \frac{1}{F_{n^s}} \quad \sum_{n=1}^{\infty} \frac{1}{L_{n^s}} \quad \sum_{n=1}^{\infty} \frac{1}{F_{2n-1}^s} \quad \sum_{n=1}^{\infty} \frac{1}{L_{2n}^s}
\]
are transcendental for any positive integer \(s \).

André-Jeannin [1] proved the irrationality of the number
\[
\sum_{n=1}^{\infty} \frac{1}{F_n}.
\]
Duverney [8] gave another proof and Kato [14] showed by Duverney’s method that the number
\[
\sum_{n=1}^{\infty} \frac{1}{F_{an}}
\]
is irrational for any positive integer \(a \). It is not known whether these numbers are transcendental or not. Bundschuh and Väänänen [7] gave an irrationality measure for \(\sum_{n=1}^{\infty} \frac{1}{F_{n^{-1}}} \); namely
\[
\left| \sum_{n=1}^{\infty} \frac{1}{F_n} - \frac{p}{q} \right| > \frac{1}{q^{8.621}}
\]
holds for all rationals \(p/q \) with sufficiently large \(q \).

Finally, we state two problems which are interesting in comparison with the arithmetical properties of the values of the Riemann zeta function \(\zeta(s) \) at \(s = 2, 3, 4, \ldots \)

Problem 1. Is the number
\[
\sum_{n=1}^{\infty} \frac{1}{F_n^3}
\]
irrational?

Problem 2. Are the numbers

\[\sum_{n=1}^{\infty} \frac{1}{F_n^2}, \quad \sum_{n=1}^{\infty} \frac{1}{F_n^4}, \quad \sum_{n=1}^{\infty} \frac{1}{F_n^6} \]

algebraically independent?

References

[13] C. G. J. Jacobi, Über die Differentialalgleichung, welcher die Reihen \(1 \pm 2q \pm 2q^4 \pm 2q^9 + \text{etc.} \), \(2\sqrt[4]{q} + 2\sqrt[4]{q^5} + 2\sqrt[4]{q^9} + \text{etc.} \), Genügen leisten. J. Reine Angew. Math. 36 (1847), 97–112.

Daniel Duverney
24 Place du Concert
59800 Lille (France)
duverney@gat.univ-lille1.fr

Keiji Nishioka
Faculty of Environmental Info
Keio University, Endoh 5322
Fujisawa 246 (Japan)
knis@sfc.keio.ac.jp

Kumiko Nishioka
Mathematics, Hiyoshi Campus
Keio University
Hiyoshi 4-1-1, Kohoku-ku,
Yokohama 223 (Japan)
nishioka@math.hc.keio.ac.jp

Iekata Shiokawa
Department of Mathematics
Keio University
Hiyoshi 3-14-1, Kohoku-ku,
Yokohama 223 (Japan)
shiokawa@math.keio.ac.jp