EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES

NAOKI SHIOJI (塩路直樹・王川大学工学部)

1. INTRODUCTION

Let X be a Banach space, let A be a closed, convex subset of $X \times X$, and let $f : \mathbb{R} \times \overline{D(A)} \rightarrow X$ be a Carathéodory mapping which is T-periodic in its first variable, and let $h \in L^1(0, T; X)$.

In this paper, we study the existence of T-periodic solutions to a class of a nonlinear evolution equations of the form

$$u'(t) + Au(t) \ni f(t, u(t)) + h(t) \quad \text{for } t \in \mathbb{R}. \tag{1.1}$$

This problem has been studied by many authors; cf. [1, 3, 5, 12, 14, 15, 19, 20]. In the case when A is the subdifferential of a proper, lower semicontinuous convex function on a Hilbert space, Ōtani [14] obtained a nice result. Vrabie [20] considered the case that A is a strongly continuous operator. He considered the case that X is a Banach space, A is an m-accretive operator, and $f : \mathbb{R} \times \overline{D(A)} \rightarrow X$ is a Carathéodory mapping such that $\overline{D(A)}$ is convex, $-A$ generates a compact semigroup, f is T-periodic in its first variable and there exists $a > 0$ such that $A - aI$ is m-accretive, and

$$\lim_{r \to \infty} \frac{1}{r} \sup \{ ||f(t, v)|| : t \in \mathbb{R}, v \in \overline{D(A)}, ||v|| \leq r \} < a,$$

and he showed that (1.1) has a T-periodic, integral solution in the case of $h = 0$. Caşcaval and Vrabie [5] partially extended his result to the case that X is a Hilbert space, $-A$ generates a compact semigroup, and $f : \mathbb{R} \times \overline{D(A)} \rightarrow X$ is a Carathéodory mapping such that f is T-periodic in its first variable and bounded on every bounded subset in $\mathbb{R} \times \overline{D(A)}$, and there exists $r > 0$ such that $B_r \cap \overline{D(A)}$ is nonempty and

$$\langle y - f(t, x), x \rangle \geq 0 \quad \text{for every } (x, y) \in A \text{ with } ||x|| = r \text{ and } t \in [0, T],$$

and they showed that (1.1) has a T-periodic, strong solution in the case of $h = 0$.

The objects of this paper are to obtain a generalization of Caşcaval and Vrabie's result by relaxing the conditions that X is a Hilbert space and f is a continuous mapping, and an existence result on the T-periodic problem (1.1) for every $h \in L^1(0, T; X)$ in the case when X is a Banach space and f is a Carathéodory mapping. The idea is inspired by [10] in which Górniewicz and Plaskacz studied the existence of periodic solution of an ordinary differential equation. Our results are the following:

Theorem 1. Let X be a separable Banach space and let A be a closed, convex subset of $X \times X$ such that $\overline{D(A)}$ is convex and $-A$ generates a compact semigroup. Let $T > 0$ and let f be a Carathéodory mapping from $[0, T] \times \overline{D(A)}$ into X. Assume that there exist $r > 0$ and $\epsilon > 0$ such that $B_r \cap \overline{D(A)}$ is nonempty,

$$\int_0^T \sup_{x \in \overline{D(A)} \cap B_{r+\epsilon}} ||f(t, x)|| dt < \infty,$$
and for every \((x, y) \in A\) with \(r - \varepsilon \leq \|x\| \leq r + \varepsilon\), there exists \(z \in Jx\) such that
\[
\langle y - f(t, x), z \rangle \geq 0 \quad \text{for almost every } t \in (0, T),
\]
where \(B_r = \{u \in X : \|u\| \leq r\}\) and \(J\) is the duality mapping from \(X\) into its topological dual. Then there exists at least one \(T\)-periodic, integral solution of
\[
u'(t) + Au(t) \ni f(t, u(t)) \quad \text{for } 0 \leq t \leq T.\]

Theorem 2. Let \(X, A, T\) and \(f\) be as in Theorem 1. Assume that for every \(\rho > 0\) there exists \(a_{\rho} \in L^1(0, T)\) such that \(\|f(t, x)\| \leq a_{\rho}(t)\) for almost every \(t \in [0, T]\) and for every \(x \in D(A)\) with \(\|x\| \leq \rho\). Assume also that there exist \(r > 0\), \(c > 0\) and \(b \in L^1(0, T)\) such that for every \((x, y) \in A\) with \(\|x\| \geq r\), there exists \(z \in Jx\) such that
\[
\langle y - f(t, x), z \rangle \geq c\|x\|^2 - b(t)\|x\| \quad \text{for almost every } t \in (0, T).
\]
Then for every \(h \in L^1(0, T; X)\), there exists at least one \(T\)-periodic, integral solution \(u\) of
\[
u'(t) + Au(t) \ni f(t, u(t)) + h(t) \quad \text{for } 0 \leq t \leq T.
\]

2. Preliminaries

Throughout this paper, all vector spaces are real, we denote by \(\mathbb{N}\) and \(\mathbb{R}\), the set of all positive integers and the set of all real numbers, respectively, and by homology, we understand the Čech homology with rational coefficients; see [8, 9].

Let \(Y\) and \(Z\) be topological spaces. Let \(T\) be a subset of \(Y \times Z\). We identify the set \(T\) with a multivalued mapping \(T\) from \(Y\) into \(Z\) by \(Ty = \{z \in Z : (y, z) \in T\}\) for every \(y \in Y\). We denote by \(D(T)\) and \(R(T)\), the sets \(\{y \in Y : Ty \neq \emptyset\}\) and \(\bigcup\{Ty : y \in D(T)\}\), respectively. We say that \(T\) is upper semicontinuous if for every \(y_0 \in Y\) and open set \(V\) in \(Z\) with \(Ty_0 \subset V\), there exists an open neighborhood \(U\) of \(y_0\) such that \(Ty \subset V\) for every \(y \in U\).

The following fixed point theorem was obtained in [9, 17]. Since [17] is written in Japanese, we give the proof in Appendix.

Proposition 1 (Górničewicz, Shioji). Let \(Y\) be a convex subset of a locally convex, Hausdorff topological vector space \(E\) and let \(K\) be a compact subset of \(Y\). Let \(T\) be an upper semicontinuous mapping from \(Y\) into \(K\) such that for every \(y \in Y\), \(Ty\) is a nonempty, acyclic, compact subset of \(K\). Then there is an element \(y \in Y\) such that \(y \in Ty\).

Let \(X\) be a Banach space, let \(D\) be a subset of \(X\) and let \(r > 0\). We denote by \(\overline{D}\), the closure of \(D\) and we denote by \(B_r\), the closed ball in \(X\) with center 0 and radius \(r\). Let \(X^*\) be the topological dual of \(X\). The value of \(x^* \in X^*\) at \(x \in X\) will be denoted by \(\langle x, x^* \rangle\). Let \(J\) be the multivalued mapping from \(X\) into \(X^*\) defined by \(Jx = \{x^* \in X^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}\) for every \(x \in X\). We call \(J\) the duality mapping from \(X\) into \(X^*\). For every \((x, y) \in X \times X\), we define
\[
[x, y]_+ = \lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}.
\]
We know that \((x, y) \mapsto [x, y]_+\) is an upper semicontinuous function from \(X \times X\) into \(\mathbb{R}\). We say a subset \(A \subset X \times X\) is accretive if \([x_1 - x_2, y_1 - y_2],_+ \geq 0\) for every \((x_1, y_1), (x_2, y_2) \in A\). We know that \(A\) is accretive if and only if for every \((x_1, y_1), (x_2, y_2) \in A\), there exists \(w^* \in J(x_1 - x_2)\) such that \(\langle y_1 - y_2, w^* \rangle \geq 0\). We say an accretive set \(A\) is \(m\)-accretive if \(R(I + \lambda A) = X\) for every \(\lambda > 0\). Let \(a, b \in \mathbb{R}\) with \(a < b\). We denote by \(C(a, b; X)\), the space of all continuous functions from \([a, b]\) into \(X\). For \(1 \leq p < \infty\), we also denote by \(L^p(a, b; X)\), the space of all strongly measurable, \(p\)-integrable, \(X\)-valued functions defined almost everywhere on \([a, b]\).
Let $A \subseteq X \times X$ be an m-accretive set, let $f \in L^1(a, b; X)$ and let $x \in \overline{D(A)}$. We say a function $u : [a, b] \rightarrow X$ is a strong solution of the initial value problem:

$$u(a) = x, \quad u'(t) + Au(t) \ni f(t) \quad \text{for} \quad a \leq t \leq b,$$

if u is differentiable almost everywhere on $[a, b]$, u is absolutely continuous, $u(a) = x$ and $u'(t) + Au(t) \ni f(t)$ almost everywhere on $[a, b]$. We say a function $u : [a, b] \rightarrow X$ is an integral solution of the initial value problem (2.1), if u is continuous on $[a, b]$, $u(a) = x$, $u(t) \in \overline{D(A)}$ for every $a \leq t \leq b$ and

$$\|u(t) - y\| \leq \|u(s) - y\| + \int_s^t [u(\tau) - y, f(\tau) - z]_+ d\tau$$

for every $(y, z) \in A$ and s, t with $a \leq s \leq t \leq b$. If u is a strong solution of (2.1), then u is an integral solution of (2.1). We know from [2, 4] that the initial value problem (2.1) has a unique integral solution. If u and v are the integral solutions of (2.1) corresponding to $(x, f), (y, g) \in \overline{D(A)} \times L^1(a, b; X)$ respectively, then

$$\|u(t) - v(t)\| \leq \|u(s) - v(s)\| + \int_s^t [u(\tau) - v(\tau), f(\tau) - g(\tau)]_+ d\tau$$

for $a \leq s \leq t \leq b$.

If $A \subseteq X \times X$ is m-accretive, then

$$S(t)x = \lim_{n \to \infty} \left(I + \frac{t}{n}A \right)^{-n} x$$

exists for every $x \in \overline{D(A)}$ and uniformly for t on every bounded interval in the set of nonnegative real numbers; see [2, 6]. We say the family $\{S(t) : \overline{D(A)} \rightarrow \overline{D(A)}, t \geq 0\}$ is the nonlinear semigroup generated by $-A$. We remark that for every $x \in \overline{D(A)}$, $t \mapsto S(t)x$ is the unique integral solution of $u(0) = x$ and $u'(t) + Au(t) \ni 0$ for $t \geq 0$. We say $\{S(t) : \overline{D(A)} \rightarrow \overline{D(A)}, t \geq 0\}$ is compact if $S(t)$ is compact for every $t > 0$.

To prove our theorems, we need the following propositions; see [20, Theorem 2] and [7, Lemma 2]:

Proposition 2 (Vrabie). Let X be a Banach space and let A be an m-accretive subset of $X \times X$ such that $-A$ generates a compact semigroup. Let B be a bounded subset of $\overline{D(A)}$, let $a, b \in \mathbb{R}$ with $a < b$ and let G be a uniformly integrable subset of $L^1(a, b; X)$. Then the set of all integral solutions of (2.1) corresponding to $(x, f) \in B \times G$ is relatively compact in $C(d, b; X)$ for every $d \in (a, b)$, and if, in addition, B is relatively compact in X, the set is relatively compact in $C(a, b; X)$.

Proposition 3 (De Blasi and Myjak). Let B be a subset of a separable Banach space X and let f be a Carathéodory mapping from $[0, 1] \times B$ into X such that $\int_0^1 \sup_{x \in B} \|f(t, x)\| dt < \infty$. Then for every $\varepsilon > 0$, there exists a locally Lipschitz mapping g from $[0, 1] \times B$ into X such that

$$\int_0^1 \sup_{x \in B} \|f(t, x) - g(t, x)\| dt < \varepsilon.$$
3. Proof of Theorem 1

In this section, we give the proof of Theorem 1. Let \(\alpha \) be a continuous function from \([0, \infty)\) into \([0, 1]\) such that \(\alpha(t) = 1 \) for \(t \in [0, r + \varepsilon/2] \) and \(\alpha(t) = 0 \) for \(t \in [r + 3\varepsilon/4, \infty) \). Define a Carathéodory mapping \(\tilde{f} \) from \([0, T] \times \overline{D(A)}\) into \(X \) by \(\tilde{f}(t, x) = \alpha(||x||)f(t, x) \) for \((t, x) \in [0, T] \times \overline{D(A)} \). Since \(\int_{0}^{T} \sup_{x \in \overline{D(A)}} ||\tilde{f}(t, x)|| dt < \infty \), Proposition 3 yields a sequence of locally Lipschitz functions \(\{\tilde{f}_n\} \) from \([0, T] \times \overline{D(A)}\) into \(X \) such that \(\tilde{f}_n(t, x) = 0 \) for \((t, x) \in [0, T] \times (\overline{D(A)} \setminus B_{r+\varepsilon}) \) and

\[
\int_{0}^{T} \sup_{x \in \overline{D(A)}} ||\tilde{f}(t, x) - \tilde{f}_n(t, x)|| dt < \frac{1}{n}.
\]

For every \(x \in \overline{D(A)} \cap B_r \), we set

\[S_x = \{ u : [0, T] \rightarrow \overline{D(A)}, \text{ } u \text{ is an integral solution of } (3.1) \} \]

\[u(0) = x, \quad u'(t) + Au(t) \ni \tilde{f}(t, u(t)) \text{ for } 0 \leq t \leq T. \]

For every \(n \in \mathbb{N} \) and \(\sigma \in [0, T] \), we denote by \(F_{n, \sigma} \), the function from \([0, T] \times \overline{D(A)}\) into \(X \) defined by

\[F_{n, \sigma}(t, x) = \begin{cases} \tilde{f}(t, x) & \text{if } (t, x) \in [0, \sigma] \times \overline{D(A)}, \\ \tilde{f}_n(t, x) & \text{if } (t, x) \in (\sigma, T] \times \overline{D(A)}. \end{cases} \]

For every \(n \in \mathbb{N} \) and \(x \in \overline{D(A)} \cap B_r \), we also set

\[S_n x = \bigcup_{\sigma \in [0, T]} \{ u : [0, T] \rightarrow \overline{D(A)}, \text{ } u \text{ is an integral solution of } (3.3) \} \]

\[u(0) = x, \quad u'(t) + Au(t) \ni F_{n, \sigma}(t, u(t)) \text{ for } 0 \leq t \leq T. \]

Since \(\int_{0}^{T} \sup_{x \in \overline{D(A)}} ||\tilde{f}(t, x)|| dt < \infty \), \(\int_{0}^{T} \sup_{x \in \overline{D(A)}} ||\tilde{f}_n(t, x)|| dt < \infty \) and \(-A\) generates a compact semigroup, we know from [18, Theorem 2] or [21, Theorem 3.8.1] that there exist integral solutions for (3.2) and (3.3) on a small interval \([0, \delta]\), and we also know from [21, Theorem 3.8.2] that such integral solutions are continuably on \([0, T]\). So \(S_x \) and \(S_n x \) are nonempty for every \(x \in \overline{D(A)} \cap B_r \) and \(n \in \mathbb{N} \).

Lemma 1. For every \(x \in \overline{D(A)} \cap B_r \) and \(u \in S_x \), \(||u(t)|| \leq r \) for every \(t \in [0, T] \).

Proof. Let \(x \in \overline{D(A)} \cap B_r \) and let \(u \in S_x \). Let \([T_0, T_1]\) be an interval contained in \([0, T]\) such that \(u(T_0) = r \) and \(r - \varepsilon/4 \leq ||u(t)|| \leq r + \varepsilon/4 \) for every \(t \in [T_0, T_1] \). Since \(u \) is an integral solution of \(u'(t) + Au(t) \ni \tilde{f}(t, u(t)) \) on the interval \([T_0, T_1]\), for every \(\delta \in (0, \varepsilon/4) \), there exist \(t_0, \cdots, t_N \in [0, T] \), \(x_0, \cdots, x_N \in \overline{D(A)} \), \(f_0, \cdots, f_N \in X \) such that

\[
T_0 = t_0 < t_1 < \cdots < t_{N-1} < T_1 \leq t_N, \quad \max(t_i - t_{i-1}) \leq \delta,
\]

\[
\sum_{i=1}^{N} \int_{t_{i-1}}^{t_i} ||f_i - \tilde{f}(t, u(t))|| dt \leq \delta,
\]

(3.4)

\[
\frac{x_i - x_{i-1}}{t_i - t_{i-1}} + Ax_i \ni f_i \quad \text{for } i = 1, 2, \ldots, N
\]

and

(3.5)

\[
||u(t) - u(t)|| \leq \delta \quad \text{for every } t \in [T_0, T_1],
\]
where
\[v(t) = \begin{cases} x_0 & \text{if } t = t_0, \\ x_i & \text{if } t \in (t_{i-1}, t_i], \quad i = 1, 2, \ldots, N; \end{cases} \]
see [13]. From the hypothesis of our theorem, (3.4), (3.5) and \(0 < \delta < \epsilon/4\), for every \(i = 1, 2, \ldots, N\), there exists \(z_i^* \in Jx_i\) such that
\[\left\langle f_i - \frac{x_i - x_{i-1}}{t_i - t_{i-1}} - \tilde{f}(t, x_i), z_i^* \right\rangle \geq 0 \quad \text{for almost every } t \in [0, T]. \]
So we have
\[\|x_j\| \leq \|x_0\| + \sum_{i=1}^{j} \int_{t_{i-1}}^{t_i} \|f_i - \tilde{f}(t, x_i)\| \, dt \leq r + 2\delta + \sum_{i=1}^{j} \int_{t_{i-1}}^{t_i} \|\tilde{f}(t, u(t)) - \tilde{f}(t, x_i)\| \, dt \]
for every \(j = 1, 2, \ldots, N\), which implies
\[\|u(t)\| \leq r + 3\delta + \sum_{i=1}^{N} \int_{t_{i-1}}^{t_i} \|\tilde{f}(t, u(t)) - \tilde{f}(t, x_i)\| \, dt \]
for every \(t \in [T_0, T_1]\). Since \(\delta \in (0, \epsilon/4)\) is arbitrary, we obtain \(\|u(t)\| \leq r\) for every \(t \in [T_0, T_1]\). This completes the proof.

Lemma 2. For every \(n \in N\) and \(x \in \overline{D(A)} \cap B_r\), \(S_n x\) is compact, where \(S_n x\) is endowed with the \(C(0, T; X)\) topology.

Proof. Since \(S_n x\) is relatively compact from Proposition 2, we only need to show that \(S_n x\) is closed. Let \(n \in N\) and let \(x \in \overline{D(A)} \cap B_r\). Let \(\{u_m\}\) be a sequence in \(S_n x\) which converges to \(u\). We shall show \(u \in S_n x\). For every \(m \in N\), there exists \(\sigma_m \in [0, T]\) such that \(u_m\) is an integral solution of
\[(3.6) \quad u_m(0) = x, \quad u_m'(t) + Au_m(t) = F_{n, \sigma_m}(t, u_m(t)) \quad \text{for } 0 \leq t \leq T. \]
We may assume that \(\{\sigma_m\}\) converges to \(\sigma \in [0, T]\). Then \(\{F_{n, \sigma_m}(t, u_m(t))\}\) converges to \(F_{n, \sigma}(t, u(t))\) in \(L^1(0, T; X)\). Since \(u_m\) is an integral solution of (3.6), we have
\[\|u_m(t) - y\| \leq \|u_m(s) - y\| + \int_{s}^{t} [u_m(\tau) - y, F_{n, \sigma_m}(\tau, u_m(\tau)) - z] \, d\tau \]
for every \((y, z) \in A, s, t\) with \(0 \leq s \leq t \leq T\) and \(m \in N\). Tending \(m\) to infinity, we have \(u \in S_n x\). Hence, \(S_n x\) is closed.

The following is crucial to prove our theorem. In the proof, we use the method employed in [11, Proposition 3] and [22].

Lemma 3. For every \(n \in N\) and \(x \in \overline{D(A)} \cap B_r\), \(S_n x\) is contractible.

Proof. Let \(n \in N\) and let \(x \in \overline{D(A)} \cap B_r\). For every \(s \in [0, 1]\) and \(v \in S_n x\), we denote by \(w_{s,v}\), the integral solution \(w_{s,v} : [sT, T] \rightarrow \overline{D(A)}\) of
\[w_{s,v}(sT) = v(sT), \quad w_{s,v}'(\tau) + Aw_{s,v}(\tau) = \tilde{f}_n(\tau, w_{s,v}(\tau)) \quad \text{for } sT \leq t \leq T. \]
Define a function \(H\) from \([0, 1] \times S_n x\) into \(S_n x\) by
\[H(s, v)(t) = \begin{cases} v(t) & \text{if } 0 \leq t \leq sT, \\ w_{s,v}(t) & \text{if } sT \leq t \leq T \end{cases} \quad \text{for every } (s, v) \in [0, 1] \times S_n x. \]
We shall show that H is continuous. Let $(s_0, v_0) \in [0, 1] \times S_n x$. Since \tilde{f}_n is locally Lipschitz, for every $\tau \in [0, T]$, there exist $\delta_\tau > 0$ and $K_\tau > 0$ such that $y \in \overline{D(A)}$, $t \in [s_0 T, T]$ with $|t - \tau| < \delta_\tau$ and $\|y - w_{s_0, v_0}(t)\| < \delta_\tau$ imply $\|\tilde{f}_n(t, y) - \tilde{f}_n(t, w_{s_0, v_0}(t))\| \leq K_\tau \|y - w_{s_0, v_0}(t)\|$. From the compactness of $[s_0 T, T]$, there exists $\{\tau_1, \cdots, \tau_m\} \subset [s_0 T, T]$ such that $[s_0 T, T] \subset \bigcup_{i=1}^{m} (\tau_i - \delta_{\tau_i}, \tau_i + \delta_{\tau_i})$. Set $\delta = \min\{\delta_{\tau_1}, \cdots, \delta_{\tau_m}\}$ and $K = \max\{K_{\tau_1}, \cdots, K_{\tau_m}\}$. Then we have
\[(3.7) \quad \|\tilde{f}_n(t, y) - \tilde{f}_n(t, w_{s_0, v_0}(t))\| \leq K \|y - w_{s_0, v_0}(t)\|\]
for every $(t, y) \in [s_0 T, T] \times \overline{D(A)}$ with $\|y - w_{s_0, v_0}(t)\| < \delta$. Fix $\eta \in (0, \delta)$. Choose $\rho > 0$ satisfying $\rho < \delta$ and $\rho < \eta/(4e^{KT})$. We can also choose $\zeta \in (0, \rho]$ such that $\int_{t}^{t+\zeta T} ||\tilde{f}_n(\tau, y)|| d\tau < \rho$ and $\int_{t}^{t+\zeta T} ||\tilde{f}_n(\tau, y)|| d\tau < \rho$ for every $t \in [0, (1 - \zeta)T]$.

From $v_0 \in S_n x$, there exists $\sigma \in [0, T]$ such that v_0 is an integral solution of $v_0(0) = x$, $v_0'(\tau) + Av_0(\tau) \ni F_n,\sigma(\tau, v_0(\tau))$ for $0 \leq \tau \leq T$.

Let $(s, v) \in [0, T] \times S_n x$ such that $|s - s_0| < \zeta$ and $\|v - v_0\| < \zeta$. For every $t \in [s_0 T, sT]$ in the case of $s \geq s_0$ or for every $t \in [sT, s_0 T]$ in the case of $s_0 \geq s$, we have
\[
\|H(s, v)(t) - H(s_0, v_0)(t)\| \leq \begin{cases}
\|v(t) - v_0(t)\| + \int_{s_0 T}^{t} \|F_n,\sigma(\tau, v_0(\tau)) - \tilde{f}_n(\tau, w_{s_0, v_0}(\tau))\| d\tau & \text{if } s \geq s_0, \\
\|v(sT) - v_0(sT)\| + \int_{sT}^{t} ||\tilde{f}_n(\tau, w_{s, v}(\tau)) - F_n,\sigma(\tau, v_0(\tau))|| d\tau & \text{if } s_0 \geq s,
\end{cases}
\leq 4\rho.
\]

Then we have
\[(3.8) \quad \|H(s, v)(t) - H(s_0, v_0)(t)\| \leq 4\rho + \int_{T'}^{t} \|\tilde{f}_n(\tau, w_{s, v}(\tau)) - \tilde{f}_n(\tau, w_{s_0, v_0}(\tau))\| d\tau
\]
for every $t \in [T', T]$, where $T' = \max\{sT, s_0 T\}$. We shall show that $\|H(s, v)(t) - H(s_0, v_0)(t)\| < \eta$ for every $t \in [0, T]$. Suppose not. Then there exists $t_0 \in (T', T)$ such that $\|H(s, v)(t_0) - H(s_0, v_0)(t_0)\| = \eta$ and $\|H(s, v)(t) - H(s_0, v_0)(t)\| < \eta$ for every $t \in [T', t_0)$. By (3.7), (3.8) and Gronwall's inequality, we have $\|H(s, v)(t_0) - H(s_0, v_0)(t_0)\| \leq 4\rho e^{KT} < \eta$, which is a contradiction. So, we have $\|H(s, v)(t) - H(s_0, v_0)(t)\| < \eta$ for every $t \in [0, T]$. Hence H is continuous.

On the other hand, for every $v \in S_n x$, $H(1, v) = v$ and $H(0, v) = w$, where w is the integral solution of
\[w(0) = x, \quad w'(t) + Aw(t) \ni \tilde{f}_n(t, w(t)) \quad \text{for } 0 \leq t \leq T.\]
Therefore $S_n x$ is contractible.

\[\square\]

Lemma 4. For every $x \in \overline{D(A)} \cap B_r$, $S x$ is compact and acyclic.
Proof. Let $x \in \overline{D(A)} \cap B_r$. Since $F_{n,T} = \tilde{f}$ for every $n \in \mathbb{N}$, we have $Sx \subset \bigcap_{n=1}^{\infty} S_n x$. We shall show the opposite inclusion. Let $u \in \bigcap_{n=1}^{\infty} S_n x$. Then for every $n \in \mathbb{N}$, there exists $\sigma_n \in [0,T]$ such that u is an integral solution of

$$u(0) = x, \quad u'(t) + Au(t) \ni F_{n,\sigma_n}(t, u(t)) \quad \text{for } 0 \leq t \leq T.$$

Then, from (3.1), we have

$$||u(t) - y|| \leq ||u(s) - y|| + \int_{s}^{t} [u(\tau) - y, \tilde{f}(\tau, u(\tau)) - z] + d\tau + \frac{1}{n}$$

for every $(y, z) \in A, s, t$ with $0 \leq s \leq t \leq T$ and $n \in \mathbb{N}$. Tending n to infinity, we obtain $u \in Sx$. So we have $Sx = \bigcap_{n=1}^{\infty} S_n x$. From Lemma 2, Lemma 3 and the continuity property of the Čech homology, we have that Sx is compact and acyclic.

Now, we can give the proof of our theorem.

Proof of Theorem 1. Let $Z_0 = \bigcup\{v(T) : y \in \overline{D(A)} \cap B_r, v \in Sy\}$. From Lemma 1, Z_0 is a nonempty subset of $\overline{D(A)} \cap B_r$. Let Z be the closed, convex hull of Z_0. From Proposition 2, Z_0 is relatively compact and hence Z is compact. Let Y be the set $\{u \in C(0, T; X) : u(t) \in D(A) \cap B_r \text{ for every } t \in [0,T] \text{ and } u(T) \in Z\}$ and let T be a multivalued mapping from Y into $C(0, T; X)$ defined by

$$Tu = Su(T) \quad \text{for every } u \in Y,$$

i.e., T is the composition of $u \mapsto u(T)$ and S. From the compactness of Z, Proposition 2, Lemma 1 and Lemma 4, $T(Y)$ is contained in a compact subset of Y and Tu is a nonempty, acyclic, compact subset of Y for every $u \in Y$. We shall show that T is upper semicontinuous. Suppose not. Then there exist $u \in Y$, a open neighborhood V of Tu, $\{u_n\} \subset Y$ and $\{v_n\} \subset Y$ such that $\{u_n\}$ converges to u and $v_n \in Tu_n \setminus V$ for every $n \in \mathbb{N}$. From Proposition 2, we may assume $\{v_n\}$ converges to v, and hence $v \not\in V$. Since $v_n \in Tu_n$, we have $v_n(0) = u_n(T)$ and

$$||v_n(t) - y|| \leq ||v_n(s) - y|| + \int_{s}^{t} [v_n(\tau) - y, \tilde{f}(\tau, v_n(\tau)) - z] + d\tau$$

for every $(y, z) \in A, s, t$ with $0 \leq s \leq t \leq T$ and $n \in \mathbb{N}$. Tending n to infinity, we obtain $v \in Tu$ which contradicts $Tu \subset V \not\not\subset V$. So, T is upper semicontinuous. Hence, by Proposition 1, there exists a point $y \in Y$ such that $u \in Tu$. By the definition of T, $u(0) = u(T)$ and u is an integral solution of $u'(t) + Au(t) \ni f(t, u(t))$ for $0 \leq t \leq T$. From Lemma 1, u is also an integral solution of $u'(t) + Au(t) \ni f(t, u(t))$ for $0 \leq t \leq T$. This completes the proof. \square

4. Proof of Theorem 2

In this section, we give the proof of Theorem 2. Let $h \in L^1(0, T; X)$. Let M, R and ρ be real numbers such that $M = \int_{0}^{T} |b(s)| ds + \int_{0}^{T} ||h(s)|| ds, R = \max\{r + M + 2, (1 + 1/(CT))(M + 1)\}$ and $\rho = R + M + 4$. From the hypothesis of Theorem 2, there exists $a_\rho \in L^1(0, T)$ such that $||f(t, x)|| \leq a_\rho(t)$ for almost every $t \in [0, T]$ and for every $x \in \overline{D(A)}$ with $||x|| \leq \rho$. Let α be a continuous function from $[0, \infty)$ into $[0, 1]$ which satisfies

$$\alpha(\tau) = \begin{cases} 1 & \text{if } \tau \leq \rho - 1, \\ 0 & \text{if } \tau \geq \rho \end{cases} \quad \text{for } \tau \geq 0.$$
Define a function $\tilde{f} : [0, T] \times \overline{D(A)} \to X$ by $\tilde{f}(t, x) = \alpha(||x||) f(t, x)$ for every $(t, x) \in [0, T] \times \overline{D(A)}$. Since $\int_0^T \sup_{x \in \overline{D(A)}} ||\tilde{f}(t, x)|| \, d\tau \leq \int_0^T a_\rho(\tau) \, d\tau < \infty$, Proposition 3 yields a sequence of locally Lipschitz functions $\{\tilde{f}_n\}$ from $[0, T] \times \overline{D(A)}$ into X such that

\begin{equation}
\int_0^T \sup_{x \in \overline{D(A)}} ||\tilde{f}(t, x) - \tilde{f}_n(t, x)|| \, dt < \frac{1}{n} \quad \text{for every } n \in \mathbb{N}.
\end{equation}

For every $n \in \mathbb{N}$ and $x \in \overline{D(A)} \cap B_R$, we set $F_n x = u(T)$, where u is the unique integral solution of

\begin{equation}
u(0) = x, \quad u'(t) + Au(t) \ni \tilde{f}_n(t, u(t)) + h(t) \quad \text{for } 0 \leq t \leq T.
\end{equation}

From [21, Theorem 3.2.2], and [18, Theorem 2] or [21, Theorem 3.8.1], we know that F_n is well defined.

Lemma 5. Let $n \in \mathbb{N}$, let $x \in \overline{D(A)} \cap B_R$ and let u be the integral solution of (4.2). Then $\|u(t)\| \leq R + M + 1$ for every $t \in [0, T]$.

Proof. Suppose not. Then there exist $T_0, T_1 \in [0, T]$ such that $T_0 < T_1$, $\|u(T_0)\| = R$, $R \leq \|u(t)\| \leq R + M + 2$ for every $t \in [T_0, T_1]$ and $\|u(T_1)\| > R + M + 1$. Since u is the integral solution of $u'(t) + Au(t) \ni \tilde{f}_n(t, u(t)) + h(t)$ on the interval $[T_0, T_1]$, by the same method as in the proof of Lemma 1, we have

\begin{align*}
\|u(T_1)\| & \leq \|u(T_0)\| + \int_0^{T_1} \|h(s)\| \, ds + 1 - c \int_0^{T_1} \|u(s)\| \, ds + \int_0^{T_1} |b(s)| \, ds \\
& \leq R + M + 1.
\end{align*}

So we obtain a contradiction. This completes the proof. \qed

Lemma 6. For every $n \in \mathbb{N}$, F_n is a mapping from $\overline{D(A)} \cap B_R$ into itself.

Proof. Let $n \in \mathbb{N}$, let $x \in \overline{D(A)} \cap B_R$ and let u be the integral solution of (4.2). First, we consider the case that there exists $T_2 \in [0, T]$ such that $\|u(T_2)\| < R - M - 1$. Suppose $\|u(T)\| > R$. Then there exists $T_3 \in (T_2, T)$ such that $\|u(T_3)\| = R - M - 1$ and $\|u(t)\| \geq R - M - 1$ for every $t \in [T_3, T]$. By the same method as in the proof of Lemma 1, we have

\begin{align*}
\|u(T)\| & \leq \|u(T_3)\| + \int_0^{T} \|h(s)\| \, ds + 1 - c \int_0^{T} \|u(s)\| \, ds + \int_0^{T} |b(s)| \, ds \\
& \leq R,
\end{align*}

which is a contradiction. So we have $\|u(T)\| \leq R$. Next, we consider the case that $\|u(t)\| \geq R - M - 1$ for every $t \in [0, T]$. Then, we have

\begin{align*}
\|u(T)\| & \leq \|u(0)\| + \int_0^{T} \|h(t)\| \, dt + 1 - c \int_0^{T} \|u(t)\| \, dt + \int_0^{T} |b(t)| \, dt \\
& \leq \|u(0)\| + M + 1 - c T (R - M - 1) \leq R.
\end{align*}

Hence F_n is a mapping from $\overline{D(A)} \cap B_R$ into itself. \qed

Lemma 7. For every $n \in \mathbb{N}$, F_n is continuous.

Proof. Let $n \in \mathbb{N}$. Let $x \in \overline{D(A)} \cap B_R$ and let u be the integral solution of (4.2). Since \tilde{f}_n is locally Lipschitz, by the same method to prove (3.7), there exist $K > 0$ and $\eta > 0$ such that

\begin{equation}
\|\tilde{f}_n(t, y) - \tilde{f}_n(t, u(t))\| \leq K\|y - u(t)\|
\end{equation}

\begin{align*}
\|u(T)\| & \leq \|u(0)\| + \int_0^{T} \|h(t)\| \, dt + 1 - c \int_0^{T} \|u(t)\| \, dt + \int_0^{T} |b(t)| \, dt \\
& \leq \|u(0)\| + M + 1 - c T (R - M - 1) \leq R.
\end{align*}

Hence F_n is a mapping from $\overline{D(A)} \cap B_R$ into itself. \qed
for every \((t, y) \in [0, T] \times \overline{D(A)}\) with \(\|y - u(t)\| < \eta\). Let \(\varepsilon \in (0, \eta)\) and let \(\delta > 0\) satisfying \(\delta e^{KT} < \varepsilon\). Let \(y \in \overline{D(A)} \cap B_R\) be a point satisfying \(\|x - y\| < \delta\) and let \(v\) be the integral solution of \(v(0) = y\) and \(v'(t) + Av(t) \ni \tilde{f}_n(t, v(t)) + h(t)\) for \(0 \leq t \leq T\). We shall show \(\|u(t) - v(t)\| < \varepsilon\) for every \(t \in [0, T]\). Suppose not. Then there exists \(t_0 \in (0, T]\) such that \(\|u(t_0) - v(t_0)\| = \varepsilon\) and \(\|u(t) - v(t)\| < \varepsilon\) for every \(t \in [0, t_0)\). By (4.3), Gronwall’s inequality implies \(\|u(t_0) - v(t_0)\| \leq e^{\delta KT} < \varepsilon\), which is a contradiction. Hence \(F_n\) is continuous.

Proof of Theorem 2. From Lemma 6, Lemma 7 and Proposition 2, \(F_n\) is a compact mapping from \(\overline{D(A)} \cap B_R\) into itself for every \(n \in \mathbb{N}\). Hence, for every \(n \in \mathbb{N}\), there exists a fixed point of \(F_n\) by Schauder’s fixed point theorem, i.e., there exists an integral solution \(u_n\) of \(\dot{u}_n(t) + Au_n(t) \ni \tilde{f}_n(t, u_n(t)) + h(t)\) for \(0 \leq t \leq T\) such that \(u_n(0) = u_n(T)\) and \(\|u_n(0)\| \leq R\). From Proposition 2, we may assume \(\{u_n\}\) converges to \(u\) in \(C(0, T; X)\). Let \((x, y) \in A\) and let \(s, t \in \mathbb{R}\) with \(0 \leq s \leq t \leq T\). From (3.7), we have

\[
\|u_n(t) - x\| \leq \|u_n(s) - x\| + \int_s^t [u_n(\tau) - x, \tilde{f}(\tau, u_n(\tau)) + h(\tau) - y] + d_{\mathcal{T}+} \frac{1}{n}
\]

for every \(n \in \mathbb{N}\). Tending \(n\) to infinity, we obtain that \(u\) is an integral solution of \(u'(t) + Au(t) \ni f(t, u(t)) + h(t)\) for \(0 \leq t \leq T\) such that \(u(0) = u(T)\) and \(\|u(0)\| \leq R\). From Lemma 5, \(u\) is also an integral solution of \(u'(t) + Au(t) \ni f(t, u(t)) + h(t)\) for \(0 \leq t \leq T\). Hence we obtain the desired result. \(\square\)

5. An Example

Let \(\Omega\) be a bounded domain in \(\mathbb{R}^n (n \geq 2)\) with smooth boundary \(\Gamma\). We consider the following nonlinear differential equation:

\[
(5.1) \quad \frac{\partial u}{\partial t} - \Delta \rho(u) = g(t, x, u(t, x)) + h(t, x) \quad \text{on } \mathbb{R} \times \Omega
\]

with a boundary condition

\[
(5.2) \quad \rho(u) = 0 \quad \text{on } \mathbb{R} \times \Gamma.
\]

Theorem 3. Let \(\rho \in C(\mathbb{R}) \cap C^{1}(\mathbb{R} \setminus \{0\})\) such that \(\rho(0) = 0\) and there exist \(C > 0\) and \(a > \frac{n-2}{n}\) with

\[
\rho'(r) \geq C|r|^{a-1} \quad \text{for every } r \in \mathbb{R} \setminus \{0\}.
\]

Let \(g : \mathbb{R} \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}\) such that \(g\) is \(T\)-periodic in its first variable, \(g(t, x, \cdot)\) is continuous for almost every \((t, x) \in \mathbb{R} \times \Omega\) and \(g(\cdot, \cdot, u)\) is measurable for every \(u \in \mathbb{R}\). Assume that there exist \(a \in L^1(0, T)\) and \(b \in L^1((0, T) \times \Omega)\) such that \(|g(t, x, u)| \leq a(t)|u| + b(t, x)\) for \((t, x, u) \in [0, T] \times \Omega \times \mathbb{R}\) and that

\[
\lim_{|u| \to \infty} \text{ess sup}_{(t, x) \in [0, T] \times \Omega} \frac{g(t, x, u)}{u} < 0.
\]

Then for every \(h \in L^1((0, T) \times \Omega)\), (5.1) and (5.2) have at least one \(T\)-periodic integral solution \(u \in C(\mathbb{R}, L^1(\Omega))\).

Proof. Let \(A\) be the set defined by \(\{(u, -\Delta \rho(u)) \in L^1(\Omega) \times L^1(\Omega) : \rho(u) \in W^{1,1}_{0}(\Omega)\}\) and let \(f\) be the function from \(\mathbb{R} \times L^1(\Omega)\) into \(L^1(\Omega)\) defined by \(f(t, u)(x) = g(t, x, u(x))\) for every \((t, u, x) \in \mathbb{R} \times L^1(\Omega) \times \Omega\). We know that \(-A\) generates a compact semigroup; see [21, Lemma 2.7.2]. From
the assumption, there exist $\delta, M > 0$ such that $g(t, x, u)/u \leq -\delta$ for $(t, x, u) \in \mathbb{R} \times \Omega \times \mathbb{R}$ with $|u| \geq M$. Then for every $u \in L^1(\Omega)$ and $z \in J^u$, we have
\[
\int_\Omega g(t, x, u(x))z(x)\,dx \leq -\delta\|u\|_{L^1(\Omega)}^2 + \left((\delta + a(t))M|\Omega| + \int_\Omega b(t, x)\,dx\right)\|u\|_{L^1(\Omega)}.
\]
So, from Theorem 2, for every $h \in L^1((0, T) \times \Omega)$, there exists a T-periodic integral solution for (5.1) and (5.2).

APPENDIX

In this appendix, we give the proof of Proposition 1. The following is obtained in [16].

Proposition 4. Let Y be a subset of a Hausdorff topological vector space and let K be a Hausdorff topological space. Let T be an upper semicontinuous multivalued mapping from $\text{co}Y$ into K such that for every $y \in \text{co}Y$, Ty is a nonempty, acyclic, compact subset of K, and let G be a multivalued mapping from Y into K such that for every $y \in Y$, Gy is a closed subset of K, and

\[T(\text{co}\{y_1, \cdots, y_n\}) \subset \bigcup_{i=1}^n Gy_i \quad \text{for every finite subset } \{y_1, \cdots, y_n\} \text{ of } Y. \tag{5.3} \]

Then $\{Gy : y \in Y\}$ has the finite intersection property.

From Proposition 4, we have the following, which is obtained in [17]. In the following, we can get a coincidence point of A and T, though there is no relationship between them.

Proposition 5. Let Y be convex subset of a Hausdorff topological vector space and let K be a compact, Hausdorff topological space. Let T and A be multivalued mappings from Y into K such that T is upper semicontinuous, for every $y \in Y$, Ty is a nonempty, acyclic, compact subset of K and Ay is an open subset of K, and for every $z \in K$, $A^{-1}z$ is a nonempty, convex subset of Y. Then there is an element y of Y such that $Ay \cap Ty \neq \emptyset$.

Proof. Assume that the conclusion does not hold. Define a multivalued mapping G from Y into K by $Gy = K \setminus Ay$ for every $y \in Y$. We shall show (5.3). Suppose not. Then there exist a finite subset $\{y_1, \cdots, y_n\}$ of Y, $y \in \text{co}\{y_1, \cdots, y_n\}$ and $z \in Ty$ such that $z \notin \bigcup_{i=1}^n Gy_i$. So we have $z \in Ay_i$; i.e., $y_i \in A^{-1}z$ for every $i = 1, \ldots, n$. Since $A^{-1}z$ is convex, we have $y \in A^{-1}z$. So we obtain $z \in Ty \cap Ay$, which is a contradiction. Hence by Proposition 4 and the compactness of K, there exists $w \in K$ such that $w \in \bigcap_{y \in Y} Gy$. So we get $w \notin Ay$ for all $y \in Y$, which implies $A^{-1}w = \emptyset$, and we get a contradiction. This completes the proof.

Proof of Proposition 1. Let U be an arbitrary, symmetric, convex, open neighborhood of 0 in E. Define a multivalued mapping A from Y into K by $Ay = y + U$ for every $y \in Y$. By Proposition 5, there is a point $y_U \in Y$ such that $(y_U + U) \cap Ty_U \neq \emptyset$. From the standard compactness argument, we obtain the conclusion.

Acknowledgement. The author would like to express his sincere thanks to Professor Mitsuharu Ôtani for many helpful conversations and suggestions.

REFERENCES

Faculty of Engineering, Tamagawa University, Tamagawa-Gakuen, Machida, Tokyo 194, Japan
E-mail address: shioji@eng.tamagawa.ac.jp