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Abstract. A nonlinear time periodic system, which is governed by time-
dependent subdifferentials, is considered in a (real) Hilbert space. Recent
results on global attractors for our system are presented. Also, these abstract
results are applied to a phase-field model with constraint of the Penrose-Fife

type.
1. Introduction

Let us consider a nonlinear evolution system
(P)s () +00 @) +gtu®)d f(1), t>s(=0), (L1

which is governed by the subdifferential ¢ of a time-dependent proper, 1.s.c.
convex function ¢ on a (real) Hilbert space H, where u' = éd‘—t‘, g(t,") is a
perturbation and f is a forcing term. In this paper, assuming that ©*(-), g(t, )
and f(t) are periodic in time ¢ with a common period To(> 0), we investi-
gate the asymptotic behaviour of the dynamical process (evolution operator)
U(t,s) : D(¢*) — D(¢t), 0 < s <t < 400, associated to system (P)s; in
fact, we present that (P), has at least one time-periodic solution with period
Ty and for each 7 € R := [0,+00) the discrete dynamical process {17}, on
D(¢7), generated by T, := U(Tp+ 7,7), possesses a global attractor A, which
is periodic in 7 with period Tj.

We recall some works (cf. [2]) treating similar topics for a class of semilinear
evolution equations.

As an application of our abstract results we treat the large time behaviour
of a phase-field model with constraint of the Penrose-Fife type, which is a
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system of nonlinear PDEs as follows:
0+ At 2, w))— A (—% + ,Le) _g(t,z) in Q= (s,4+00) xR, 5 >0, (1.2)

Aw(t, z,w)

7 50 in Q, (1.3)

wy — kAW + B(w) + o(w) +

with boundary conditions

8 s 1 1
5> (—5 + u@) + ng (—5 + uﬁ) = h(t,z), onXs:=(s,+o0) x T, (1.4)

ow
5 = 0 on X,. (1.5)

Here Q is a bounded domain in R¥,1 < N < 3, with smooth' boundary
I':= 09Q; B(-) is a maximal monotone graph in R x R; A is a smooth function
on Ry X 9 x R, convex in w € R and periodic in ¢ with period Tp; o(-) is a
smooth function on R; ng, x and p are positive constants and g, h are given
data.

The phase-field models with constraint were earlier studied in [5, 10, 13].
In [3, 4], the existence and uniqueness result for the Cauchy problem of the
system (1.2)-(1.5) was obtained for good initial data §p and wy in the case of
A(t, z,w) = Az, w) without convexity assumption with respect to w.

Notation. Throughout this paper, let H be a (real) Hilbert space with norm
| - |z and inner product (-,-)y. For a proper ls.c. convex function ¢ on
H we denote by D(¢) and Op the effective domain and subdifferential of ¢,
respectively; the domain and range of Op are denoted by D(0y) and R(0p),
respectively. We refer for fundamental properties of subdifferentials to [1].

When a given function is periodic in time with period Ty, we say simply
that the function is Ty-periodic.

For a point z in H and non-empty subsets X and Y of H, we define

disty(2,Y) := 3ig}f/[z —ylg, distyg(X,Y) = seu)?ng, |z — y|g-
zeX y

2. Abstract results (existence of a Ty-periodic solution)

Evolution equation (P), is formulated for any family {¢'} in the class
®,({a,},{b-}; To) specified below, where {a,} := {ar;r > 0} and {b,} :=
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{b,;7 > 0} are families of real functions in W,;2*(R.) and W!(R,), respec-
tively, such that

st1>1(1)) |a’r|Lz(t,t+1) + st1>1;é) |b;|L1(t,t+1) < +oo for every r > 0.

Definition 2.1. {¢'} € ®,({a,}, {b,}; To) if and only if ¢* is a proper ls.c.
convex function on H such that

(Pt+TO(') = (Pt() on H7 vVt € R—H
{2z € H;|z|g <k, ¢'(2) <k} is compact in H for every ¢ >0 and k > 0,
and the following property (x) is fulfilled:

(%) For each r € R, s, t € Ry and z € D(y®) with |z|g < r, there exists
Z € D(p%) such that

Nl

|2 — z|m < lar(t) —ar(s)|(1 + |¢°(2)|2)

and
0" (2) — ©°(2) < |br(t) — br(s) (1 + [*(2)])-

Next, we introduce the class Gp({¢'}; To) associated with {¢'} € ®,({a,},
{b-}; To).

Definition 2.2. {g(¢,-)} € G,({¢'}; Tv) if and only if g(¢,-) is an operator
from H into H which fulfills the following conditions (g1)-(g6):

(g1) D(¢*) C D(g(t,-)) € Hforallt € R, and g(-,v(:)) is (strongly) measur-
able on J for any interval J C Ry and v € L}, .(J; H) with v(t) € D(¢)
for a.e. t € J.

(g2) There are positive constants Cy, C; and Cs such that

l9(t, 2)[% < Cog'(2) + Culelgy + Co,  VE€ Ry, Vze D(g).

(g3) (Demi-closedness) If {t,} C R, {zn} C H, t, = t, z, — z in H (as
n — +o0) and {¢™(2,)} is bounded, then g(t,,2z.) — g(t,2) weakly in
H. ,
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(g4) For each ¢ > 0, there exists a positive constant C. > 0 such that
(9(t,21) — g(t, 22), 21 — 22) | S €(2] — 23,21 — ) + Ce|z1 — 223y,
Vie Ry, Vz; € D((pt), VZ: € &pt(zz), 1=1,2.

(g5) (Coerciveness) For each bounded set B in H there are positive constants
Co(B) and Cy(B) such that

¢'(2) + (9(t, 2), 2 — b)u > Co(B)|2|% — C1(B),
Vi€ R,, Vz € D(¢"),Vb € B.
(g6) (Tp-periodicity) g(t+ To,-) = g(t,-) on H, Vi€ R,.

The notion of a solution of (P), is given in the next definition.

Definition 2.3. (1) A function u : [s,7] —» H, 0 < s < T < 400, is a
solution of (P), on [s,T] , if u € C([s, T}; H) N W22 ((s, T); H), oV (u(")) €
L'(s,T), g(,u()) € L*(s, T; H) and

f(t) —u'(t) — g(t,u(t)) € 8p'(u(t)) for ae. t € [s,T].

A function u is called a solution of (P), on [s,+00), if it is a solution of (P),
on [s,T] for every finite T > s. Also, u : [s,T] or [s,+00) — H is called a
solution of the Cauchy problem for (P), with initial value ug € H, if it is a
solution of (P), and u(s) = ug.

(2) u is called a Ty-periodic solution of (P), on [s, +c0), s > 0, if u is a solution
of (P), which satisfies Tg-periodicity condition:

u(t) = u(t + To) for any ¢ € [s, +00).

Theorem 2.1. (cf. [14; Theorem 2.1.]) Assume that {¢'} € @,({a,}, {b,}; T0),
{9(t,)} € G({¢'}; To) and f € L (Ry;H). Then, the Cauchy problem for
(P),, s > 0, has one and only one solution u on J, := [s,4+00) such that

(-—8)20/(-) € Lyo(Jo; H), (-=8)¢ (u()) € Liz(Js) and o0 (u(")) is absolutely
continuous on any compact subinterval of (s,+00), provided that uy € D(p*).
In particular, if ug € D(¢°), then the solution u satisfies that u' € L2 .(J; H)

and O (u(-)) is absolutely continuous on any compact interval in J,.

Based on this existence result, we can define the solution operator (dynam-
ical process) associated to (P)

s*
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Definition 2.4. For every 0 < s < t < +co we denote by U(t,s) the map-
ping from D(¢®) into D(pt) which assigns to each ug € D(p®) the element
u(t) € D(p?), where u is the unique solution of (P), with initial condition

u(s) = up.

It is easy to check the following properties of {U(t,s)} := {U(t,5);0 < s <
t < +oo}:

(U1) U(s,s) =1 on D(y®) foranysé€ Ry;

(U2) Ul(ty,s) = Ulta, t1) o U(t1,s) for any 0 < s <ty <ty < +o00;

(U3) U(t + To,s +To) = Ut,s) forany 0 < s <t < +oo, that is, U is
To-periodic.

In terms of U(t,s), global estimates of solutions for (P), are stated as
follows: ’

Theorem 2.2. (cf. [14; Theorem 2.2]) (Global boundedness of the solution
for (P),) In addition to all the assumptions of Theorem 2.1, suppose that

Sy :=sup |flree+1;m) < +00.
>0

Then, for any bounded set B in H,

(i) There is a positive constant Ry := Ry(Sf, B) such that

\U(t,8)z|lg < Ry foranyt>s>0 and all z € D(p*) N B.

(ii) There is a positive constant Ry := Ry(Sy, B) such that

t+1
/ le"(U(T,8)2)|dr < Ry forallt > s >0 and z € D(p*) N B.
t

(iii) For each 6 > 0, there is a positive constant R := R3(Sy, B, 6) such that

2

S R37

d
P2 + [ )2
¢ L2(t,t+1;H)

foralls>0,t>s+6 and z € D(¢%) N B.
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With the help of global estimates mentioned in Theorem 2.2 as well as a
convergence result [14; Lemma 4.1] we can prove:

Theorem 2.3 Assume that the same assumptions are made as in Theorem
2.1 and f € L} (Ry; H) is To-periodic, i.e.

f@) = f(t+ To) foranyt € R,.
Then for each s € R, there exists a Typ-periodic solution u for (P),.

In the proof of Theorem 2.3, the crucial step is to show that the mapping
Ty := U(To + s,8) : D(p*) — D(p*tT) = D(¢*) has a fixed point, which can
be done by the Schauder’s fixed point theorem. See [9] for a detailed proof.

3. Abstract results (global attractors)

In this section, we present some recent results on global attractors for the
solution operator U(t, s) associated with (P),; all the assumptions of Theorem
2.1 are made as well.

For each 7 > 0 we define a mapping T, by putting

T, :=U(Ty+7,7): D(p7) = D(¢"),
and its k-th iteration by
T*:=T.0T,0---0T,, k=0,1,2,---.

Essentially using the theory of discrete dynamical systems (cf. [7, 15]), we
have:

Theorem 3.1. Assume that {¢'} € @,({a}, {b-}; T0), {9, ")} € G({¥'}; To),
fe L (Ry; H) is Ty-periodic. Then, for each 7 > 0, there exists a subset A,
of D(¢") such that

(i) A: is non-empty, compact and connected tn H,
(ii) T*A, = A, for all k=0,1,2,- -,

(iii) for each bounded set B in H and each number € > 0 there exists a positive
integer Np. such that

disty(TF2, A:) <€, Yz € D(p")NB, Yk > Ng.
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Moreover, for any 0 < s < 7 < +00,
A = U(T, ) As (3.1)
holds.

Remark 3.1. (1) For any 7 > 0, choose m, € Z, and o € [0,Tp) so that
T = o, + m,Tp. Then, Theorem 3.1 (ii) implies that A, = A,,, hence the
set-valued mapping 7 — A, is To-periodic.

(2) In [11, 12], periodic system (P), with ¢ = 0 was studied, and it
was shown that some solutions do not approach to any periodic solutions as
t — +o0; in other words the asymptotic behaviour (as ¢ — +oco0) along a
single solution is not periodic in time. However, as was seen in (1), the global
attractor A, is Tp-periodic. '

(3) Relation (3.1) of Theorem 3.1 implies that U(7, s) is a topological map-
ping from A, onto A..

4. Application to a phase-field model with constraint

Invthis section, let us consider the periodic problem (PFC), of a phase-field
model with constraint for the Penrose-Fife type:

1
[9 + )\(t,.'E,’lU)]t - A <_5 + ue) = q(t,:z:) in Qs,
>\w(t7$’w) :
wy, — kAw + B(w) + o(w) + — 50 in Q,
S B A L o) =1 5

on (‘5“‘ )*”" (‘5“‘ ) = hlt,z) - on 2

: ow

%‘ =0 on Es,

\

under the same notation as section 1.
We assume precisely that

e ) is a smooth function on R; x RN x R such that A(t,z,w) is convex
with respect to w € R for each (¢,z) € R, x RY and is Ty-periodic for
each (z,w) € 2 x R;

: : N O\ o))

e )\ and its partial derivatives Ay, = B’ At 1= 5 are bounded on R, X

Q x [~1, 1], namely,

L/\ o sup {l)\(i,ﬂ?,?ﬂ)l + IAw(ta .’E,'LU)I + |>‘t(t7x7w)l ;
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ref, t>0, |w|§1}<+oo;

e (3 is a maximal monotone graph in R x R such that D(8) = [-1,1];
we fix a proper ls.c. convex and non-negative function 8 on R whose
subdifferential 08 coincides with g in R;

e o is a smooth function on R;

e 19, u and k are positive constants;

o feL? (Ry;L*Q) and h € L2, (R.; L*(T")) are Tp-periodic in time.

We need some notation in order to reformulate (PFC), as an evolution

equation in terms of subdifferential.
Let V be the Sobolev space H(f2) with norm

luly = {L IVvlzd:c—I-ng/r |v[2dI‘}§, Yv €V,

V* be the dual space of V and F' be the duality mapping from V' onto V¥,
namely,

(Fo,2) = /Q Vo Vadz + ng / v2dl, Wu,Vz €V,
T

where (-, ) denotes the duality pairing between V* and V.
Given q € L*(Q) and h € L?(T'), an element ¢* € V* is uniquely determined

by |
(g%, 2) :quzdm+AhzdP, Yz eV,

and it is easy to check that F'v = ¢* is formally equivalent to

: 0
—Av=gqin §, 8—:; + nov = h on I} (4.1)

in fact, (4.1) is satisfied in the variational sense that

/QVU-Vzda:—l—ng/F'uzdI‘:quda:—kﬁhzdf‘ (={q",2));, VzeV

By notation Ay we denote the Laplacian, with homogeneous Neumann bound-
ary condition, in L2({2), more precisely,

D(An) = { z € H*(Q) l % = 0in HZ(T) }
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and

Anz = Az a.e. in Q) for any z € D(Ay).

It is well known that —Ap is singleValued and maximal monotone in L?(£2).

As was seen in the recent paper [6], we can reformulate (PFC), as an
evolution equation with a new variable e := € + A(-,-,w), in the following
form:

d <€(t)>+ ( F(a(e(t) — AL, w(t)) + pe(?)) )
dt \w(t) —kAnw(t) + £(t) — ale(t) — AL, -, w(t))Au(t, -, w(t))
(TN 0) (60
o(w(t)) 0o )’
V*

H:= x |
L2 ()

where H is a Hilbert space with inner product (-, -)g given by

in the product space

(U, Ug)g = <€1;F—1€2> +/ W WodT,
Q

for all U; := <Z> € H (i=1,2), ¢*(t) is the element of V* determined by

(¢ (t),2) = / zda:+/ zdl, VYzeV,

1
and a(r) := — for r > 0.
Let us define ¢* on H by putting

L {——log(e = A, w)) + g*|e|2}da:+ I—;—/ﬂ |Vw|de + Aﬁ(w)dx
)

t( ) L if u:= (e) c szﬂ
P = w) — HYQ)
with log(e — A(t, -, w)) € LY(Q), B(w) € L}(%),

| +o0 otherwise.

4
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According to the result of [6, 14], we have the following lemmas.

Lemma 4.1. (1) For each t € R, ¢' is proper ls.c. convex on H and Tg-
L*()

periodic, and D(¢) C X . Moreover, there are positive constants vy, v1,
HY(Q)

independent of t € R, such that

e
#0) 2 nllel + ol ~ V= (1) €D

2) {¢'} € ®,({ar},{b-}; To), where ar(t) = b.(t) = Ryt for all v > 0 and
t € R, with a (sufficiently large) constant Ry > O; in fact, we can choose as
Ro a constant of the form const.Ly.

Lemma 4.2. For eacht € R,

2 w 1
D) = <6) c L >(<Q) : ale — A(t,-,w)) + pe eV, ?9—77, =0 i H2(I),
w H*(Q) FHe L*(Q)) such that £ € B(w) a.e. on

and if (Z*) € Oyt (Z), then

e’ = F(a(e— }‘(ta 'aw)),+ pe)
w* = —kAyw+ £ — ale — AL, -, w)) Ay (t, -, w) (4.3)
for some & € L*(2) such that £ € B(w) a.e. on Q.

Moreover, we have

(u} — ug, w1 — u2)m > pler — eatag) + K|V (w1 — w2)lZa (4.4)

€

Vt € Ry, VYu; = ( > € D(8yY), Yu} € 0¢*(uw;), i=1,2.

1

Now, combining expressions (4.2) and (4.3), we see that our system (PFC),
is reformulated as the evolution equation

u'(t) + 8¢ (u(t)) + 9t u(t)) > f(t) inH, t>s(20),
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where
| | 12(Q) .
g(t,u) := (-—uFA(t,-,w)) for u := (e) e x ,f@):= (q (t))
(4.5)

It is not difficult to check with the help of (4.4) that the operator g(Z,-)
defined by (4.5) satisfies all the conditions (gl)-(g6) in Definition 2.2.

As direct consequences of Theorems 2.3 and 3.1, we see that the periodic
system (4.1)-(4.4) has at least one Ty-periodic solution and the global attractor
A, for each 7 > 0. Namely, for any bounded subset B € X any solution
[0(nTy + 7) + A(nTo + 7, -, w(nTp + 7)), w(nTy + 7)] of (PFC)s starting from
B converges uniformly in 7 to the global attractor A, of the periodic system

(PFQ), .
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