<table>
<thead>
<tr>
<th>Title</th>
<th>Generalized Fractional Calculus of the H-Function (Applications of Complex Function Theory to Differential Equations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Saigo, Megumi; Kilbas, Anatoly A.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1998), 1062: 89-107</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62401</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Generalized Fractional Calculus of the H-Function

Megumi Saigo* [西郷 恵] (福岡大学 理学部)
Anatoly A. Kilbas† (ベラルーシ国立大学・ベラルーシ)

Abstract

The paper is devoted to study the generalized fractional calculus of arbitrary complex order for the H-function defined by the Mellin-Barnes integral

$$H_{p,q}^{m,n}(z) = \frac{1}{2\pi i} \int_{\mathcal{L}} \mathcal{H}_{p,q}^{m,n}(s) z^{-s} ds,$$

where the function $\mathcal{H}_{p,q}^{m,n}(s)$ is a certain ratio of products of Gamma functions with the argument s and the contour \mathcal{L} is specially chosen. The considered generalized fractional integration and differentiation operators contain the Gauss hypergeometric function as a kernel and generalize classical fractional integrals and derivatives of Riemann-Liouville, Erdélyi-Kober type, etc. It is proved that the generalized fractional integrals and derivatives of H-functions are also H-functions but of greater order. In particular, the obtained results define more precisely and generalize known results.

1. Introduction

This paper deals with the H-function $H_{p,q}^{m,n}(z)$. For integers m, n, p, q such that $0 \leq m \leq q$, $0 \leq n \leq p$, for $a_i, b_j \in \mathbb{C}$ with \mathbb{C} the field of complex numbers and for $\alpha_i, \beta_j \in \mathbb{R}_+ = (0, \infty)$ ($i = 1, 2, \ldots, p; j = 1, 2, \ldots, q$) the H-function $H_{p,q}^{m,n}(z)$ is defined via a Mellin-Barnes type integral in the following way:

$$H_{p,q}^{m,n}(z) \equiv H_{p,q}^{m,n} \begin{bmatrix} (a_1, \alpha_1)_{1,p} \\ (b_1, \beta_1)_{1,q} \end{bmatrix} = H_{p,q}^{m,n} \begin{bmatrix} (a_1, \alpha_1), \ldots, (a_p, \alpha_p) \\ (b_1, \beta_1), \ldots, (b_q, \beta_q) \end{bmatrix}$$

$$= \frac{1}{2\pi i} \int_{\mathcal{L}} \mathcal{H}_{p,q}^{m,n} \begin{bmatrix} (a_1, \alpha_1)_{1,p} \\ (b_1, \beta_1)_{1,q} \end{bmatrix} s^{-s} ds,$$

(1.1)

* Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan
† Department of Mathematics and Mechanics, Belarusian State University, Minsk 220050, Belarus
where the contour \mathcal{L} is specially chosen and

\[
\mathcal{H}_{p,q}^{m,n}(s) \equiv \mathcal{H}_{p,q}^{m,n} \left[\begin{array}{c} (\alpha_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right] s = \frac{\prod_{j=1}^{m} \Gamma(b_j + \beta_j s) \prod_{i=1}^{n} \Gamma(1 - a_i - \alpha_i s)}{\prod_{i=n+1}^{p} \Gamma(a_i + \alpha_i s) \prod_{j=m+1}^{q} \Gamma(1 - b_j - \beta_j s)}, \quad (1.2)
\]

in which an empty product, if it occurs, is taken to be one. Such a function was introduced by S. Pincherle in 1888 and its theory has been developed by Mellin [10], Dixon and Ferrar [2] (see [3, §1.19] in this connection). An interest to the H-function arose again in 1961 when Fox [4] has investigated such a function as a symmetrical Fourier kernel. Therefore this function is sometimes called as Fox's H-function. The theory of this function may be found in [1], [9, Chapter 1], [17, Chapter 2] and [11, 8.8.3].

Classical Riemann-Liouville fractional calculus of real order [17, §2.2] (see (2.1) - (2.6) below) was investigated in [12] - [14], [18] and [11]. The right-sided fractional integrals and derivatives of the H-function (1.1) were studied in [12] - [14] and the results were presented in [18, §2.7], where the case of left-sided fractional differentiation of the H-function was also considered. The left-sided fractional integration of the H-function was given in [11, 2.25.2]. Such results for the generalized fractional calculus operators with the Gauss hypergeometric function as a kernel (see (2.7) - (2.10) below), being introduced by the first author [15], were obtained in [16].

However, some of the results obtained in [12] - [14] (cited in [18]) and [16] can be taken to be more precisely. Moreover, these results were given provided that the parameters $a_i, b_j \in \mathbb{C}$ and $\alpha_i > 0, \beta_j > 0 (i = 1, 2, \ldots, p; j = 1, 2, \ldots, q)$ of the H-function satisfy certain conditions. These conditions were based on asymptotic behavior of $H_{p,q}^{m,n}(z)$ at zero and infinity. In [5] we extended such the known asymptotic results for the H-function to more wide class of parameters.

In [7], [8] we have applied the obtained asymptotic estimates in [5] to find the Riemann-Liouville fractional integrals and derivatives of any complex order of the H-function. In particular, we could make more precisely the known results from [12] - [14], [18] and [11].

The present paper is devoted to obtain such type results for the generalized fractional integration and differentiation operators of any complex order with the Gauss hypergeometric function as a kernel. In particular, we give more precisely some of the results from [16] and generalize the results obtained in [7], [8]. The paper is organized as follow. In Section 2 we present classical and generalized fractional calculus operators and some facts from the theory of Gauss hypergeometric function. Sections 3 and 4 contain the result from the theory of the H-function. The existence of $H_{p,q}^{m,n}(z)$ and its asymptotic behavior at zero and infinity is considered in Section 3 and certain reduction and differentiation properties in Section 4. Sections 5 and 6 deal with generalized fractional differentiation of the H-function (1.1). Sections 7 and 8 are devoted to the generalized fractional differentiation of the H-function. Another type of fractional integro-differentiation of the H-function is given in Section 9.
2. Classical and Generalized Fractional Calculus Operators

For $\alpha \in \mathbb{C}, \text{Re}(\alpha) > 0$, the Riemann-Liouville left- and right-sided fractional calculus operators are defined as follows [17, §2.3 and §2.4]:

\[
(I_{0+}^{\alpha}f)(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} \frac{f(t)dt}{(x-t)^{1-\alpha}} \quad (x > 0), \tag{2.1}
\]

\[
(I_{-}^{\alpha}f)(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} \frac{f(t)dt}{(t-x)^{1-\alpha}} \quad (x > 0), \tag{2.2}
\]

and

\[
(D_{0+}^{\alpha}f)(x) = \left(\frac{d}{dx}\right)^{[\text{Re}(\alpha)]+1} \left(I_{0+}^{1-\alpha+[\text{Re}(\alpha)]}f\right)(x)
= \frac{d}{dx} \left(\frac{1}{\Gamma(1-\alpha+|\text{Re}(\alpha)|)} \int_{0}^{x} \frac{f(t)dt}{(x-t)^{1-\alpha}}\right) \quad (x > 0), \tag{2.3}
\]

\[
(D_{-}^{\alpha}f)(x) = \left(-\frac{d}{dx}\right)^{[\text{Re}(\alpha)]+1} \left(I_{-}^{1-\alpha+[\text{Re}(\alpha)]}f\right)(x)
= -\frac{d}{dx} \left(\frac{1}{\Gamma(1-\alpha+|\text{Re}(\alpha)|)} \int_{x}^{\infty} \frac{f(t)dt}{(t-x)^{1-\alpha}}\right) \quad (x > 0), \tag{2.4}
\]

respectively, where the symbol $[\kappa]$ means the integral part of a real number κ, i.e. the largest integer not exceeding κ. In particular, for real $\alpha > 0$, the operators D_{0+}^{α} and D_{-}^{α} take more simple forms

\[
(D_{0+}^{\alpha}f)(x) = \left(\frac{d}{dx}\right)^{[\alpha]+1} \left(I_{0+}^{1-\alpha+[\alpha]}f\right)(x)
= \frac{d}{dx} \left(\frac{1}{\Gamma(1-\alpha)} \int_{0}^{x} \frac{f(t)dt}{(x-t)^{1-\alpha}}\right) \quad (x > 0), \tag{2.5}
\]

and

\[
(D_{-}^{\alpha}f)(x) = \left(-\frac{d}{dx}\right)^{[\alpha]+1} \left(I_{-}^{1-\alpha+[\alpha]}f\right)(x)
= -\frac{d}{dx} \left(\frac{1}{\Gamma(1-\alpha)} \int_{x}^{\infty} \frac{f(t)dt}{(t-x)^{1-\alpha}}\right) \quad (x > 0), \tag{2.6}
\]

respectively, where $\{\kappa\}$ stands for the fractional part of κ, i.e. $\{\kappa\} = \kappa - [\kappa]$.

For $\alpha, \beta, \eta \in \mathbb{C}$ and $x > 0$ the generalized fractional calculus operators are defined by [15]

\[
(I_{0+}^{\alpha,\beta,\eta}f)(x) = \frac{x^{\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{x} (x-t)^{\alpha-1} {}_{2}F_{1}\left(\alpha+\beta,-\eta;\alpha;1-\frac{t}{x}\right) f(t)dt \tag{2.7}
\]
\[
\left(I^{\alpha, \beta, \eta}_{0^+} f\right)(x) = \left(\frac{d}{dx}\right)^n \left(I^{\alpha+n, \beta-n, \eta-n}_{0^+} f\right)(x) \quad (\text{Re}(\alpha) > 0; n = [\text{Re}(\alpha)] + 1); \tag{2.8}
\]
\[
\left(I^{\alpha, \beta, \eta}_{-} f\right)(x) = \frac{1}{\Gamma(\alpha)} \int_x^\infty (t-x)^{\alpha-1} t^{-\alpha-\beta} \ \left(2F_1\right) \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{x}{t}\right) f(t) dt \tag{2.9}
\]
\[
\left(D^{\alpha, \beta, \eta}_{0^+} f\right)(x) \equiv \left(I^{\alpha, \beta, \eta}_{0^+} f\right)(x) \quad (\text{Re}(\alpha) > 0; n = [\text{Re}(\alpha)] + 1); \tag{2.10}
\]
and
\[
\left(D^{\alpha, \beta, \eta}_{-} f\right)(x) \equiv \left(I^{\alpha, \beta, \eta}_{-} f\right)(x) \quad (\text{Re}(\alpha) > 0; n = [\text{Re}(\alpha)] + 1)). \tag{2.11}
\]

Here \(2F_1(a, b; c; z)\) \((a, b, c, z \in \mathbb{C})\) is the Gauss hypergeometric function defined by the series
\[
2F_1(a, b; c; z) = \sum_{k=0}^\infty \frac{(a)_k (b)_k}{(c)_k} \frac{z^k}{k!} \tag{2.13}
\]
with
\[
(a)_0 = 1, \quad (a)_k = a(a+1) \cdots (a+k-1) = \frac{\Gamma(a+k)}{\Gamma(a)} \quad (k \in \mathbb{N}), \tag{2.14}
\]
where \(\Gamma(z)\) is the Gamma function [3, Chapter I] and \(\mathbb{N}\) denotes the set of positive integers.

The series in (2.13) is convergent for \(|z| < 1\) and for \(|z| = 1\) with \(\text{Re}(c-a-b) > 0\), and can be analytically continued into \(\{z \in \mathbb{C} : |\arg(1-z)| < \pi\}\) (see [3, Chapter II]).

Since
\[
2F_1(0, b; c; z) = 1 \tag{2.15}
\]
for \(\beta = -\alpha\), the generalized fractional calculus operators (2.7), (2.9), (2.11) and (2.12) coincide with the Riemann-Liouville operators (2.1) - (2.4) for \(\text{Re}(\alpha) > 0\):

\[
\left(I^{\alpha, -\alpha, \eta}_{0^+} f\right)(x) = \left(I^{\alpha}_{0^+} f\right)(x), \quad \left(I^{\alpha, -\alpha, \eta}_{-} f\right)(x) = \left(I^{\alpha}_{-} f\right)(x), \tag{2.16}
\]
\[
\left(D^{\alpha, -\alpha, \eta}_{0^+} f\right)(x) = \left(D^{\alpha}_{0^+} f\right)(x), \quad \left(D^{\alpha, -\alpha, \eta}_{-} f\right)(x) = \left(D^{\alpha}_{-} f\right)(x). \tag{2.17}
\]
According to the relation [3, 2.8(4)]

\[2F_1(a, b; c; z) = (1 - z)^{-c}, \quad (2.18) \]

when \(\beta = 0 \) the operators (2.7) and (2.9) coincide with the Erdélyi-Kober fractional integrals [17, §18.1]:

\[
(I_{0+}^\alpha \eta f)(x) = \frac{x^{-\alpha-\eta}}{\Gamma(\alpha)} \int_0^x (t-x)^{\alpha-1}t^{-\eta}f(t)dt \equiv (I_{\eta,\alpha}^+ f)(x) \quad (\alpha, \eta \in \mathbb{C}, \Re(\alpha) > 0), \tag{2.19}
\]

\[
(I_{-}^\alpha \eta f)(x) = \frac{x^\eta}{\Gamma(\alpha)} \int_x^\infty (t-x)^{\alpha-1}t^{-\eta}f(t)dt \equiv (K_{\eta,\alpha}^- f)(x) \quad (\alpha, \eta \in \mathbb{C}, \Re(\alpha) > 0). \tag{2.20}
\]

Therefore the operators (2.7), (2.9) and (2.11), (2.12) are called "generalized" fractional integrals and derivatives, respectively. Moreover, the operators (2.11) and (2.12) are inverse to (2.7) and (2.9):

\[
D_{0+}^{\alpha,\beta,\eta} = (I_{0+}^{\alpha,\beta,\eta})^{-1}, \quad D_{-}^{\alpha,\beta,\eta} = (I_{-}^{\alpha,\beta,\eta})^{-1}. \tag{2.21}
\]

Fractional calculus operators (2.1), (2.3), (2.5), (2.7), (2.8), (2.11) and (2.2), (2.4), (2.6), (2.9), (2.10), (2.12) are called left-sided and right-sided, respectively [17, §2].

We give some other properties of \(2F_1(a, b; c; z) \) [3, 2.8(46), 2.9(2), 2.10(14)] which will be used in the following calculations:

\[
2F_1(a, b; c; 1) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \quad (c \neq -0, -1, -2, \ldots; \Re(c-a-b) > 0); \tag{2.22}
\]

\[
2F_1(a, b; c; z) = (1 - z)^{c-a-b} 2F_1(c-a, c-b; c; z); \tag{2.23}
\]

\[
2F_1(a, b; a+b; z) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \sum_{k=0}^{\infty} \frac{(a)_k(b)_k}{(k!)^2} [2\psi(1+k) - \psi(a+k) + \psi(b+k) - \log(1-z)](1-z)^k \quad (|\arg(z)| < \pi; a, b \neq 0, -1, -2, \ldots), \tag{2.24}
\]

where \(\psi(z) = \Gamma'(z)/\Gamma(z) \) is the Psi function [3, 1.7].

Formulas (2.22) - (2.24) mean the following asymptotic behavior of \(2F_1(a, b; c; z) \) at the point \(z = 1 \).

Lemma 1. For \(a, b, c \in \mathbb{C} \) with \(\Re(c) > 0 \) and \(z \in \mathbb{C} \), there hold the following asymptotic relations near \(z = 1 \):

\[
2F_1(a, b; c; z) = O(1) \quad (z \to 1-) \tag{2.25}
\]

for \(\Re(c-a-b) > 0 \);

\[
2F_1(a, b; c; z) = O \left((1-z)^{c-a-b} \right) \quad (z \to 1-) \tag{2.26}
\]

for \(\Re(c-a-b) < 0 \); and

\[
2F_1(a, b; c; z) = O \left(\log(1-z) \right) \quad (z \to 1-) \tag{2.27}
\]
for \(c - a - b = 0, \ a, b \neq 0, -1, -2, \ldots \) and \(|\arg(z)| < \pi \).

3. Existence and Asymptotic Behavior of the \(H \)-Function

We shall consider the \(H \)-function (1.1) provided that the poles

\[
b_{jl} = \frac{-b_{j} - l}{\beta_{j}} \quad (j = 1, \ldots, m; l \in \mathbb{N}_{0})
\]

of the Gamma functions \(\Gamma(b_{j} + \beta_{j}s) \) and that

\[
a_{ik} = \frac{1 - \alpha_{i} + k}{\alpha_{i}} \quad (i = 1, \ldots, n; k \in \mathbb{N}_{0})
\]

of \(\Gamma(1 - \alpha_{i} - \alpha_{i}s) \) do not coincide:

\[
\alpha_{i}(b_{j} + l) \neq \beta_{j}(a_{i} - k - 1) \quad (i = 1, \ldots, n; j = 1, \ldots, m; k, l \in \mathbb{N}_{0}),
\]

where \(\mathbb{N}_{0} = \mathbb{N} \cup \{0\} \). \(\mathcal{L} \) in (1.1) is the infinite contour splitting poles \(b_{jl} \) in (3.1) to the left and poles \(a_{ik} \) in (3.2) to the right of \(\mathcal{L} \) and has one of the following forms:

(i) \(\mathcal{L} = \mathcal{L}_{-\infty} \) is a left loop situated in a horizontal strip starting at the point \(-\infty + i\varphi_{1} \) and terminating at the point \(-\infty + i\varphi_{2} \) with \(-\infty < \varphi_{1} < \varphi_{2} < +\infty \);

(ii) \(\mathcal{L} = \mathcal{L}_{+\infty} \) is a right loop situated in a horizontal strip starting at the point \(+\infty + i\varphi_{1} \) and terminating at the point \(+\infty + i\varphi_{2} \) with \(-\infty < \varphi_{1} < \varphi_{2} < +\infty \).

(iii) \(\mathcal{L} = \mathcal{L}_{i\gamma \infty} \) is a contour starting at the point \(\gamma + i\infty \) and terminating at the point \(\gamma + i\infty \) with \(\gamma \in \mathbb{R} = (-\infty, +\infty) \).

The properties of the \(H \)-function \(H^{m,n}_{p,q}(z) \) depend on the numbers \(a^*, \Delta, \delta \) and \(\mu \) which are expressed via \(p, q, \alpha_{i}, \alpha_{i} (i = 1, 2, \ldots, p) \) and \(b_{j}, \beta_{j} (j = 1, 2, \ldots, q) \) by the following relations:

\[
a^* = \sum_{i=1}^{n} \alpha_{i} - \sum_{i=n+1}^{p} \alpha_{i} + \sum_{j=1}^{m} \beta_{j} - \sum_{j=m+1}^{q} \beta_{j},
\]

\[
\Delta = \sum_{j=1}^{q} \beta_{j} - \sum_{i=1}^{p} \alpha_{i},
\]

\[
\delta = \prod_{i=1}^{p} \alpha_{i}^{-\alpha_{i}} \prod_{j=1}^{q} \beta_{j}^{\beta_{j}},
\]

\[
\mu = \sum_{j=1}^{q} b_{j} - \sum_{i=1}^{p} a_{i} + \frac{p - q}{2}.
\]

Here an empty sum in (3.4), (3.5), (3.7) and an empty product in (3.6), if they occur, are taken to be zero and one, respectively.

The existence of the \(H \)-function is given by the following result [6].
Theorem A. Let \(a^*, \Delta, \delta \) and \(\mu \) be given by (3.4)-(3.7). Then the \(H \)-function \(H_{p,q}^{m,n}(z) \) defined by (1.1) and (1.2) makes sense in the following cases:

\[
\begin{aligned}
\mathcal{L} &= \mathcal{L}_{-\infty}, \quad \Delta > 0, \quad z \neq 0; \\
\mathcal{L} &= \mathcal{L}_{-\infty}, \quad \Delta = 0, \quad 0 < |z| < \delta; \\
\mathcal{L} &= \mathcal{L}_{-\infty}, \quad \Delta = 0, \quad \Re(\mu) < -1, \quad |z| = \delta; \\
\mathcal{L} &= \mathcal{L}_{+\infty}, \quad \Delta < 0, \quad z \neq 0; \\
\mathcal{L} &= \mathcal{L}_{+\infty}, \quad \Delta = 0, \quad |z| > \delta; \\
\mathcal{L} &= \mathcal{L}_{\gamma\infty}, \quad \Delta = 0, \quad \Re(\mu) < -1, \quad |z| = \delta; \\
\mathcal{L} &= \mathcal{L}_{\gamma\infty}, \quad a^* > 0, \quad |\arg z| < \frac{a^*\pi}{2}, \quad z \neq 0; \\
\mathcal{L} &= \mathcal{L}_{\gamma\infty}, \quad a^* = 0, \quad \Delta \gamma + \Re(\mu) < -1, \quad \arg z = 0, \quad z \neq 0.
\end{aligned}
\] (3.8) - (3.15)

Remark 1. The results of Theorem A in the cases (3.10), (3.13) and (3.15) are more precisely than those in [11, §8.3.1].

The next statement being followed from the results in [5] characterizes the asymptotic behavior of the \(H \)-function at zero and infinity.

Theorem B. Let \(a^* \) and \(\Delta \) be given by (3.4) and (3.5) and let conditions in (3.3) be satisfied.

(i) If \(\Delta \geq 0 \) or \(\Delta < 0, a^* > 0 \), then the \(H \)-function has either of the asymptotic estimates at zero

\[
H_{p,q}^{m,n}(z) = O \left(z^{\varrho^*} \right) \quad (|z| \to 0)
\] (3.16)

or

\[
H_{p,q}^{m,n}(z) = O \left(z^{\varrho^*} |\log(z)|^{N^*} \right) \quad (|z| \to 0),
\] (3.17)

with the additional condition \(|\arg(z)| < a^* \pi/2\) when \(\Delta < 0, a^* > 0 \). Here

\[
\varrho^* = \min_{1 \leq j \leq m} \left[\frac{\Re(b_j)}{\beta_j} \right],
\] (3.18)

and \(N^* \) is the order of one of the point \(b_j \) in (3.1) to which some other poles of \(\Gamma(b_j + \beta_j s) \) \((j = 1, \ldots, m)\) coincide.

(ii) If \(\Delta \leq 0 \) or \(\Delta > 0, a^* > 0 \), then the \(H \)-function has either of the asymptotic estimates at infinity

\[
H_{p,q}^{m,n}(z) = O \left(z^\varrho \right) \quad (|z| \to \infty)
\] (3.19)
or

\[H_{p,q}^{m,n}(z) = O \left(z^\varrho |\log(z)|^N \right) \quad (|z| \to \infty), \]
(3.20)

with the additional condition \(|\arg(z)| < \alpha \pi / 2\) when \(\Delta > 0, \alpha > 0\). Here

\[\varrho = \max_{1 \leq i \leq n} \left[\frac{\text{Re}(a_i) - 1}{\alpha_i} \right], \]
(3.21)

and \(N\) is the order of one of the point \(a_{ik}\) in (3.2) in which some other poles of \(\Gamma(1 - a_i - \alpha_i)\) \((i = 1, \cdots, n)\) coincide.

4. Reduction and Differentiation Properties of the \(H\)-Function

In this and next sections we suppose that the conditions for the existence of the \(H\)-function given in Theorem A are satisfied.

The following two Lemmas which characterize symmetric and reduction properties of the \(H\)-function follow from the definition of the \(H\)-function in (1.1) - (1.2).

Lemma 2. The \(H\)-function (1.1) is commutative in the set of pairs \((a_1, \alpha_1), \cdots, (a_n, \alpha_n)\); in \((a_{n+1}, \alpha_{n+1}), \cdots, (a_p, \alpha_p)\); in \((b_1, \beta_1), \cdots, (b_m, \beta_m)\) and in \((b_{m+1}, \beta_{m+1}), \cdots, (b_q, \beta_q)\).

Lemma 3. If one of \((a_i, \alpha_i)\) \((i = 1, \cdots, n)\) is equal to one of \((b_j, \beta_j)\) \((j = m + 1, \cdots, q)\) (or one of \((a_i, \alpha_i)\) \((i = n + 1, \cdots, p)\) is equal to one of \((b_j, \beta_j)\) \((j = 1, \cdots, m))\), then the \(H\)-function reduces to the lower order one, that is, \(p, q\) and \(n\) (or \(m\)) decrease by unity. Two such results have the forms

\[H_{p,q}^{m,n} \left[\begin{array}{c} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q-1}, (a_1, \alpha_1) \end{array} \right] = H_{p-1,q-1}^{m-1,n-1} \left[\begin{array}{c} (a_i, \alpha_i)_{2,p} \\ (b_j, \beta_j)_{1,q-1} \end{array} \right] \]
(4.1)

provided that \(n \geq 1\) and \(q > m\), and

\[H_{p,q}^{m,n} \left[\begin{array}{c} (a_i, \alpha_i)_{1,p-1}, (b_1, \beta_1) \\ (b_j, \beta_j)_{1,q} \end{array} \right] = H_{p-1,q}^{m-1,n} \left[\begin{array}{c} (a_i, \alpha_i)_{1,p-1} \\ (b_j, \beta_j)_{2,q} \end{array} \right] \]
(4.2)

provided that \(m \geq 1\) and \(p > n\).

The next differentiation formulae follow from the definition of the \(H\)-function given in (1.1) - (1.2) and from the functional equation for the Gamma function [3, §1.2(6)]

\[\Gamma(z)\Gamma(1 - z) = \frac{\pi}{\sin(\pi z)}. \]
(4.3)
Lemma 4. There hold the following differentiation formulae for \(\omega, c \in \mathbb{C}, \sigma > 0 \)
\[
\left(\frac{d}{dz} \right)^k \left\{ z^\omega I_{p,q}^{m,n} \left[\begin{array}{c} cz \\ (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right] \right\} \\
= z^{\omega-k} I_{p+1,q+1}^{m+1,n+1} \left[\begin{array}{c} cz \\ (\omega, \sigma), (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q}, (k - \omega, \sigma) \end{array} \right],
\]
(4.4)
\[
\left(\frac{d}{dz} \right)^k \left\{ z^\omega I_{p,q}^{m,n} \left[\begin{array}{c} cz \\ (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right] \right\} \\
= (-1)^k z^{-\omega-k} I_{p+1,q+1}^{m+1,n+1} \left[\begin{array}{c} cz \\ (a_i, \alpha_i)_{1,p}, (\omega, \sigma) \\ (b_j, \beta_j)_{1,q}, (k - \omega, \sigma) \end{array} \right].
\]
(4.5)

5. Left-Sided Generalized Fractional Integration of the \(H \)-Function

In the following sections we treat the \(H \)-function (1.1) - (1.2) with \(\mathcal{S} = \mathcal{S}_{\gamma_{\infty}} \) and under the assumptions \(a^* > 0 \) or \(a^* = 0, \Delta \gamma \neq \text{Re}(\mu) < -1 \) for \(\alpha^*, \Delta, \mu \) being given by (3.4), (3.5), (3.7).

Here we consider the left-sided generalized fractional integration \(I_{0+}^{\alpha, \beta, \eta} \) defined by (2.7).

Theorem 1. Let \(\alpha, \beta, \eta \in \mathbb{C} \) with \(\text{Re}(\alpha) > 0, \text{Re}(\beta) \neq \text{Re}(\eta) \). Let the constants
\(a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0 (i = 1, \ldots, p; j = 1, \ldots, q) \) and \(\omega \in \mathbb{C}, \sigma > 0 \) satisfy
\[
\sigma \min_{1 \leq i \leq m} \left[\frac{\text{Re}(b_j)}{\beta_j} \right] + \text{Re}(\omega) + \min[0, \text{Re}(\eta - \beta)] + 1 > 0,
\]
(5.1)
\[
\sigma \gamma < \text{Re}(\omega) + \min[0, \text{Re}(\eta - \beta)] + 1.
\]
(5.2)
The generalized fractional integral \(I_{0+}^{\alpha, \beta, \eta} \) of the \(H \)-function (1.1) exists and the following relation holds:
\[
\left(I_{0+}^{\alpha, \beta, \eta} t^\omega I_{p,q}^{m,n} \left[\begin{array}{c} t^\sigma \\ (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right] \right)(x) \\
= x^{\omega-\beta} I_{p+2,q+2}^{m+2,n+2} \left[x^\sigma \left| \begin{array}{c} (\omega, \sigma), (\omega + \beta - \eta, \sigma), (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q}, (\omega + \beta, \sigma), (\omega - \alpha - \eta, \sigma) \end{array} \right] \right].
\]
(5.3)

Proof. By (2.7) we have
\[
\left(I_{0+}^{\alpha, \beta, \eta} t^\omega I_{p,q}^{m,n} \left[\begin{array}{c} t^\sigma \\ (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right] \right)(x) \\
= \frac{x^{\omega-\beta}}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} t^\omega 2F1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{t}{x} \right) I_{p,q}^{m,n} \left[t^\sigma \\ (b_j, \beta_j)_{1,q} \right] dt.
\]
According to (2.25), (2.26), (3.16) and (3.17), the integrand in (5.4) for any $x > 0$ has the asymptotic estimate at zero

$$(x-t)^{-\alpha-1}t^\omega 2F_1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{t}{x} \right) H_{p,q}^{m,n} \left[I^{\sigma} \mid (a_i, \alpha_i)_{1,p} \right.$$

$$(b_j, \beta_j)_{1,q} \left. \right] = O \left(t^{\omega + \sigma \varphi + \min\{0, \Re(\eta - \beta)\} \right) \quad (t \to +0)$$

or

$$(x-t)^{-\alpha-1}t^\omega 2F_1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{t}{x} \right) H_{p,q}^{m,n} \left[I^{\sigma} \mid (a_i, \alpha_i)_{1,p} \right.$$

$$(b_j, \beta_j)_{1,q} \left. \right] = O \left(t^{\omega + \varphi + \min\{0, \Re(\eta - \beta)\} |\log(t)|^{N^*} \right) \quad (t \to +0).$$

Here φ^* is given by (3.18) and N^* is indicated in Theorem B(i). Therefore the condition (5.1) ensures the existence of the integral (5.4).

Applying (1.2), making the change of variable $t = x\tau$, changing the order of integration and taking into account the formula [11, §2.21.11]

$$\int_0^x t^{\alpha-1}(x-t)^{-\alpha} 2F_1 \left(a, b; c; 1 - \frac{t}{x} \right) dt = \frac{\Gamma(c)\Gamma(\alpha+c-a-b)}{\Gamma(\alpha+c-a)\Gamma(\alpha+c-b)} x^{\alpha+c-1}$$

$$(a, b, c, \alpha \in \mathbb{C}, \Re(\alpha) > 0, \Re(c) > 0, \Re(\alpha+c-a-b) > 0),$$

we obtain

$$\left(I_0^{\alpha,\beta,\omega,t_{p+1},m,n} \left[I^{\sigma} \mid (a_i, \alpha_i)_{1,p} \right. \right.$$

$$(b_j, \beta_j)_{1,q} \left. \right] \right)(x)$$

$$= \frac{x^{\omega-\beta}}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1}t^\omega 2F_1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{t}{x} \right) H_{p,q}^{m,n} \left[I^{\sigma} \mid (a_i, \alpha_i)_{1,p} \right.$$

$$(b_j, \beta_j)_{1,q} \left. \right] \, dt$$

$$= \frac{x^{\omega-\beta}}{2\pi i \Gamma(\alpha)} \int_{\mathcal{L}} \{ a_i, \alpha_i \}_{1,p} \right] \, ds \int_0^x (x-t)^{\alpha-1}t^{\omega-\sigma s} 2F_1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{t}{x} \right) dt$$

$$= \frac{x^{\omega-\beta}}{2\pi i} \int_{\mathcal{L}} \{ a_i, \alpha_i \}_{1,p} \right] \, ds \Gamma(1 + \omega - s\sigma)\Gamma(1 + \omega - \beta + \eta - s\sigma)$$

$$\Gamma(1 + \omega - \beta - s\sigma)\Gamma(1 + \omega + \alpha + \eta - s\sigma) \, x^{-s\sigma} ds. \quad (5.6)$$

We note that since $\mathcal{L} = \mathcal{L}_{\gamma \infty}$, $\Re(s) = \gamma$ and therefore the condition (5.2) ensures the existence of the Mellin-Barnes integral above. Hence in view of (1.2)

$$\left(I_0^{\alpha,\beta,\omega,t_{p+1},m,n} \left[I^{\sigma} \mid (a_i, \alpha_i)_{1,p} \right. \right.$$

$$(b_j, \beta_j)_{1,q} \left. \right] \right)(x)$$

$$= x^{\omega-\beta} H_{p+1,q}^{m,n+2} \left[I^{\sigma} \mid (-\omega, \sigma), (-\omega + \beta - \eta, \sigma), (a_i, \alpha_i)_{1,p} \right.$$

$$(b_j, \beta_j)_{1,q}, (-\omega + \beta, \sigma), (-\omega - \alpha - \eta, \sigma) \left. \right]. \quad (5.7)$$

and in accordance with (1.1) we obtain (5.3) which completes the proof of Theorem 1.
Corollary 1.1. Let $\alpha \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$, and let the constants $a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0$ $(i = 1, \cdots, p; j = 1, \cdots, q)$ and $\omega \in \mathbb{C}, \sigma > 0$ satisfy
\[
\sigma \min_{1 \leq j \leq m} \left[\frac{\text{Re}(b_j)}{\beta_j} \right] + \text{Re}(\omega) + 1 > 0, \quad (5.8)
\]
\[
\sigma \gamma < \text{Re}(\omega) + 1. \quad (5.9)
\]
Then the Riemann-Liouville fractional integral I_0^α of the H-function (1.1) exists and the following relation holds:
\[
\left(I_{0+}^{\alpha_1} \omega H_{m,n+1}^{\eta, \beta, \eta_1} \left[\begin{array}{c} \omega \\ \eta \end{array} \right] \right)(x) = x^{\omega + \alpha_1} H_{m,n+1}^{\eta, \beta, \eta_1} \left[\begin{array}{c} \omega \\ \eta \end{array} \right] \left[\begin{array}{c} (-\omega, \sigma), (a_i, \alpha_i), (b_j, \beta_j) \\ (-\omega - \alpha, \sigma) \end{array} \right]. \quad (5.10)
\]

Corollary 1.2. Let $\alpha, \eta \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$, and let the constants $a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0$ $(i = 1, \cdots, p; j = 1, \cdots, q)$ and $\omega \in \mathbb{C}, \sigma > 0$ satisfy
\[
\sigma \min_{1 \leq j \leq m} \left[\frac{\text{Re}(b_j)}{\beta_j} \right] + \text{Re}(\omega) + \min[0, \text{Re}(\eta)] + 1 > 0, \quad (5.11)
\]
\[
\sigma \gamma < \text{Re}(\omega) + \min[0, \text{Re}(\eta)] + 1. \quad (5.12)
\]
Then the Erdélyi-Kober fractional integral $I_+^{\alpha, \eta}$ of the H-function (1.1) exists and the following relation holds:
\[
\left(I_{+}^{\alpha_1, \eta_1} \omega H_{m,n+1}^{\eta, \beta, \eta_1} \left[\begin{array}{c} \omega \\ \eta \end{array} \right] \right)(x) = x^{\omega + \alpha_1} H_{m,n+1}^{\eta, \beta, \eta_1} \left[\begin{array}{c} \omega \\ \eta \end{array} \right] \left[\begin{array}{c} (-\omega - \eta, \sigma), (a_i, \alpha_i), (b_j, \beta_j) \\ (-\omega - \alpha - \eta, \sigma) \end{array} \right]. \quad (5.13)
\]

Remark 2. In the case $\alpha^* > 0, \Delta \geq 0$ the relation (5.3) was indicated in [16, (4.2)], but in the assumptions of the result the condition (5.2) of Theorem 1 should be added.

Remark 3. Corollary 1.1 coincides with Theorem 1 in [7]. For real $\alpha > 0$ and $\alpha^* > 0$ the relation (5.10) was indicated in [11, 25.2.2], but the conditions of its validity have to be also corrected according to (5.8) and (5.9).

6. Right-Sided Generalized Fractional Integration of the H-Function

In this section we consider the right-sided generalized fractional integration $I_{+}^{\alpha, \beta, \eta}$ defined by (2.9).
Theorem 2. Let $\alpha, \beta, \eta \in \mathbb{C}$ with $\text{Re}(\alpha) > 0, \text{Re}(\beta) \neq \text{Re}(\eta)$. Let the constants $a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0 (i = 1, \cdots, p; j = 1, \cdots, q)$ and $\omega \in \mathbb{C}, \sigma > 0$ satisfy
\[
\sigma \max_{1 \leq i \leq n} \left[\frac{\text{Re}(a_i) - 1}{\alpha_i} \right] + \text{Re}(\omega) < \min[\text{Re}(\beta), \text{Re}(\eta)], \quad (6.1)
\]
\[
\sigma \gamma > \text{Re}(\omega) - \min[\text{Re}(\beta), \text{Re}(\eta)]. \quad (6.2)
\]
Then the generalized fractional integral $I_{-}^{\alpha, \beta, \eta} H_{p,q}^{m,n}$ of the H-function (1.1) exists and the following relation holds:
\[
I_{-}^{\alpha, \beta, \eta} H_{p,q}^{m,n} \left[t^\sigma \left| \begin{array}{c} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right. \right] (x) = x^{\omega-\beta} H_{p,q}^{m,n+2} \left[x^\sigma \left| \begin{array}{c} (a_i, \alpha_i)_{1,p}, (-\omega, \sigma), (-\omega + \alpha + \beta + \eta, \sigma) \\ (-\omega + \beta, \sigma), (-\omega + \eta, \sigma), (b_j, \beta_j)_{1,q} \end{array} \right. \right]. \quad (6.3)
\]

Proof. By (2.9) we have
\[
I_{-}^{\alpha, \beta, \eta} H_{p,q}^{m,n} \left[t^\sigma \left| \begin{array}{c} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right. \right] (x) = \frac{1}{\Gamma(\alpha)} \int_{1/x}^\infty (t-x)^{\alpha-1} t^{\omega-\alpha-\beta} 2F_1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{x}{t} \right) H_{p,q}^{m,n} \left[t^\sigma \left| \begin{array}{c} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right. \right] dt. \quad (6.4)
\]
Due to (2.25), (2.26), (3.19) and (3.20), the integrand in (6.4) for any $x > 0$ has the asymptotic at infinity
\[
(t-x)^{\alpha-1} t^{\omega-\alpha-\beta} 2F_1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{x}{t} \right) H_{p,q}^{m,n} \left[t^\sigma \left| \begin{array}{c} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right. \right] = O \left(t^{\omega-\min[\text{Re}(\beta), \text{Re}(\eta)]-1} \sigma^\theta \right) \quad (t \to + \infty)
\]
or
\[
= O \left(t^{\omega-\min[\text{Re}(\beta), \text{Re}(\eta)]-1} \sigma^\theta \log(t)^N \right) \quad (t \to + \infty).
\]
Here θ is given by (3.21) and N is indicated in Theorem B(ii). Therefore the condition (6.1) ensures the existence of the integral (6.4). Applying (1.2), making the change $t = 1/\tau$ and using (5.5), we obtain
\[
I_{-}^{\alpha, \beta, \eta} H_{p,q}^{m,n} \left[t^\sigma \left| \begin{array}{c} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right. \right] \left(\frac{1}{x} \right) = \frac{1}{\Gamma(\alpha)} \int_{1/x}^\infty (t-\frac{1}{x})^{\alpha-1} t^{\omega-\alpha-\beta} 2F_1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{1}{tx} \right) H_{p,q}^{m,n} \left[t^\sigma \left| \begin{array}{c} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right. \right] dt.
\]
\[
\frac{x^{1-\alpha}}{2\pi i\Gamma(\alpha)} \int_{\mathcal{L}} \mathcal{H}_{p,q}^{m,n} \left[\begin{array}{c}
(a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q}
\end{array} \right] x^{\sigma s} ds \\
\cdot \int_{0}^{x} (x - \tau)^{\alpha-1} \tau^{\omega - 1 + \beta} 2F_1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{\tau}{x} \right) d\tau \\
= \frac{x^{-\omega + \beta}}{2\pi i} \int_{\mathcal{L}} \mathcal{H}_{p,q}^{m,n} \left[\begin{array}{c}
(a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q}
\end{array} \right] \Gamma(-\omega + \beta + \sigma s) \Gamma(-\omega + \eta + \sigma s) \Gamma(-\omega + \alpha + \beta + \eta + \sigma s) x^{\sigma s} ds.
\]
(6.5)

Since \(\mathcal{L} = \xi_{\gamma, \infty} \), \(\text{Re}(s) = \gamma \) and therefore the condition (6.2) guarantees the existence of the Mellin-Barnes integral above. Replacing in (6.5) \(x \) by \(1/x \), we obtain (6.3).

Corollary 2.1. Let \(\alpha \in \mathbb{C} \) with \(\text{Re}(\alpha) > 0 \), and let the constants \(a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0 \) \((i = 1, \cdots, p; j = 1, \cdots, q) \) and \(\omega \in \mathbb{C}, \sigma > 0 \) satisfy

\[
\sigma \max_{1 \leq i \leq n} \left[\frac{\text{Re}(a_i) - 1}{\alpha_i} \right] + \text{Re}(\omega) + \text{Re}(\alpha) < 0,
\]
(6.6)

\[
\sigma \gamma > \text{Re}(\omega) + \text{Re}(\alpha).
\]
(6.7)

Then the Riemann-Liouville fractional integral \(I_\omega^\alpha \) of the \(H \)-function (1.1) exists and the following relation holds:

\[
\left(I_\omega^\alpha \right)^\omega H_{p,q}^{m,n} \left[\begin{array}{c}
(a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q}
\end{array} \right] (x) = x^{\omega + \alpha} H_{p+1,q+1}^{m+1,n} \left[\begin{array}{c}
x^\sigma \\
(a_i, \alpha_i)_{1,p}, (-\omega, \sigma) \\
(-\omega - \alpha, \sigma), (b_j, \beta_j)_{1,q}
\end{array} \right].
\]
(6.8)

Corollary 2.2. Let \(\alpha, \eta \in \mathbb{C} \) with \(\text{Re}(\alpha) > 0 \), and let the constants \(a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0 \) \((i = 1, \cdots, p; j = 1, \cdots, q) \) and \(\omega \in \mathbb{C}, \sigma > 0 \) satisfy

\[
\sigma \max_{1 \leq i \leq n} \left[\frac{\text{Re}(a_i) - 1}{\alpha_i} \right] + \text{Re}(\omega) < \text{Re}(\eta),
\]
(6.9)

\[
\sigma \gamma > \text{Re}(\omega) - \text{Re}(\eta).
\]
(6.10)

Then the Erdélyi-Kober fractional integral \(K_{\eta, \alpha}^\omega \) of the \(H \)-function (1.1) exists and the following relation holds:

\[
\left(K_{\eta, \alpha}^\omega \right)^\omega H_{p,q}^{m,n} \left[\begin{array}{c}
(a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q}
\end{array} \right] (x) = x^{\omega + \eta + \alpha} H_{p+1,q+1}^{m+1,n+1} \left[\begin{array}{c}
x^\sigma \\
(a_i, \alpha_i)_{1,p}, (-\omega + \eta + \alpha, \sigma) \\
(-\omega + \eta, \sigma), (b_j, \beta_j)_{1,q}
\end{array} \right].
\]
(6.11)

Remark 4. In the case \(\alpha^* > 0, \Delta \geq 0 \) the relation of the form (6.3) was indicated in [16, (4.3)]. But it includes a mistake and should be replaced by (6.3) with the conditions (6.1) and (6.2).
Remark 5. Corollary 2.1 coincides with Theorem 2 in [7]. For real $\alpha > 0$ and $\alpha^* > 0$ the relation (6.8) was indicated in [18, (2.5)], but the conditions of its validity have to be also corrected in accordance with (6.6) and (6.7).

7. Left-Sided Generalized Fractional Differentiation of the H-Function

Now we treat the left-sided generalized fractional derivative $D^\alpha_{0+} \omega_1$ given by (2.11).

Theorem 3. Let $\alpha, \beta, \eta \in \mathbb{C}$ with $\text{Re}(\alpha) > 0, \text{Re}(\alpha + \beta + \eta) \neq 0$. Let the constants $a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0$ $(i = 1, \ldots, p; j = 1, \ldots, q)$ and $\omega \in \mathbb{C}, \sigma > 0$ satisfy

$$
\sigma \min_{1 \leq j \leq m} \left[\frac{\text{Re}(b_j)}{\beta_j} \right] + \text{Re}(\omega) \geq \text{Re}(\alpha + \beta + \eta)] + 1 > 0, \quad (7.1)
$$

$$
\sigma \gamma < \text{Re}(\omega) + \text{Re}(\alpha + \beta + \eta)] + 1. \quad (7.2)
$$

Then the generalized fractional derivative $D^\alpha_{0+} \omega_1$ of the H-function (1.1) exists and the following relation holds:

$$
\left(D^\alpha_{0+} \omega_1 \right)^{m,n,p,q} \left[t^{\sigma} \left| \begin{array}{c}
(a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q}
\end{array} \right] \right) (x)
$$

$$
= x^{\omega + \beta} \left(D^\alpha_{0+} \omega_1 \right)^{m,n,p+2,q+2} \left[t^{\sigma} \left| \begin{array}{c}
(-\omega, \sigma), (-\omega - \eta - \alpha, \beta, \gamma), (a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q}, (-\omega - \beta, \sigma), (-\omega - \eta, \sigma)
\end{array} \right] \right) . \quad (7.3)
$$

Proof. Let $n \in [\text{Re}(\alpha)] + 1$. From (2.11) we have

$$
\left(D^\alpha_{0+} \omega_1 \right)^{m,n,p,q} \left[t^{\sigma} \left| \begin{array}{c}
(a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q}
\end{array} \right] \right) (x)
$$

$$
= \left(\frac{d}{dx} \right)^n \left(D^{\alpha + \beta, \eta} \omega \right)^{m,n,p+2,q+2} \left[t^{\sigma} \left| \begin{array}{c}
(a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q}
\end{array} \right] \right) (x), \quad (7.4)
$$

which exists according to Theorem 1 with α, β and η being replaced by $-\alpha + n, -\beta - n$ and $\alpha + \eta - n$, respectively. Then we find

$$
\left(D^\alpha_{0+} \omega_1 \right)^{m,n,p,q} \left[t^{\sigma} \left| \begin{array}{c}
(a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q}
\end{array} \right] \right) (x)
$$

$$
= \left(\frac{d}{dx} \right)^n x^{\omega + \beta + n} \left(D^{\alpha + \beta, \eta} \omega \right)^{m,n+2,p+2,q+2} \left[t^{\sigma} \left| \begin{array}{c}
(-\omega, \sigma), (-\omega - \alpha - \beta - \eta, \sigma), (a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q}, (-\omega - \beta - n, \sigma), (-\omega - \eta, \sigma)
\end{array} \right] \right) . \quad (7.5)
$$
Taking into account the differentiation formula (4.4) we have

\[
\begin{align*}
\left(D_{0+}^{\alpha, \beta, \eta, \omega} I_{p,q}^{m,n} \left[t^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{bmatrix} \right] \right)(x) &= x^{\omega + \beta} H_{pq}^{m,n} + \sum_{j=1}^{q} \left[(-\omega - \beta - n, \sigma), (-\omega, \sigma), \cdots, \left(\omega, \sigma \right), (-\omega - \eta, \sigma), (-\omega - \sigma, \beta, \omega) \right] \left(a_i, \alpha_i \right)_{1,p} \\
&= x^{\omega + \beta} H_{pq}^{m,n+3} \left[x^\sigma \begin{bmatrix} (-\omega - \beta - n, \sigma), (-\omega - \beta - \eta, \sigma), (-\omega - \sigma, \beta, \omega) \end{bmatrix} \right],
\end{align*}
\]

(7.6)

and Lemma 2 and the reduction relation (4.1) imply (7.3), which completes the proof of theorem.

Corollary 3.1. Let \(\alpha \in \mathbb{C} \) with \(\text{Re}(\alpha) > 0 \), and let the constants \(a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0 \) \((i = 1, \cdots, p; j = 1, \cdots, q)\) and \(\omega \in \mathbb{C}, \sigma > 0 \) satisfy the conditions in (5.8) and (5.9). Then the Riemann-Liouville fractional derivative \(D_{0+}^{\alpha, \beta, \eta} \) of the \(H \)-function (1.1) exists and the following relation holds:

\[
\begin{align*}
\left(D_{0+}^{\alpha, \beta, \eta, \omega} I_{p,q}^{m,n} \left[t^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{bmatrix} \right] \right)(x) &= x^{\omega - \alpha} H_{p+1,q+1}^{m,n+1} \left[x^\sigma \begin{bmatrix} (-\omega, \sigma), (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{bmatrix} \right] \\
&= (-1)^{\text{Re}(\alpha)} x^{\omega + \beta} H_{p+2,q+2}^{m+2,n+2} \left[x^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p}, (-\omega, \sigma), (-\omega - \beta + \eta, \sigma) \\ (-\omega - \beta, \sigma), (-\omega + \alpha + \eta, \sigma), (b_j, \beta_j)_{1,q} \end{bmatrix} \right].
\end{align*}
\]

(8.3)

Remark 6. For real \(\alpha > 0 \) and \(\alpha^* > 0 \) the relation (7.3) was given in [18, (2.7.13)], but the conditions of its validity have to be corrected in accordance with (7.1) and (7.2).

Remark 7. Corollary 3.1 coincides with Theorem 3 in [7].

8. **Right-Sided Generalized Fractional Differentiation of the \(H \)-Function**

Here we deal with the right-sided generalized fractional derivative \(D_{-}^{\alpha, \beta, \eta} \) given by (2.12).

Theorem 4. Let \(\alpha, \beta, \eta \in \mathbb{C} \) with \(\text{Re}(\alpha) > 0, \text{Re}(\alpha + \beta + \eta) + [\text{Re}(\alpha)] + 1 \neq 0 \). Let the constants \(a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0 \) \((i = 1, \cdots, p; j = 1, \cdots, q)\) and \(\omega \in \mathbb{C}, \sigma > 0 \) satisfy

\[
\sigma \max_{1 \leq i \leq n} \left[\frac{\text{Re}(a_i) - 1}{\alpha_i} \right] + \text{Re}(\omega) + \max[\text{Re}(\beta) + [\text{Re}(\alpha)] + 1, -\text{Re}(\alpha + \eta)] < 0, \quad (8.1)
\]

\[
\sigma \gamma > \text{Re}(\omega) + \max[\text{Re}(\beta) + [\text{Re}(\alpha)] + 1, -\text{Re}(\alpha + \eta)]. \quad (8.2)
\]

Then the generalized fractional derivative \(D_{-}^{\alpha, \beta, \eta} \) of the \(H \)-function (1.1) exists and the following relation holds:

\[
\begin{align*}
\left(D_{-}^{\alpha, \beta, \eta, \omega} I_{p,q}^{m,n} \left[t^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{bmatrix} \right] \right)(x) &= (-1)^{\text{Re}(\alpha)} x^{\omega + \beta} H_{p+2,q+2}^{m+2,n+2} \left[x^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p}, (-\omega, \sigma), (-\omega - \beta + \eta, \sigma) \\ (-\omega - \beta, \sigma), (-\omega + \alpha + \eta, \sigma), (b_j, \beta_j)_{1,q} \end{bmatrix} \right].
\end{align*}
\]

(8.3)
Proof. Let \(n = [\text{Re}(\alpha)] + 1 \). Owing to (2.12) we have

\[
\left(D_{-}^{\alpha, \beta, \eta} I_{p,q}^{m,n} \right) \left(t^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{bmatrix} \right) (x) = \left(-\frac{d}{dx} \right)^n I_{-\alpha+n, -\beta-n, \alpha+\eta} I_{p,q}^{m,n} \left(t^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{bmatrix} \right) (x),
\]

which exists according to Theorem 2 with \(\alpha, \beta \) and \(\eta \) being replaced by \(-\alpha + n, -\beta - n \) and \(\alpha + \eta \), respectively. Then applying the differentiation formula (4.5), similarly to (7.5), (7.6), we find in view of the reduction formula (1.2) that

\[
\left(D_{-}^{\alpha, \beta, \eta} I_{p,q}^{m,n} \right) \left(t^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{bmatrix} \right) (x) = (-1)^n x^{\omega+\beta} I_{p+3,q+3}^{m+3,n} \left[x^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p}, (-\omega, \sigma), (-\omega - \beta + \eta, \sigma) \\ (-\omega - \beta - n, \sigma), (-\omega + \alpha + \eta, \sigma), (b_j, \beta_j)_{1,q} \end{bmatrix} \right],
\]

which implies the formula (8.3).

Corollary 4.1. Let \(\alpha \in \mathbb{C} \) with \(\text{Re}(\alpha) > 0 \), and let the constants \(a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0 \) \((i = 1, \cdots, p; j = 1, \cdots, q)\) and \(\omega \in \mathbb{C}, \sigma > 0 \) satisfy

\[
\sigma \max_{1 \leq i \leq n} \frac{\text{Re}(a_i) - 1}{\alpha_i} + \text{Re}(\omega) - \{\text{Re}(\alpha)\} + 1 < 0, \tag{8.5}
\]

\[
\sigma \gamma + \text{Re}(\omega) - \{\text{Re}(\alpha)\} + 1 > 0. \tag{8.6}
\]

Then the Riemann-Liouville fractional derivative \(D_{-}^{\alpha} \) of the II-function (1.1) exists and there holds the relation:

\[
\left(D_{-}^{\alpha, \beta} I_{p,q}^{m,n} \right) \left(t^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{bmatrix} \right) (x) = (-1)^{\text{Re}(\alpha)+1} x^{-\alpha} I_{p+1,q+1}^{m+1,n} \left[x^\sigma \begin{bmatrix} (a_i, \alpha_i)_{1,p}, (-\omega, \sigma) \\ (-\omega + \alpha, \sigma), (b_j, \beta_j)_{1,q} \end{bmatrix} \right]. \tag{8.7}
\]

Remark 8. The relation of the form (8.7) with real \(\alpha > 0 \) and \(\alpha^* > 0 \) was proved in [13, formula (14a)] (see also [12], [14, (2.2)] and [18, (2.7.9)]). But such a formula contains mistakes and should be replaced by (8.7) with the condition (8.5) and (8.6).
Remark 9. When $\alpha = k \in \mathbb{N}$, the relations (7.7) and (8.7) coincide with (4.4) and (4.5), respectively.

9. Generalized Fractional Integro-Differentiation of the H-Function

Here we investigate the generalized fractional integro-differentiation operators $I_{0+}^{\alpha,\beta,\eta}$ and $I_{-}^{\alpha,\beta,\eta}$ given by (2.8) and (2.10). The following statements are proved similarly to Theorems 3 and 4 by using the relations (2.8) and (2.10), Theorems 1 and 2, and the properties of the H-function in Sections 3 and 4.

Theorem 5. Let $\alpha, \beta, \eta \in \mathbb{C}$ with $\text{Re}(\alpha) \leq 0, \text{Re}(\beta) \neq \text{Re}(\eta)$. Let the constants $a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0 (i = 1, \cdots, p; j = 1, \cdots, q)$ and $\omega \in \mathbb{C}, \sigma > 0$ satisfy

$$\sigma \min_{1 \leq j \leq m} \left[\frac{\text{Re}(b_j)}{\beta_j} \right] + \text{Re}(\omega) + \min[0, \text{Re}(\eta - \beta)] + 1 > 0,$$

$$\sigma \gamma < \text{Re}(\omega) + \min[0, \text{Re}(\eta - \beta)] + 1.$$ (9.1, 9.2)

Then the generalized fractional integro-differentiation $I_{0+}^{\alpha,\beta,\eta}$ of the H-function (1.1) exists and there holds the relation

$$I_{0+}^{\alpha,\beta,\eta} \omega \mathcal{H}_{p,q}^{m,n} \left[\begin{array}{c} \sigma \\ \left(a_i, \alpha_i \right)_{1,p} \\ \left(b_j, \beta_j \right)_{1,q} \end{array} \right] (x) = x^{\omega-\beta} \mathcal{H}_{p+2,q+2}^{m,n+2} \left[\begin{array}{c} x^{\sigma} \\ \left(a_i, \alpha_i \right)_{1,p} \\ \left(b_j, \beta_j \right)_{1,q} \end{array} \right] \left(-\omega, \sigma, -\omega - \eta + \beta, \sigma, (a_i, \alpha_i)_{1,p}, (-\omega + \beta, \sigma), (\omega - \alpha - \eta, \sigma) \right).$$ (9.3)

Theorem 6. Let $\alpha, \beta, \eta \in \mathbb{C}$ with $\text{Re}(\alpha) \leq 0, \text{Re}(\beta) + |\text{Re}(\alpha)| - 1 \neq \text{Re}(\eta)$. Let the constants $a_i, b_j \in \mathbb{C}, \alpha_i, \beta_j > 0 (i = 1, \cdots, p; j = 1, \cdots, q)$ and $\omega \in \mathbb{C}, \sigma > 0$ satisfy

$$\sigma \max_{1 \leq i \leq n} \left[\frac{\text{Re}(a_i) - 1}{\alpha_i} \right] + \text{Re}(\omega) < \min[\text{Re}(\beta) - |\text{Re}(\alpha)| - 1, \text{Re}(\eta)],$$

$$\sigma \gamma > \text{Re}(\omega) - \min[\text{Re}(\beta) - |\text{Re}(\alpha)| - 1, \text{Re}(\eta)].$$ (9.4, 9.5)

Then the generalized fractional integro-differentiation $I_{-}^{\alpha,\beta,\eta}$ of the H-function (1.1) exists and there holds the relation

$$I_{-}^{\alpha,\beta,\eta} \omega \mathcal{H}_{p,q}^{m,n} \left[\begin{array}{c} \sigma \\ \left(a_i, \alpha_i \right)_{1,p} \\ \left(b_j, \beta_j \right)_{1,q} \end{array} \right] (x) = x^{\omega-\beta} \mathcal{H}_{p+2,q+2}^{m,n+2} \left[\begin{array}{c} x^{\sigma} \\ \left(a_i, \alpha_i \right)_{1,p} \end{array} \right] \left(-\omega + \alpha + \beta + \eta, \sigma, (\omega - \alpha, \beta, \sigma), (\omega + \eta, \sigma) \right).$$ (9.6)
Remark 10. The relation (9.3) with $a^* > 0, \Delta \geq 0$ was indicated in [16, (4.2)], but conditions of its validity have to be corrected in accordance with (9.1) and (9.2).

Remark 11. The relations (9.3) and (9.6) for the fractional integro-differentiation operators $I_{0+}^{\alpha,\beta,\eta}$ and $I_{\alpha}^{\alpha,\beta,\eta}$, defined in (2.8) and (2.10) for $\alpha \in \mathbb{C}, \Re(\alpha) \leq 0$ coincide with that (5.3) and (6.3) for the fractional integration operators $I_{0+}^{\alpha,\beta,\eta}$ and $I_{\alpha}^{\alpha,\beta,\eta}$, defined in (2.7) and (2.9) for $\alpha \in \mathbb{C}, \Re(\alpha) > 0$. Though the conditions for validity of (5.3) and (9.3) in Theorems 1 and 5 have the same form, that of (6.3) and (9.6) presented in Theorems 2 and 4 are slightly different.

In conclusion we note that, as it was mentioned in Remarks 2, 4 and 10, the relations (5.3), (6.3) and (9.3) for generalized calculus operator $I_{0+}^{\alpha,\beta,\eta}$ were already known in the case $a^* > 0, \Delta \geq 0$. Further, Remarks 3, 5, 6 and 8 indicate that the relations (5.10) and (6.8) for the Riemann-Liouville fractional integrals $I_{0+}^{C}, I_{\alpha}^{C}$ and (7.3) and (8.7) for the fractional derivative D_{0+}^α, in the case real $\alpha > 0$ and $a^* > 0$ were established. However, the H-function’s asymptotic estimates (3.16), (3.17) at zero and (3.19), (3.20) at infinity allow us to prove such results under more general assumptions $a^* > 0$ and $a^* = 0, \Delta \gamma + \Re(\mu) < -1$.

References

