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Isometric embeddings of

metric Q-vector spaces into Q"

Toshihiro Kumada (F&H &)

Abstract
Let W be an n-dimensional Q-vector space which has a positive definite sym-
metric bilinear form. We prove that W is isometrically embeddable into Q3. We
give a formula to obtain the minimum N such that W is isometrically embeddable
into Q.

1 Introduction

In this paper. we denote by Q% the set of positive rational numbers. and by Q™ the

multiplicative group of the rational number field. For ¢i.....a, € QF. we define the

In the above definition ( . ) is the canonical inner product of Q" and §; ; is the Kronecker’s
delta. Maehara[2] studied this number for some special cases. The purpose of this paper

is to give a formula for determining N(aj.. ... ay,).

2 Main Result

Theorem 1 For all ay.....a, € QT. n < N(ay..... a,) < n+ 3 holds.

Let V be the set {p | p is prime number} U {oc}. We denote by Q. the real number field

R. and by Q,, the p-adic number field for a prime p. The following three theorems give a
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Theorem 2 Letay.....a;, € QY. Put D:=T[]_,a; € QT and E, := Mi<icj<nlai.aj). €
{£1}. where v € V and (. ), is the Hilbert symbol on Q.. N(ai.....a,) = n holds if
and only if D =1 (mod Q?) holds and E,. =1 holds for allv € V.

The Hilbert symbol (. ). is a map from Q;/Q;? x Q3/Q:2 to {£1} defined so that
(a.b). = 1 holds if and ounly if :2 = a2? + by? has a solution (2. y, ) € (QL.)3 \ {0.0.0}.
It is bilinear and symmetric. The Hilbert symbol is easy to compute, see Serre[3. p.20.

Theorem 1].

Theorem 3 Leta;.....a, € Q*. Let D.E, be as in Theorem 2. Assume N(ay, ... a,) #
n. Then N(ay.....a,) =n+1 holds if and only if E.- (D, —1), =1 holds for all v € V.

Theorem 4 Letay.....a, € QT. Let D, E, be as in Theorem 2. Assume N(ay.....a,) #*
n.n+1. Then N(ay.....a,) = n+ 2 holds if and only if —D ¢ Q% holds for all v € V.

where

2} if Er=1

V=A{v|vis an odd prime with E,. = -1} U
{v] ! } { 0 i E—-1

In the above three theorems, if n = 1. then define E, ;=1 for all » € V.
If v =b/a.y = dfc(ab.c.d € Z) and v # 2.50 and vfabed, then (2.y), = 1
holds(see Serre[3. p.20. Theorem 1]). This shows that the number of v € V for which

we need to compute the Hilbert symbol is finite. Thus for given «y...., a, € Q.
N(ay..... @, ) is computable with finite calculation.
Corollary 1 For an arbitraryn € N, putay =az3=...=a, =1. Then N(l.as.....a,) =

n. N(2.as.....ay)=n+1. NB.as.....a,) =n+2 and N(7.as.....a,) = n + 3 hold.

Consequently. the bound in Theorem 1 is the best possible.

Remark. Let W be a finite dimensional Q-vector space with a positive definite symmetric
bilinear form. The above three theorems give an explicit algorithm to obtain the minimum
dimensional Q*‘\"_ into which W is isometrically embeddable by a Q-linear map. This is

because for any W, we can obtain an orthogonal basis.

3 Proof of Theorem 1

In this section. we prove Theorem 1. For the proof of Theorem 1. the following lemma is

essential.
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Lemma 1 [Meyer] Let ¢ be a positive rational number and ci.....cy be elements of
Q~. Assume that ¢; > 0. Then the next quadratic equation has @ rational solution

(.1’1 ...... 1‘4) € Q4 .
4
Cc = Z C; .l’,'2.
i=1

Proof of Theorem 1 Let ay,....a, be arbitrary n elements in Q*. It is clear that
n < N(ay.....ay). Sowe prove N(aj.....a,) < n+3. By the definition of N(aj.....ay,).
it is sufficient to find n vectors vi.....v, € Q"3 such that (v;,v;) = &;;a;. We use

induction on n. If n = 1. by Lemma 1, there are four rational numbers p. ¢.r.s such that
2, 2, 2 2
ap=p +q¢+r +s.

Then put vy := (p.q.7.s). {vi} satisfies the requirement.
Next, assume that Theorem 1 holds for n. We consider n + 1. By the assumption of
induction. there are n vectors vi.....v, € Q"3 such that (v;,v;) = é;a;. Put u; :=

(v;.0) € Q" Clearly (u;.u;) = (v;.v;) = ;;¢; holds and {uy,....u, is linearly inde-
J J J

By Lemma 1. there are four rational numbers p.q.r.s such that
2 2 2 2
(py1 = €1P° + €3¢ + €e3r" + €457,

Put u,q; ‘= pept1 + ¢e€pp2 + €3 + s€npq. Then {uy,... , 0,41} satisfies the require-

ments.

4 Symmetric bilinear forms

Let W be a finite dimensional vector space over a field K with a symmetric non-degenerate
bilinear form ( . ): W x W — K. Put n = dimW. Let (W;)i<i<, be a basis of W. If

u=Y a;w; and v =Y 3;w;, then we have
(W, v) = (ar.....a,)A(31..... 3n).

where A is a symmetric matrix in GL(n, ) given by A = (a;5). @;; = (w;.wj). If we
use another basis (W:-) 1<i<n . then we have another svmmetric matrix B, where B =
(bij). bi; = (W. W;-). These matrices are related by B ='XAX with X € GL(n. K).
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In general. we denote 4 & B if and only if there exists X € GL(n.K) such that
B ='XAX holds. If A is the symmetric matrix of the bilinear form w.r.t. a basis (w;)
of W, and 4 X B , then B is the symmetric matrix of the bilinear form w.r.t. the basis
(w;) that is obtained by the transformation of (w;) by X. If 4 K B, then det A = det B
(mod LK™2) holds. '

To save the space of paper, we will use a notation diag(ai,...,ay) for an N x N

diagonal matrix whose (,7) element is a;. Ix denotes the identity matrix of size N.

Lemma 2 Letay,....a, € Q*. N(ay,...,a,) is characterised as the minimum value of
N such that we can choose b,,1, ..., by € QY so that

- Q
diag(ay, ... an,bog1,...,b8) ~ Iy

holds.

5  Outline of proofs of Theorems 2, 3 and 4

In this section, we give an outline of proofs of Theorems 2, 3 and 4. For the proofs of

them. the following two lemmas are essential.

Lemma 3 Let A and B be symmetric matrices in GL(N,Q). Then A R B holds if and
only if A Y B holds forallveV.

Lemma 4 Let A and B be diagonal matrices in GL(N,Q,). Then A P2 B holds if
and only if det(4) = det(B) (mod Q2) and €,(A) = e,(B) hold, where €,(A) =
Micicjev(ai.a;), € {£1} for A = diag(ay.....ay). If N=1, we define e,(4) := 1 as
usual. '

Note that « € Q2 is equivalent to « € Q2 for all v € V. And it is clear that det(l,) =1
(mod Q:?) holds and €,(I,) = 1 holds for all v € V. Hence Theorem 2 follows from
Lemmas 2. 3 and 4.

Proof of Theorem 3 We assume that N(ai,...,a,) #n. By Lemma2, N(ay,...,a,) =
n+1 holds if and only if there exist a rational number  such that A = diag (ay, ..., an,x) ]
Iiy1. Put D :=II_; ¢;. The determinant of the left side is Dx, and that of the right
side is 1. so D = 1 (mod Q*?) holds. Thus x is determined by D as an element of
Q"/Q™2. Then we check whether A = diag(ai,...,an, D) 2 In+1 holds or not. By the
computation of €,(A), we have Theorem 3. | :

For the proof of Theorem 4, we need a following lemma.
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Lemma 5 Let a be an element of Q. and let (b.).ey be a family of numbers in {£1}.
In order that there exists v € Q* such that (a.x). = b, for all v € V., it is necessary and

sufficient that the following conditions are satisfied:
1. The cardinality of the set 17" = {v | v € V. b, = —1} is finite and even.
2. For each v € V. there exists v, € Q7 such that (a.x,), = b,.

Since the Hilbert symbol is non-degenerate, («.y),. = 1 holds for all y € Q7 if and only if

=2 T . .

a € Q2. Thus we may replace 2in the above lemma with
- - . . . )
2°. For all v € V'. a is not contained in Q7°.

Proof of Theorem 4 ‘e assume that N(a;.....q,) # n.n + 1. By Lemma 2.
N(ay..... a,) = n + 2 holds if and only if there exist rational numbers r.y such that
A= diag(ay.....a,.2.y) 2 I,42. Put D =[], @;. As we observed in the proof of
Theorem 3. the last rational number y is determined by Dx from the discussion of deter-
minant. Now our problem is reduced to the existence of a rational number x such that
A =diag(a;y.....a,.2,Dx) 2 I4o. Applying Lemma 3 to €,.(A). we obtain a necessary
and sufficient condition for the existence of x such that 4 = diag(ay..... a,.r. DY) 2

I,42. Then we have Theorem 4.
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