Isometric embeddings of metric Q-vector spaces into \mathbf{Q}^N

Toshihiro Kumada (熊田 敏宏)*

Abstract

Let **W** be an *n*-dimensional **Q**-vector space which has a positive definite symmetric bilinear form. We prove that **W** is isometrically embeddable into \mathbf{Q}^{n+3} . We give a formula to obtain the minimum N such that **W** is isometrically embeddable into \mathbf{Q}^{N} .

1 Introduction

In this paper, we denote by \mathbf{Q}^+ the set of positive rational numbers, and by \mathbf{Q}^* the multiplicative group of the rational number field. For $a_1, \ldots, a_n \in \mathbf{Q}^+$, we define the following number $N(a_1, \ldots, a_n)$.

Definition Let
$$a_1, \ldots, a_n \in \mathbf{Q}^+$$
. We define $N(a_1, \ldots, a_n) := \min \{ k \mid we \ can \ find \ n \ vectors \ \mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbf{Q}^k \ s.t. \ (\mathbf{v}_i, \mathbf{v}_j) = \delta_{ij} a_i \}.$

In the above definition (,) is the canonical inner product of \mathbf{Q}^k and δ_{ij} is the Kronecker's delta. Maehara[2] studied this number for some special cases. The purpose of this paper is to give a formula for determining $N(a_1, \ldots, a_n)$.

2 Main Result

Theorem 1 For all $a_1, \ldots, a_n \in \mathbf{Q}^+$, $n \leq N(a_1, \ldots, a_n) \leq n+3$ holds.

Let \mathcal{V} be the set $\{p \mid p \text{ is prime number}\} \cup \{\infty\}$. We denote by \mathbf{Q}_{∞} the real number field \mathbf{R} , and by \mathbf{Q}_p the p-adic number field for a prime p. The following three theorems give a formula to obtain $N(a_1, \ldots, a_n)$ for given $a_1, \ldots, a_n \in \mathbf{Q}^+$.

^{*}e-mail: kumada@math.keio.ac.jp

Theorem 2 Let $a_1, \ldots, a_n \in \mathbf{Q}^+$. Put $D := \prod_{i=1}^n a_i \in \mathbf{Q}^+$ and $E_v := \prod_{1 \leq i < j \leq n} (a_i, a_j)_v \in \{\pm 1\}$. where $v \in \mathcal{V}$ and $(\cdot, \cdot)_v$ is the Hilbert symbol on \mathbf{Q}_v . $N(a_1, \ldots, a_n) = n$ holds if and only if $D = 1 \pmod{\mathbf{Q}^{*2}}$ holds and $E_v = 1$ holds for all $v \in \mathcal{V}$.

The Hilbert symbol (,)_v is a map from $\mathbf{Q}_v^*/\mathbf{Q}_v^{*2} \times \mathbf{Q}_v^*/\mathbf{Q}_v^{*2}$ to $\{\pm 1\}$ defined so that $(a,b)_v = 1$ holds if and only if $z^2 = ax^2 + by^2$ has a solution $(x,y,z) \in (\mathbf{Q}_v)^3 \setminus \{0,0,0\}$. It is bilinear and symmetric. The Hilbert symbol is easy to compute, see Serre[3, p.20, Theorem 1].

Theorem 3 Let $a_1, \ldots, a_n \in \mathbb{Q}^+$. Let D, E_v be as in Theorem 2. Assume $N(a_1, \ldots, a_n) \neq n$. Then $N(a_1, \ldots, a_n) = n + 1$ holds if and only if $E_v \cdot (D, -1)_v = 1$ holds for all $v \in \mathcal{V}$.

Theorem 4 Let $a_1, \ldots, a_n \in \mathbf{Q}^+$. Let D, E_v be as in Theorem 2. Assume $N(a_1, \ldots, a_n) \neq n, n+1$. Then $N(a_1, \ldots, a_n) = n+2$ holds if and only if $-D \notin \mathbf{Q}_v^{*2}$ holds for all $v \in V$, where

$$V = \{v \mid v \text{ is an odd prime with } E_v = -1\} \cup \left\{ \begin{array}{ll} \{2\} & \text{if } E_2 = 1\\ \emptyset & \text{if } E_2 = -1 \end{array} \right.$$

In the above three theorems, if n = 1, then define $E_v := 1$ for all $v \in \mathcal{V}$.

If x = b/a, y = d/c $(a, b, c, d \in \mathbf{Z})$ and $v \neq 2, \infty$ and v/abcd, then $(x, y)_v = 1$ holds(see Serre[3, p.20, Theorem 1]). This shows that the number of $v \in \mathcal{V}$ for which we need to compute the Hilbert symbol is finite. Thus for given $a_1, \ldots, a_n \in \mathbf{Q}^+$, $N(a_1, \ldots, a_n)$ is computable with finite calculation.

Corollary 1 For an arbitrary $n \in \mathbb{N}$, put $a_2 = a_3 = \ldots = a_n = 1$. Then $N(1, a_2, \ldots, a_n) = n$. $N(2, a_2, \ldots, a_n) = n + 1$, $N(3, a_2, \ldots, a_n) = n + 2$ and $N(7, a_2, \ldots, a_n) = n + 3$ hold. Consequently, the bound in Theorem 1 is the best possible.

Remark. Let \mathbf{W} be a finite dimensional \mathbf{Q} -vector space with a positive definite symmetric bilinear form. The above three theorems give an explicit algorithm to obtain the minimum dimensional \mathbf{Q}^N into which \mathbf{W} is isometrically embeddable by a \mathbf{Q} -linear map. This is because for any \mathbf{W} , we can obtain an orthogonal basis.

3 Proof of Theorem 1

In this section, we prove Theorem 1. For the proof of Theorem 1, the following lemma is essential.

Lemma 1 [Meyer] Let c be a positive rational number and c_1, \ldots, c_4 be elements of \mathbf{Q}^* . Assume that $c_1 > 0$. Then the next quadratic equation has a rational solution $(x_1, \ldots, x_4) \in \mathbf{Q}^4$:

$$c = \sum_{i=1}^{4} c_i \, x_i^2.$$

Proof of Theorem 1 Let a_1, \ldots, a_n be arbitrary n elements in \mathbf{Q}^+ . It is clear that $n \leq N(a_1, \ldots, a_n)$. So we prove $N(a_1, \ldots, a_n) \leq n+3$. By the definition of $N(a_1, \ldots, a_n)$, it is sufficient to find n vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbf{Q}^{n+3}$ such that $(\mathbf{v}_i, \mathbf{v}_j) = \delta_{ij}a_i$. We use induction on n. If n = 1, by Lemma 1, there are four rational numbers p, q, r, s such that

$$a_1 = p^2 + q^2 + r^2 + s^2.$$

Then put $\mathbf{v}_1 := (p, q, r, s)$. $\{\mathbf{v}_1\}$ satisfies the requirement.

Next, assume that Theorem 1 holds for n. We consider n+1. By the assumption of induction, there are n vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbf{Q}^{n+3}$ such that $(\mathbf{v}_i, \mathbf{v}_j) = \delta_{ij}a_i$. Put $\mathbf{u}_i := (\mathbf{v}_i, 0) \in \mathbf{Q}^{n+4}$. Clearly $(\mathbf{u}_i, \mathbf{u}_j) = (\mathbf{v}_i, \mathbf{v}_j) = \delta_{ij}a_i$ holds and $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is linearly independent over the rational number field. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_n, \mathbf{e}_{n+1}, \mathbf{e}_{n+2}, \mathbf{e}_{n+3}, \mathbf{e}_{n+4}\}$ be an basis of \mathbf{Q}^{n+4} which includes $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$. We can choose $\{\mathbf{u}_1, \ldots, \mathbf{u}_n, \mathbf{e}_{n+1}, \mathbf{e}_{n+2}, \mathbf{e}_{n+3}, \mathbf{e}_{n+4}\}$ so that they are mutually orthogonal. Because we may do Schmidt orthogonalization without normalization to a basis extending $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ if necessary. Let $e_i = (\mathbf{e}_i, \mathbf{e}_i)$. By Lemma 1, there are four rational numbers p, q, r, s such that

$$a_{n+1} = e_1 p^2 + e_2 q^2 + e_3 r^2 + e_4 s^2.$$

Put $\mathbf{u}_{n+1} := p \, \mathbf{e}_{n+1} + q \, \mathbf{e}_{n+2} + r \, \mathbf{e}_{n+3} + s \, \mathbf{e}_{n+4}$. Then $\{\mathbf{u}_1, \dots, \mathbf{u}_{n+1}\}$ satisfies the requirements.

4 Symmetric bilinear forms

Let **W** be a finite dimensional vector space over a field K with a symmetric non-degenerate bilinear form $(,) : \mathbf{W} \times \mathbf{W} \to K$. Put $n = \dim \mathbf{W}$. Let $(\mathbf{w}_i)_{1 \leq i \leq n}$ be a basis of **W**. If $\mathbf{u} = \sum \alpha_i \mathbf{w}_i$ and $\mathbf{v} = \sum \beta_i \mathbf{w}_i$, then we have

$$(\mathbf{u},\mathbf{v})=(\alpha_1,\ldots,\alpha_n)A^t(\beta_1,\ldots,\beta_n),$$

where A is a symmetric matrix in GL(n, K) given by $A = (a_{ij}), a_{ij} = (\mathbf{w}_i, \mathbf{w}_j)$. If we use another basis $(\mathbf{w}_i')_{1 \leq i \leq n}$, then we have another symmetric matrix B, where $B = (b_{ij}), b_{ij} = (\mathbf{w}_i', \mathbf{w}_j')$. These matrices are related by $B = {}^t XAX$ with $X \in GL(n, K)$.

In general, we denote $A \stackrel{K}{\sim} B$ if and only if there exists $X \in GL(n,K)$ such that $B = {}^t XAX$ holds. If A is the symmetric matrix of the bilinear form w.r.t. a basis (\mathbf{w}_i) of \mathbf{W} , and $A \stackrel{K}{\sim} B$, then B is the symmetric matrix of the bilinear form w.r.t. the basis (\mathbf{w}_i') that is obtained by the transformation of (\mathbf{w}_i) by X. If $A \stackrel{K}{\sim} B$, then $\det A = \det B \pmod{K^{\times 2}}$ holds.

To save the space of paper, we will use a notation $diag(a_1, \ldots, a_N)$ for an $N \times N$ diagonal matrix whose (i, i) element is a_i . I_N denotes the identity matrix of size N.

Lemma 2 Let $a_1, \ldots, a_n \in \mathbf{Q}^+$. $N(a_1, \ldots, a_n)$ is characterised as the minimum value of N such that we can choose $b_{n+1}, \ldots, b_N \in \mathbf{Q}^+$ so that

$$diag(a_1,\ldots,a_n,b_{n+1},\ldots,b_N) \stackrel{\mathbf{Q}}{\approx} I_N$$

holds.

5 Outline of proofs of Theorems 2, 3 and 4

In this section, we give an outline of proofs of Theorems 2, 3 and 4. For the proofs of them, the following two lemmas are essential.

Lemma 3 Let A and B be symmetric matrices in $GL(N, \mathbf{Q})$. Then $A \stackrel{\mathbf{Q}}{\approx} B$ holds if and only if $A \stackrel{\mathbf{Q}}{\approx} B$ holds for all $v \in \mathcal{V}$.

Lemma 4 Let A and B be diagonal matrices in $GL(N, \mathbf{Q}_v)$. Then $A \stackrel{\mathbf{Q}_v}{\approx} B$ holds if and only if $\det(A) = \det(B) \pmod{\mathbf{Q}_v^{*2}}$ and $\epsilon_v(A) = \epsilon_v(B)$ hold, where $\epsilon_v(A) := \prod_{1 \leq i < j \leq N} (a_i, a_j)_v \in \{\pm 1\}$ for $A = \operatorname{diag}(a_1, \ldots, a_N)$. If N=1, we define $\epsilon_v(A) := 1$ as usual.

Note that $a \in \mathbf{Q}^{*2}$ is equivalent to $a \in \mathbf{Q}_v^{*2}$ for all $v \in \mathcal{V}$. And it is clear that $\det(I_n) = 1 \pmod{\mathbf{Q}_v^{*2}}$ holds and $\epsilon_v(I_n) = 1$ holds for all $v \in \mathcal{V}$. Hence Theorem 2 follows from Lemmas 2, 3 and 4.

Proof of Theorem 3 We assume that $N(a_1, \ldots, a_n) \neq n$. By Lemma 2, $N(a_1, \ldots, a_n) = n+1$ holds if and only if there exist a rational number x such that $A = diag(a_1, \ldots, a_n, x)$ \mathbb{R} I_{n+1} . Put $D := \prod_{i=1}^n a_i$. The determinant of the left side is Dx, and that of the right side is 1, so $Dx = 1 \pmod{\mathbf{Q}^{*2}}$ holds. Thus x is determined by D as an element of $\mathbb{Q}^*/\mathbb{Q}^{*2}$. Then we check whether $A = diag(a_1, \ldots, a_n, D)$ \mathbb{R} I_{n+1} holds or not. By the computation of $\epsilon_v(A)$, we have Theorem 3.

For the proof of Theorem 4, we need a following lemma.

Lemma 5 Let a be an element of \mathbf{Q}^* , and let $(b_v)_{v \in \mathcal{V}}$ be a family of numbers in $\{\pm 1\}$. In order that there exists $x \in \mathbf{Q}^*$ such that $(a, x)_v = b_v$ for all $v \in \mathcal{V}$, it is necessary and sufficient that the following conditions are satisfied:

- 1. The cardinality of the set $V' = \{v \mid v \in \mathcal{V}, b_v = -1\}$ is finite and even.
- 2. For each $v \in \mathcal{V}$, there exists $x_v \in \mathbf{Q}_v^*$ such that $(a, x_v)_v = b_v$.

Since the Hilbert symbol is non-degenerate, $(a, y)_v = 1$ holds for all $y \in \mathbf{Q}_v^*$ if and only if $a \in \mathbf{Q}_v^{*2}$. Thus we may replace 2 in the above lemma with

2. For all $v \in V'$, a is not contained in \mathbf{Q}_v^{*2} .

Proof of Theorem 4 We assume that $N(a_1, \ldots, a_n) \neq n, n+1$. By Lemma 2, $N(a_1, \ldots, a_n) = n+2$ holds if and only if there exist rational numbers x, y such that $A = diag(a_1, \ldots, a_n, x, y) \stackrel{\mathbf{Q}}{\sim} I_{n+2}$. Put $D := \prod_{i=1}^n a_i$. As we observed in the proof of Theorem 3, the last rational number y is determined by Dx from the discussion of determinant. Now our problem is reduced to the existence of a rational number x such that $A = diag(a_1, \ldots, a_n, x, Dx) \stackrel{\mathbf{Q}}{\sim} I_{n+2}$. Applying Lemma 5 to $\epsilon_v(A)$, we obtain a necessary and sufficient condition for the existence of x such that $A = diag(a_1, \ldots, a_n, x, Dx) \stackrel{\mathbf{Q}}{\sim} I_{n+2}$. Then we have Theorem 4.

References

- [1] T. Kumada: Isometric embeddings of metric **Q**-vector spaces into \mathbf{Q}^N , to appear in European Journal of Combinatorics.
- [2] H. Maehara: Embedding a set of rational points in lower dimensions, to appear in Discrete Math.
- [3] J. P. Serre, A Course in Arithmetic. Volume 7 of GTM, Springer-Verlag, New York, 1973.

Keio University Department of Mathematics 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223 Japan