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This is an abbreviated version of a paper [6] in which we present a relationship between
U,(s1(2)), the quantum enveloping algebra of sI(2), and certain distance-regular graphs.
The starting point of this paper is the observation that the Terwilliger algebras of the
Hamming cubes possess a natural U(sl(2)) structure.

Let T’ = (X, R) denote a distance-regular graph with diameter D and adjacency matrix
A € Matx(C), where Matx(C) denotes the C-algebra of matrices in C whose rows and
columns are indexed by X. Fix ¢ € X, and write E} = E}(z) € Matx(C) to denote the
diagonal matrix with (y,y)-entry 1 if 8(z,y) = ¢ and 0 otherwise. The algebra T' = T(x)
generated by A and Ef, Ef, ..., E} is called the Terwilliger algebra (with respect to x) of
T. '

Let ' = (X, R) denote a Hamming D-cube. Fix z € X, and write T = T'(z). Set

D-1 D D
L= EfAE;,,, R=) E!AE;,, Z=) (D-2%)E;.
1=0 =1 =0

It is easy to verify that
ZL—-LZ=2L, ZR-RZ=-2R, LR-RL=17,

the relations of the standard presentation of U(sl(2)). Moreover, L, R, and Z generate T
Thus T is a homomorphic image of U(sl(2)). (We prove these facts in Theorem 2.3).

The matrices L and R are called the lowering and raising matrices of T, respectively.
These matrices have the following combinatorial interpretation. For the moment, identify
each vertex of I with its characteristic column vector (and thereby allow T to act on the
vertices of T'). Fix y € X, and let ¢ denote the distance between z and y. Then L maps y
to the sum of those vertices which are adjacent to y and at distance ¢ — 1 from z, and R
maps y to the sum of those vertices which are adjacent to y and at distance ¢ + 1 from z.
Thus the lowering and raising matrices are lowering and raising the distance from x while
preserving adjacency. Thus the usual generators‘ of U(sl(2)) are mapped to combinatorially
significant elements of T in the homomorphism described above.

This leads us to investigate the following questions. Are there any other distance-regular
graphs with a similar U(sl(2)) structure? Are there examples of distance-regular graphs
with a similar U,(sl(2)) structure, where Uy(sl(2)) is the quantum universal enveloping
algebra of s1(2)? Can we find all such examples? We answer these questions, showing that
only the Hamming cubes have a natural U(sl(2)) structure, and only the 2-homogeneous
bipartite distance-regular graphs have a natural U,(sl(2)) structure.
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In the next section we review some background material. We then return to the U(sl(2))
structure on the Hamming cubes, followed by a description of the U,(sl(2)) structure on
the 2-homogeneous bipartite distance-regular graphs. We omit many of the proofs, and
we omit a discussion of the module theory for Uy(sl(2)) and T. Instead, we will focus the
combinatorial aspects of these relationships.

1 Association Schemes

In this section, we present some basic material concerning association schemes and their
Terwilliger algebras. For more information about association schemes see [1, 2], and for
more information about their Terwilliger algebras see [11, 12, 13].

Let X be a finite non-empty set, and let Matx(C) denote the C-algebra of matrices
with entries in C whose rows and columns are indexed by X. For all A € Matx(C) and for
all a, b € X, we write A(a,b) to denote the (a,b)-entry of A. For any set G C Matx(C),
the smallest subalgebra of Matx(C) which contains G and the identity matrix of Matx (C)
is called the subalgebra of Matx(C) generated by G.

By a commutative association scheme (or simply scheme hereafter) we mean a pair
X = (X,{Ai}i=0,1,..p), where X is a finite non-empty set, and where Ag, A1, ..., Ap €
Matx(C) are non-zero (0,1)-matrices satisfying the following conditions: (i) Y2, A4; = J
(the all ones matrix), (i1) Ag = I (the identity matrix), (iii) for all 7 (0 < ¢ < D) there exists
an ¢ (0 < ¢ < D) such that A' = Ay, and (iv) for all h, ¢, and j (0 < h, 7, j < D) there
exists an integer pf‘J such that A;A; = A;A; = E;?:g p%Ah. A; is called the i*" associate
matriz of X. The numbers pf‘J (0 < h, 4, j < D) are called the intersection numbers of X.

Let X = (X, {Ai}i=0,1,.,p) be ascheme. From (i)-(iv) we see that Ag, A1, ..., Ap form
a linear basis for a commutative subalgebra M of Matx(C). We refer to M as the Bose-
Mesner algebra of X. By [1], M has a basis Ey, Ey, ..., Ep satisfying: (i) S 2,E =1,
(ii) By = |X|71J, (iii) for all ¢ (0 < i < D) there exists an ? (0 < i < D) such that
E! = E; = E;, and (iv) E;E; = 6;;E; (0 < i, j < D). We refer to Ey, E1, ..., Ep as the
primitive idempotents of X. For all ¢ (0 <4 < D) dim E;V = rank F; = trace E; = q?i.

Observe that M is closed under entry-wise multiplication, o, and that the A; are the

primitive idempotents of M under o, i.e. A;04; = 6;;A;. Forallh,i,and j (0 < h, i, j < D)
there exists a scalar qf; such that F; o E; = E}?:O q%Eh. The numbers qf} are called the
Krein parameters of X. The Krein parameters are non-negative real numbers [1, Theorem
I1.3.8]. -
Let X = (X,{A4;}i=0,1,..,p) denote a scheme. Fix any z € X. For each integer &
(0 < i < D), let Ef = E!(z) denote the diagonal matrix in Matx(C) with (y,y)-entry
E!(y,y) = Ai(z,y). Observe that (i) Y2, Er = I, (ii) E* = Ef (0 < i < D), and (iii)
EYE}? = 6;;E! (0<14,j < D). E} is called the i*h dual-idempotent of X with respect to .
For all i (0 <i < D) dim E}V = rank E} = trace E} = p{;. From (i)—(iii) we see that Ej,
Ef, ..., E} form a basis for a commutative subalgebra M* of Matx(C). We refer to M*
as the dual-Bose-Mesner algebra of X with respect to x.

For each integer ¢ (0 < ¢ < D), let AY = A¥(x) denote the diagonal matrix in Matx(C)
with (y,y)-entry Af(y,y) = |X|Ei(z,y). By [11], A}, A7, ..., A} form a basis for M* and
satisfy: (1) Y2, AF = | X|Eg, (ii) Ay = I, (iii) A = AF (0 < < D), and (iv) for all 4,
j(0<L ¢ 5<D) AjA] = E{LO qf}A}: We refer to Ay, A7, ..., A} as the dual-associate
matrices of X.
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Let T = T'(x) denote the subalgebra of Matx (C) generated by M and M*. The algebra,
T is called the T erwzlhger (or subconstituent) algebra of T' with respect to z.

Definition 1.1 Let X = (X, {A,‘},’=0,1,,,,,D) denote a scheme. We say that X" is P-
polynomial (with respect to a given ordering Ag = I, Ay, ..., Ap of the associate matrices)
whenever D > 1, and for all integers h, ¢, j (0 <hzj < D), p,] =0ifoneof h, i, jis
larger than the sum of the other two, and p” # 0 if one of h, i, j equals the sum of the
other two.

Let X = (X,{Ai}i=0,1,..,p) denote a P-polynomial scheme, and write A = A;. The
Bose-Mesner algebra of a P-polynomial scheme is generated by A. Let I' = (X, R) denote
the graph with adjacency matrix A, and write @ to denote the shortest-path distance
function on I'. Thenforall z,y € X, A;(z,y) = 1if 0(z,y) = ¢ and 0 otherwise (0 < ¢ < D).
The axioms of a scheme imply that for all h (0 < h £ D) and all z, y € X with d(z,y) = h
the number |{z € X |d(z,2) = ¢, (y,2) = j}| is independent of z and y for all ¢, j
(0 £4, 7 £ D). Such a graph is said to be distance-regular. (See, for example, [1, pp. 188-
193] or [2, pp. 58-59]). Throughout this paper we will use the notation of a scheme for a
distance-regular graph, referring to the above construction of the associate matrices from
such a graph. We will write [';(z) = {y € X | Ai(z,y) # 0}, the set of vertices at distance
¢t from z in the graph T'.

Suppose X = (X, {Ai}i=o,1,..,p) is a P-polynomial scheme. We set ¢; = pi;_; (1 <i <
D), a; = p{; (0 <i < D), and b; = pi;;, (0<¢< D—1). We define co = bp = 0. Recall
that ¢; + a; + b; = by (0 <7< D) [2, p. 126].

Define ‘

D D
L= Z ErAEr,, F=Y E!AE}, R=) E!AE;,.
1=0 =1

Observe that A = R + L+ F.

Lemma 1.2 [3] Let X = (X, {Ai}i=0,,..D) dénote a P-polynomial scheme with D > 2.
Fiz z € X, and write T = T (z). Then the following are equivalent.

(i) ;=0 (0<i< D).
(ii) F=0.

(iii) There exists, up to isomorphism, a unique simple T-module with endpoint 1, it is
thin, and it has diameter D — 2.,

A P-polynomial scheme satisfying (i)—(iii) of Lemma 1.2 is said to be bipartite.

Definition 1.3 Let X = (X, {A:}i=0,1,.,p) denote a scheme. We say that A is Q-
polynomial (with respect to a given ordering Ey = |X|~!J, E},..., Ep of the primitive
idempotents) whenever D > 1, and for all integers 4, i, j (0 < h, %, j < D), q,’; = 0 if one
of h, i, j is larger than the sum of the other two, and qf‘j # 0 if one of h, i, j equals the
sum of the other two.
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Let X = (X, {A;}i=0,1,.,p0) denote a Q-polynomial scheme, and write A" = Aj. The
dual-Bose-Mesner algebra of a Q-polynomial scheme is generated by A* [11, Lemma 3.11].

Suppose X = (X, {A;}i=o0,,...p) is a Q-polynomial scheme. We set ¢} = ¢};_; (1<i<
D), a* = ¢i; (0 < i< D), and b} = ¢j;4; (0 <i < D—1). We define cg = b}, = 0. Recall
cf +ar +bf =b} (0 < i< D) [1, Proposition 3.7).

Define
D-1 D D
L*=Y EA'Ey., F'=) EA'E, R'=) EAE. .
=0 1=0 i=1

Observe that A* = R* + L* 4+ F™.

2 A U(sl(2)) structure on the Hé.mming cubes’

In this section we describe a natural s/(2) structure on the Hamming cubes. The results in
this section are observations of Terwilliger. We present them here to motivate our current
work. Recall the following presentation of U(sl(2)).

Definition 2.1 The universal enveloping algebra of sl(2) is the associative algebra U (sl(2))
generated by X, X*, and Z with relations

ZX~-X"Z = 2X°,
ZXt - Xtz = -2Xxt,
X Xt-X*XxX- = Z.

W N

Also recall the following construction of the Hamming cubes.

Definition 2.2 The Hamming D-cube is the graph with vertex set X = {0, 1} (the D-
tuples with (0,1)-entries) such that two vertices are adjacent if and only if they differ in
precisely one coordinate.

The Hamming D-cube has been characterized as the unique distance-regular graph with
intersection numbers ¢; =i, b; = D —4,and a; =0 (0 <7< D) [8, 7].

It follows from Definition 2.2 that for all integers ¢ (1 < ¢ < D) and for all vertices z,
y, z € X with 9(y,2) =2, 9(z,y) = 0(z,2) =1,

IT1(y) NT1(2) NTiq(z)| = |T1(y) N T1(2) NTiga(2)| = 1. (4)
With this observation we are ready to prove the first result.

Lemma 2.3 Let X denote the Hamming D-cube, D > 2. Fiz z € X, and write T = T(z).
Write

D
X~=L, Xt=R, Z=)(D-2)E.
1=0

(i) X—, X, and Z satisfy the defining relations of U(sl(2)) given in Definition 2.1.
(ii) X~, X*, and Z generate T.
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Proof. (i): We verify (1) with the following computations.

D D-1
ZX~ = (Z(D 2j)E )(ZE*A z+1>=Z(D 2)E7 ARG,

j=0 1=0 =0

X~ Z

D o D-1 B
(Z ErA ,+1) (Z(D—zj)E;) =) (D -2i-2)E;AE},,.

i=0 j=0 =0

Now (1) follows. The relation (2) is verified similarly.

We now show that (3) holds. Since Y2, E* = I, it is enough to show that for all ¢
(0<i< D) , '
(LR - RL)E? = (D - 20)E]}. (5)

, Fix 7 (0 < ¢ < D), and pick y, z € X with d(z,y) = 0(z,z) = i. Let r, s, t denote
the (y, z)-entries of LRE}, RLE}, and E}, respectively. First suppose d(y,2) > 2. Then
r=gs=1t=0. Suppose d(y,z) = 2. Then by (4) r =1, s =1, and t = 0. Suppose
d(y,z) = 1. Then r = s =t = 0 since a; = 0. Finally suppose y = 2. Then r =b; = D — 1,
s=c¢;=1,and t = 1. In all cases r = s+ (D - 2¢)t, so (5) holds.

(ii): Observe that Z/ = Z,_O( — 2i)7E} since the E} are idempotents. (We take
for the Z° expression I = Z;—-o E}). Viewing these expressions for Z7 (0 < i < D) as
equations in the unknowns E} (0 < i < D) gives a system with a Vandermonde coefficient
matrix. Thus we may express each E} as a linear combination of nonnegative powers of Z.

Observe that A = L + R since X is bipartite, so A, Ej, E{, ..., E} are contained in the
subalgebra of Matx (C) generated by L, R, and Z. It follows that T is generated by L, R,
and Z since T is generated by A, Ej, EY, ..., Ep. |

The Hamming D-cube is Q-polynomial with qf‘j = p,’-‘j for all h, ¢, 7, (0< h, 4, j < D).
This duality between the P- and Q-polynomial structure extends to the Terwilliger algebra.
This gives a natural sl(2) structure on the Q-polynomial structure Hamming cubes. Let
us state without proof the dual version of Lemma 2.3.

Lemma 2.4 Let X' denote the Hamming D-cube, D > 2. Fizz € X, and write T = T'(z).
Write

’ D
X-=L*, X'=R, Z=) (D-2%)E.

=0
(i) X—, X, and Z satisfy the defining relations of U(sl(2)) given in Definition 2.1.
(ii) X-, X*, and Z generate T.
Having found examples of distance-regular graphs which have a natural U (sl (2)) struc-
ture, we consider the possibility of finding othér examples. In this section we show that

the Hamming cubes are the only examples the natural structure described in Lemmas 2.3
and 2.4. Our main result is the following theorem, which we state without proof.

Theorem 2.5 Let A = (X,V{A,‘}i_—_oyl,“"[)) denote a scheme with D > 2. Fiz x € X, and
write T = T'(z). The following are equivalent.

(i) X is the Hamming D-cube.
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(ii) X is P-polynomial and T is generated by elements X~, X*, and Z of the form

D D-1 D
X~ =Y 2 EfAE},,, X'=3Y fEfAEL,, Z=) xE]

1=0 - 1=0 i=1
which satisfy the relations of U(sl(2)) of Definition 2.1.

(iii) X is Q-polynomial and T is generated by elements X=, X*, and Z of the form

D-1 D : ' D
X~ =Y ofEA"Ey, Xt'=) ofEBAEi.,, Z=) zFE
i=0 =1 =0

which satisfy the relations of U(sl(2)) of Definition 2.1.
Suppose (i) - (iii) hold. Then in both (ii) and (iii)
2; = D-2 (OS‘I,SD), (6)
gz, =1 (0<i<D-1). (7)

3 A U,(sl(2)) structure on the 2-homogeneous
bipartite distance-regular graphs
In this section show that the 2-homogeneous bipartite distance-regular graphs have a nat-

ural U,(sl(2)) structure similar to the U(sl(2)) structure on the Hamming cubes. Recall
the following presentation of the U, (sl(2)).

Definition 3.1 For ¢ € C\{0, 1, —1}, the quantum universal enveloping algebra of si(2)
is the associative algebra U, (sl(2)) generated by X~, X*, Y, and Y~! with relations

YY 1= 1 =YY,

YXY! = X, | (8)
Yxty ! = ¢72x*, (9)
X Xt-X*t*X" = (Y-YY/(g-q"). (10) -

The algebra U(sl(2)) can be viewed as the classical limit ¢ — 1 of U,(sl(2)) (see
[9, Section VI.2] for further details). In the module theory of U,(si(2)), the following
g-analogues of the integers appear: For any integer n, set

qn _ q—n
g—qt’

We will write [n] for [n], when ¢ is clear from the context. We write [n]! = [n][n — 1] ---[1]
for each positive integer n. The following family of distance-regular graphs can be viewed
as g-analogues of the Hamming graphs. (They are not related to the bilinear forms graphs
which are sometimes called the “g-analogues of the Hamming graph” [2, p. 280]).

[n]y =

Definition 3.2 Let X = (X, {Ai}i=0,1,.,p) denote a bipartite distance-regular graph with
diameter D > 3 and bg > 3. X is said to be 2-homogeneous whenever for all integers i
(1 < ¢ < D), the number |T';(y) NT1(2) NTi-1(z)| is independent of the choice of z, y,
z € X with d(y, z) = 2, 0(z,y) = 9(z, z) = i. In this case we write v; to denote the number

IT1(y) NT1(z) N Tia(2)]-
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Observe that the Hamming cubes are 2-homogeneous bipartite distance-regular graphs.
We will exclude them from further consideration below. The following theorem shows
how to interpret the 2-homogeneous bipartite distance-regular graphs as g-analogues of the
Hamming cubes.

Theorem 3.3 (/5, Theorem 35]) Let X = (X,{A:}i=0,1,..p) denote a distance-regular
graph with diameter D > 3 and by >'3. Assume X is not a Hamming cube. Then the
following are equivalent.

(i) X is a 2-homogeneous bipartite distance-regular graph.

(ii) There ezists a complex scalar q ¢ {0,1,—1} such that

i-1(,D | 2 i=1(,D | 2 '
i=g“(q_lgl:%—)[i]"’ b;:%w—ﬂq ,'(OSiSD). (11)

Suppose (i) and (ii) hold. Then ¢ is real and

(4P + ?) (¢° + ¢*+2)
Yi= T h T a D 1 2
(@° +q*) (P +¢*)

The parameter ¢ of Theorem 3.3 is determined by the graph structure as follows.

(1§i§’D—1). (12)

Lemma 3.4 ([5, Corollary 36]) Let X = (X, {Ai}i=o0,,..,.D) denote a 2-homogeneous bipar-
tite distance-regular graph with diameter D > 3 and by > 3. Assume X is not a Hamming
cube. Let ® denote the set of all ¢ € C satisfying the parameterization of Theorem 3.3.

(i) Suppose D is even. Then ® = {g€ C|(g+¢71)? =c3(bo—2)/((c2—1)b2)}. In
particular, ® = {a, a™!, —a, —a~'} for some real number a > 1.

(ii) Suppose D is odd. Then ® = {g € C|q+ ¢~ = ¢y, !}, wherer = (D -1)/2. In
particular, ® = {a, a™'} for some real number a > 1. '

We are ready to describe a Uy (sl(2)) structure on the 2-homogeneous bipartite distance-
regular graphs.

Lemma 3.5 Let X = (X, {A,’},‘=0’1,._.’D) denote a 2-homogeneous bipartite distance-regular
graph with diameter D > 3 and by > 3. Assume X is not a Hamming cube, and let q be as .
in Theorem 3.3. Fiz x € X, and write T = T'(z). Write

Do . .
X- = I_ZDL‘IZJ_EME? L Xt= M *AE,.,
S PP+ T S d(dP+dh) T
d . d .
Y = Z qD—2‘7E;, . Y—-l — Z q2J-DE;.
Jj=0 =0

(i) X—, X*, and Y satisfy the defining relations of U,(sl(2)) given in Definition 3.1.
(i) X—, X*, and Y generate T.
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Proof. (i): Write e; = ¢7*(¢° + ¢%)/(¢P + ¢%). We verify (8) with the following compu-
tation.

D ‘ D-1 D
YXxv! = (Y. P¥E; (ZeE*A ,H) (Z q%-DE;;)
j=0 , i=0 k=0
D-1
— Zequ 21q21+2 DE*A z+1“"q X .
1=0

The relation (9) is verified similarly.
We now verify (10). Since I = Y2 E¥, it is enough to show that for all ¢ (0 < i < D)

e;e;y1 LRE! — ei_1e;RLE} = [’t]qE: (13)

Fix i (0 < i < D), and pick y, z € X such that d(z,y) = d(z,z) = i. Let r, s, and ¢
denote the (y, z)-entries of LRE?, RLE?, and EY, respectively. First suppose 9(y, z) > 2.
Then r = s =t = 0. Suppose 9(y,z) = 2. Then by the definition of 2-homogeneous
r=cy—", 8 =" and t = 0. It follows from (11) and (12) that e;e;417 — €;_1€t = 0.
Suppose d(y, 2) = 1. Then r = s =t = 0 since a; = 0. Finally suppose y = 2. Then r = b;,
s =c¢;, and t = 1. It follows from (11) that e;e;417 — e;—1€;s = [i]4t. Now (13) follows.

(ii): Recall that ¢ is real and not £1 by Lemma 3.4, so the coefficients ¢P~% in the
expression for Y are distinct. Observe that Y7 = ED qJ(D 2’)E* since the E are idempo-
tents. Viewing these expressions for Y7 (0 < j < D) as equations in the unknowns E} gives
a system with a Vandermonde coefficient matrix. Thus we may express each E} (0 < ¢ < D)

as a linear combination of powers of Y. Now observe that R = (Ef?___o ei_lEg“) X+t and

L= (Ego ez-_lE;") X, and recall that A = R+ L since X is bipartite. It follows that A,

E}, E}, ..., E} are contained in the subalgebra of Matx (C) generated by X, X, and
Y. It follows that X~, X*,'and Y generate T since A4, E{, EY, ..., E}, generate T. |

Let us rewrite (13):

D42 21 27
« 4T +yg . (@2 + ¢)HqP - ¢¥)
LRE: =+ —"_"_RLE] .

T qP gt T P@E-DEPF

(0<j<D). (14

It can be shown using [5, Theorem 13] that the linear dependence of LRE}, RLEY, and
EX for all : (1 <¢< D —1) is equivalent to the 2-homogeneous condition for the bipartite
distance-regular graphs.

The 2-homogeneous bipartite distance-regular graphs are Q-polynomial with qf‘j = p?j
forall h, 1,7, (0 < h, i, < D) (see [5, Theorem 42, Corollary 43] and [1, Theorem III.5.1}]).
As was the case for the Hamming cubes, the Q-polynomial structure of the 2-homogeneous
bipartite distance-regular graphs also has a natural U,(sl(2)) structure.

Lemma 3.8 Let X = (X, {Ai}i=0,,...0) denote a 2-homogeneous bipartite distance-regular
graph with diameter D > 3 and by > 3. Assume X is not a Hamming cube, and let q be as
in Theorem 3.8. Fiz z € X, and write T = T(z). Write

Zq]q +q E;A"Ej-1, X quq +q2) E;AEjtq,
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d d

Y=Y ¢"%E;, Y '=) ¢“PE;.
Jj=0 Jj=0

(i) X, X+, andY sati'sfy the defining relations of U,(sl(2)) given in Definition 3.1.
(ii) X~, X*, andY generate T

There is a stronger characterization than Theorem 3.3 of the intersection numbers of the
2-homogeneous bipartite P-polynomial schemes. This gives us some very concrete examples
of schemes with a natural Uy(sl(2)) structure.

Theorem 3.7 [10, Theorem 1.2] Let X = (X, {Ai}i=0,,..,p) denote a bipartite distance-
reqular graph with diameter D > 3 and by > 3. Suppose X is not the Hamming D-cube.
Then X is 2-homogeneous if and only if its intersection array {bo, by, ...,bp_1;¢1,¢2,...,¢D}
is one of the following.

(i) {k,k-1,1;1,k—-1,k}, k > 3.
(ii) {4v,4y-1,2v,1;1,2v,4y — 1,47} for v a positive integer.

(i) {k,k—1,k—pp L1, pk— p k= 1,k}, withk =v(y*+3y+1), p=7(y+1) for
> 2, an integer. :

The array (i) is uniquely realized by the complement of the 2 x (k+1)-grid. The graphs
with array (i) are the Hadamard graphs of order 4y. The array (iii) is uniquely realized by
the antipodal 2-cover of the Higman-Sims graph when 7y = 2, and no examples with 7 > 3
are known.

One might hope for more examples with the U,(sl(2)) structure described in Theorems
3.5 and 3.6. Indeed, for only a limited set of ¢ does U,(sl(2)) have an interpretation on
a 2-homogeneous bipartite distance-regular graph. Moreover, the low diameter of these
examples means that they only give rise to simple Uq(sl(2))-modules of low dimension (at
most 6). One might even wish for examples which help to understand some of the more
subtle simple U, (s!(2))-modules which arise in the root of unity case.

Now that we have some examples, we consider the possibility of finding other examples
of schemes with a U,(sl(2)) structure similar to those described in Lemmas 3.5 and 3.6.
In this section we show that the 2-homogeneous bipartite distance-regular graphs are the
only examples. We state this in the following theorem, but omit the proof here.

Theorem 3.8 Let X = (X, {A;}i=0,1,..p) denote a scheme with D > 3 and by > 3. Fu
z € X and write T = T(z). Then the following are equivalent.

(i) X is a 2-homogeneous bipartite distance-regular graph.
(ii) X is P-polynomial and T is generated by elements X, X*, Y, and Y~! of the form
D-1 D D D
X~ =3 a7 EfAE},, Xt =) ofEfAEL,, Y=} uE, Y '=) y EI
1=0 =1 =0 =0

where y; # 0 (0 < i < D), which satisfy the defining relations of Uy(sl(2)) given in
Definition 8.1 for some q € C\{0, 1, —1}. '
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(iii) X is Q-polynomial and T is generated by elements X ™, Xt Y, and Y~ of the form

D-1 D D D
X~ =) 2] B;A"Eiy, Xt= sz’EiA*Ei—h Y= EyiEi, Y™'= nylEi,
i=0 ' i=1 i=0 =0

where y; # 0 (0 < i < D), which satisfy the defining relations of U,(sl(2)) given in
Definition 3.1 for some ¢ € C\{0, 1, —1}.

Suppose (i) — (iii) hold. Then in (ii) and (iii)
y = P  (0<i<D), (15)

(¢° + ¢¥*2)(¢P + ¢*)

@ 1(qD + ¢?)? 0<i<D-1) (16)

-t
T, Tiy1 —

for some € € {1, —1}.

In the previous section, we proved that (i) implies (i) and (iii) for particular values of
X~ and X*. It is now routine to verify that, given a 2-homogeneous bipartite distance-
regular graph, any X~ and X% of the form described in (ii) and (iii) (satisfying (15) and
(16)) still satisfy the U,(sl(2)) relations of Definition 3.1. Thus we admit the forms of parts
(i) and (iii). The factor € in (15) and (16) appears because of the automorphism Y — Y,
Xt =Xt of Uy(sl(2)).

Lemma 3.9 Let X = (X,{A;}i=01,..p) denote a scheme with D > 3. Fizz € X, and
write T = T(z). Suppose Theorem 3.8(i) holds. Then X is a 2-homogeneous bipartite
distance-reqular graph other than a Hamming cube. Let ® be as in Lemma 3.4. Then one
of the following holds.

(i) g€ .
(ii) D is odd and —q € ®.
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