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A family of group association schemes
with the same intersection numbers
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We gave an example of a family of infinite pairs of non-isomorphic group association
schemes with the same intersection numbers.

1 Introduction

Definitions (1) Let G be a finite group with conjugacy classes Cop = {1},Cy,...,Ca.
The group association scheme X(G) for group G is a set G with relations {R(C;)}¢.,
defined by (z,y) € R(C;) iff z7'y € C; for each i.

(2) Let G and H be finite groups with the same numbers of conjugacy classes {C;}¢_,
and {D;}Z, respectively. The group association schemes X(G) and X(H) are called
isomorphic when there is a bijection from G to H which sends each relation R(C;) to
R(D;) for each 3.

(3) An automorphism of a group association scheme X' (G) is an automorphism of the
set G which sends each relation R(C;) to R(C;) for each i. The group of all automorphisms
of X(G), denoted by Aut(X(G)), is called the full automorphism group of X(G).

From the definition, isomorphic group association schemes have tiie same intersection
numbers, but the converse is known to be false. The only known example is the group
association schemes for extensions of E* by SL(3,2) found by Yoshiara [4].

We found a family of infinite pairs of non-isomorphic group association schemes with
the same intersection numbers as follows:

Theorem 1.1 Let q be any power of 2 greater than 8, V' be the column vector space over
E, of degree 2. Set the group Ey be the split extension of V by SL(2,q), and E; be a
non-split one. :

The group association schemes X (FE,) and X (FE;) have the same intersection numbers
but X (Ep) Z X(E,).

Bell shows that E; exists if g 28. (See [1].)
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Table 1: The irreducible characters of Eg

1(k) | Vi(k) Ti(k) .  S5(R) ' Us (k)
G=1,...,(¢—2)/2)| =1,..-,4/2) (BeE)
¢ —1 ©lg+1) ¢g—1) q(¢® — 1)
1 1 — 1 1
q 1 -1 0
q+1 g+1 n+n"’ 0 1
g+l | g1 | glanr g e 0 1
g—1 | g-1 0 —(&+£7) -1
g—1 | g—1 0 —(M + &™) ~1
g—1 | q—1] 0 —(£99/% 4 £7992) -1
(-1 -1 0 0 K@;8,V)(V € )
(@-1| -1 0 0 K(¢;8,b)(b € E)

2 Outline of the Proof

About intersection numbers It is known that the group association schemes X (G)
and X (H) have the same intersection numbers if and only if G and H have the same
character tables ([2, (7.1), pp. 42-43]). The character table of Ex (k= 0,1) are those
given in Table 1 ([3]), where the first row is class names, the second row is the size of
class, 7 is a primitive (g — 1)st-root of unity in C, £ is a primitive (m4 1)st-root of unity
in C, and for the additive character v : F, > a (—1)T'E/F2(a) e C%,

K@;B,8) = 3 ¢(u38+ bu).

uckX

The groups Ej have 2q + 1 irreducible characters, but their values do not depend on the
choice of k. Hence X(FEo) and X(E;) have the same intersection numbers.

About X(E,) % X(E,) Let A be the stabilizer of the identity 1 = (O, L) of Ey in
the full automorphism group Aut(X (Ep)). The stabilizer A = Aut(X(Eyp))1 acts on each
conjugacy class of Ep as A preserves each relation with the identity. -

For conjugacy classes C,D of Eo and g € Ey, denote C(g,D) the set of elements C
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which are adjacent to g in the R(D)-graph:
C(g,D) .= {h €C|(g,h) € R(D)} = {he€C|lg 'h € D}.
We consider the equivalence relation on the conjugacy class W déﬁnéd as follows:
For g,h € V!, g and h are equivalent when Us(g, Uo) = Uo(h, Us).

We see that there are g + 1 equivalence classes parametrized by the 1-dimensional sub-
spaces of V. Each equivalence class consists of ¢ — 1 elements of the shape (v, I), where
v ranges over the nonzero vectors of a 1-dimensional subspace of V.

Let Ag = {("lo, a],I)|a € EX} be the equivalence class corresponding to the 1-
subspace spanned by T[1, 1], and let A; (i = 1,...,q) be the other classes. Define
A to be the set of the equivalence classes A; (¢ = 0 1,...,9). Since A preserves each
conjugacy classes, A preserves the above equivalence relation on V¥ and hence acts on
A. This action is triply transitive since Inn((0, M))(v,I) = (Mv,I) for M € SL(2,q),
veV.

Let N be the kernel of the action of A on A:

N := {0 € Alo(A;) = Aj for any j =0,...,q}.
The following propositions hold.

Proposition 2.1 We have N = {Inn(v)|v € V} x (1), where ¢ is the automorphism
inverting each element of Ey. ]

Proposition 2.2 If q > 8, then A/N has the normal subgroup Inn(Ey)N/N which is
isomorphic to SL(2,q), and is isomorphic to the normal subgroup of Aut(SL(2,q)). =

Proof of Theorem Assume X(Ep) =2 X(E;). Then Aut(X(Ep)) = Aut(X(E,)) and
hence

A= A’ut(X(Eo))l & Aut(X(El))y 2 Inn(El) & El,

where 1/ is the identity of F;, since the action of Aut(X(E,)) on E; is transitive. By
Proposition 2.2, A/Inn(Ep)N is a cyclic group. From Proposition 2.1, we have the
commutator group A’ < Inn(Fo)N = Inn(Ep) (t). Thus the second commutator group
A” is isomorphic to a subgroup of Inn(Ey) 2 Ey, however, A” hes a subgroup which
is isomorphic to Ef = E; from the above argument. Comparing the orders, we have
Ey = E, and this is a contradiction. [

Remark In this note, the proof of Proposition 2.2 is shortened, however, it uses the
classification of doubly transitive groups.

After this conference, this Theorem had proved without the classification of doubly
transitive groups. It uses only the classification of Zassenhaus groups. (The structure of
the full automorphism is as the form Aut(X (Ep)) = (Eo % Ep):2.)
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