On Strongly Regular Graphs with Parameters (k,0,2) and Their Antipodal Double Covers (Algebraic Combinatorics)

Author(s)
Nakagawa, Nobuo

Citation
数理解析研究所講究録 (1998), 1063: 92-103

Issue Date
1998-09

URL
http://hdl.handle.net/2433/62427

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
On Strongly Regular Graphs with Parameters
(k,0,2) and Their Antipodal Double Covers

Nobuo NAKAGAWA(中川 畠夫)
Department of Mathematics, Faculty of Science and Technology, Kinki University, Higashi-Osaka, Osaka 577-8520, JAPAN

Abstract
Let Γ be a strongly regular graph with parameters $(k,\lambda,\mu) = (q^2 + 1,0,2)$ admitting $G(\cong PGL(2,q^2))$ as one point stabilizer for odd prime power q. We show that if G stabilizes a vertex ∞ of Γ and acts on $\Gamma_2(\infty)$ transitively, then $q = 3$ holds and Γ is the Gewirtz graph. Moreover it is shown that an antipodal double cover whose diameter 4 of a strongly regular graph with parameters $(k,0,2)$ is reconstructed from a symmetric association scheme of class 6 with suitable parameters.

1 Introduction

We are interested in the classification problems of distance regular graphs with $b_2 = 1$. Let Γ be a distance regular graph with $b_2 = 1$ and valency $k > 2$. If the diameter d of Γ is larger more than 4, then Γ is isomorphic to the dodecahedron ([3, pp.182]). In [1], M.Araya,A.Hiraki and A.Jurisic showed that if $d = 4$, then Γ is an antipodal double cover of a strongly regular graph with parameters $(k,\lambda,\mu) = (n^2 + 1,0,2)$ for an integer n not divisible by four and if $d = 3$, then Γ is an antipodal cover of a complete graph. Obviously an antipodal cover of a complete graph is a distance regular graph with $b_2 = 1$ if it’s diameter is three.

The classification problems of antipodal covers of complete graphs are very difficult. Because the existence of an antipodal distance regular $(n-2)$-fold cover of the complete graph K_n claims the existence of a projective plane of order $(n-1)$ for an odd positive integer n, moreover an antipodal distance regular $(n-1)$-fold cover of K_n is equivalent to the existence of a Moore graph with diameter two and valency n ([6],[7]).

The strongly regular graphs with parameters $(k,\lambda,\mu) = (5,0,2)$ and $(k,\lambda,\mu) = (10,0,2)$ are known, the former one has an antipodal double cover with $d = 4$, namely the Wells graph, the latter one (the Gewirtz graph) does not have an antipodal double cover.
with $d = 4([3, \text{pp.}372])$. The existence or nonexistence of strongly regular graphs with
$(n^2 + 1, 0, 2)$ for $n \geq 5$ are not known up to date. We have studied these graphs.

2 Strongly regular graphs with $(q^2 + 1, 0, 2)$ admitting
\(PGL(2, q^2)\) for $q = p^e$

The following theorem is proved by using the character table of the association scheme
corresponding to the permutation group \((O(3, q), O(3, q)/O^+(2, q))\) which W.M.Kwok
gave in [5]. We note that $O(3, q) \cong \{\pm 1\} \times SO(3, q)$ and $SO(3, q) \cong PGL(2, q)$.

Theorem 2.1 Let Γ be a strongly regular graph with parameters $(q^2 + 1, 0, 2)$ and G be a group isomorphic to $PGL(2, q^2)$ for an odd prime power q. If G acts on Γ as G stabilizes
a vertex ∞ of Γ and G is transitive on $\Gamma_2(\infty)$, then $q = 3$ and Γ is the Gewirtz graph.

Sketch of the proof)

Any two involutions of G are conjugate each other in G. We denote the centralizer of
an involution z in G by H. Character table of association scheme \mathcal{X} corresponding to
the permutation group $(G, G/H)$ is given from Kwok's results. Then we obtain sevral
informations concerning eigenvalues and their multiplicities of the graph $\Gamma_2(\infty)$ admitting G as a transitive automorphism group from the character table of \mathcal{X}.

Comparing these informations with eigenvalues and their multiplicities of $\Gamma_2(\infty)$ as
the second neighbourhood of a strongly regular graph with parametars $(q^2 + 1, 0, 2)$, we
can lead a contradiction if $q > 3$.

3 Reconstruction of the graph Γ and the antipodal
double cover Γ^* of Γ

Let Γ be a strongly regular graphs with parameters $(k, 0, 2)$. In this section we study
about the structure of the second neighbourhood of Γ and antipodal double covers of
them with $d = 4$. E.R.van.Dam and A.Munemasa proved the following theorem 3.1
indeedently. ([4, pp.13-14],[8])

Theorem 3.1 Let Γ be a strongly regular graph with $\lambda = 0$, $\mu = 2$ and degree k with $k > 5$. Then the second neighbourhood of Γ with respect to any vertex generates a 3-class association scheme. Furthermore any scheme with the same parameters can be constructed
in this way from a strongly regular graph with the same parameters as Γ.

The intersection numbers $p_{h,i}$ of the association scheme of theorem 3.1 are the following.
Let $B_h(0 \leq h \leq 3)$ be the intersection matrices which $(B_h)_{i,j} = p_{h,i}^j(0 \leq i \leq 3, 0 \leq j \leq 3)$.
\[B_0 = I, \]
\[
B_1 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
k-2 & 0 & 2 & 1 \\
0 & k-5 & k-8 & k-5 \\
0 & 2 & 4 & 2
\end{pmatrix},
B_2 = \begin{pmatrix}
0 & 0 & 1 & 0 \\
k-5 & (k-5)(k-8) & k-5 \\
(k-2)(k-5) & k-5 & k-5 \\
2 & 2 & 2
\end{pmatrix},
\]
\[
B_3 = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 2 & 4 & 2 \\
0 & 2k-10 & 2k-12 & k-5 \\
2k-4 & 4 & 4 & k-2
\end{pmatrix}.
\]

Now we consider an antipodal double cover \(\Gamma^* \) of \(\Gamma \). The intersection array of \(\Gamma^* \) is the following.
\[
\iota(\Gamma^*) = \begin{pmatrix}
0 & 1 & 1 & k-1 & k \\
0 & 0 & k-2 & 0 & 0 \\
k & k-1 & 1 & 1 & 0
\end{pmatrix}
\]

Put \(\Omega = \{1, 2, \cdots, k\} \). Let \(\infty^+ \) be a vertex of \(\Gamma^* \) and \(\infty^- \) be a unique vertex in \(\Gamma^* \) such that \(d(\infty^+, \infty^-) = 4 \). We may set \(\Gamma^*(\infty^+) = \{1^+, 2^+, \cdots, k^+\} \) and \(\Gamma^*(\infty^-) = \{1^-, 2^-, \cdots, k^-\} \) and we may consider that \(d(i^+, i^-) = 4 \) is satisfied for any element \(i \in \Omega \). Obviously \(\Gamma^*(\infty^+) = \Gamma_3^*(\infty^-) \), \(\Gamma^*(\infty^-) = \Gamma_3^*(\infty^+) \) and \(\Gamma_2^*(\infty^+) = \Gamma_2^*(\infty^-) \). We denote the subgraph \(\Gamma_2^*(\infty^+) \) by \(\Delta \) and the set of vertices of \(\Delta \) by \(X \). For each \(x \in X \), \(|\Gamma^*(\infty^+) \cap \Gamma^*(x)| = 1 \) and \(|\Gamma^*(\infty^-) \cap \Gamma^*(x)| = 1 \) because of \(c_2 = b_3 = 1 \). Suppose that \(|\Gamma^*(\infty^+) \cap \Gamma^*(x)| = \{i^+\} \) and \(|\Gamma^*(\infty^-) \cap \Gamma^*(x)| = \{j^-\} \). Then there exists a bijection \(\varphi \) from \(X \) onto \((\Omega \times \Omega) \setminus \{(i, i) | i \in \Omega\} \) defined by \(\varphi(x) = (i, j) \). Then we put \(i = \varphi(x)_1 \) and \(j = \varphi(x)_2 \). We denote by \(x' \) the element of \(X \) such that \(d(x, x') = 4 \), then \(\varphi(x)_1 = \varphi(x')_2 \) and \(\varphi(x)_2 = \varphi(x')_1 \) as we show in the sequel. Moreover we set as follows.

\[A(x) = \{y \in X | d(x, y) = 1\}, \]
\[B(x) = \{y \in X | \varphi(y)_1 = \varphi(x)_2 \text{ or } \varphi(y)_2 = \varphi(x)_1, y \neq x'\} \]
\[A'(x) = \{y \in X | d(x', y) = 1\}, \]
\[B'(x) = \{y \in X | \varphi(y)_1 = \varphi(x)_1 \text{ or } \varphi(y)_2 = \varphi(x)_2, x \neq y\} \]
\[C(x) = X \setminus (A(x) \cup B(x) \cup A'(x) \cup B'(x) \cup \{x, x'\}) \]

We have the following theorem.

Theorem 3.2 We define relations on \(X \) as follows.

\[R_0 = \{(x, x) | x \in X\}, \]
\[R_1 = \{(x, y) | y \in A(x)\}, \]
\[R_2 = \{(x, y) | y \in B(x)\}, \]
\[R_3 = \{(x, y) | y \in C(x)\}, \]
\[R_4 = \{(x, y) | y \in B'(x)\}, \]
\[R_5 = \{(x, y) | y \in A'(x)\}, \]
\[R_6 = \{(x, x') | x \in X\} \]
Then \(\mathcal{X} = (X, R_i(0 \leq i \leq 6)) \) is a symmetric association scheme whose parameters are \(p_{h,i}^j(0 \leq h, j, i \leq 6) \) in the following matrices.

Here \(B_h \) is a \(7 \times 7 \)-matrix whose rows and columns are indexed by \(\{0, 1, 2, 3, 4, 5, 6\} \) satisfying \((B_h)_{i,j} = p_{h,i}^j \) for each \(h \) such that \(0 \leq h \leq 6 \).

\[
B_0 = I, B_1 = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
k - 2 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 2 & 1 & 0 & 0 \\
0 & k - 5 & k - 5 & k - 8 & k - 5 & k - 5 & 0 \\
0 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & k - 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix},
\]

\[
B_2 = \begin{pmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 2 & 1 & 0 & 0 \\
2k - 4 & 2 & 1 & 2 & k - 3 & 2 & 0 \\
0 & 2k - 10 & k - 5 & 2k - 12 & k - 5 & 2k - 10 & 0 \\
0 & 2 & k - 3 & 2 & 1 & 2 & 2k - 4 \\
0 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix},
\]

\[
B_3 = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & k - 5 & k - 5 & k - 8 & k - 5 & k - 5 & 0 \\
0 & 2k - 10 & k - 5 & 2k - 12 & k - 5 & 2k - 10 & 0 \\
(k - 2)(k - 5) & (k - 5)(k - 8) & (k - 5)(k - 6) & k^2 - 13k + 48 & (k - 5)(k - 6) & (k - 5)(k - 8) & (k - 2)(k - 5) \\
0 & 2k - 10 & k - 5 & 2k - 12 & k - 5 & 2k - 10 & 0 \\
0 & k - 5 & k - 5 & k - 8 & k - 5 & k - 5 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix},
\]

\[
(B_4)_{i,j} = (B_2)_{i,(6-j)}, (B_5)_{i,j} = (B_1)_{i,(6-j)}; (B_6)_{i,j} = (B_0)_{i,(6-j)} \quad \text{for } 0 \leq i \leq 6, 0 \leq j \leq 6.
\]

Proof.
It is immediately shown that

\[
|A(x)| = |A'(x)| = k - 2, |B(x)| = |B'(x)| = 2(k - 2). \quad \text{We have}
\]

\[
\{\varphi(x), \varphi(x)\} \cap \{\varphi(y), \varphi(y)\} = \emptyset \quad \text{if } d(x, y) = 1 \quad (3.1)
\]

from \(a_1(\Gamma^*) = 0 \), and

\[
\{\varphi(y) \mid y \in A(x)\} = \{\varphi(y) \mid y \in A(x)\} = \Omega \setminus \{\varphi(x), \varphi(x)\} \quad (3.2)
\]
from $c_2(\Gamma^*) = 1$. Hence for any $i \in \Omega \setminus \{\varphi(x)_1, \varphi(x)_2\}$, there exists a unique element $y \in A(x)$ such that $\varphi(y)_1 = i$ and $z \in A(x)$ such that $\varphi(z)_2 = i$ because of $|A(x)| = |\Omega \setminus \{\varphi(x)_1, \varphi(x)_2\}|$.

Therefore the following also holds.

$$(A(y) \setminus \{x\}) \cap (A(z) \setminus \{x\}) = \emptyset \quad (y \neq z \in A(x)) \quad (3.3)$$

From (3.2) and (3.3), $|\{z \mid z \in A(y), z \neq x, y \in A(x)\}| = (k - 2)(k - 3)$ and so we have this set is equal to $B(x) \cup C(x)$. Thus $|C(x)| = (k - 2)(k - 5)$. Moreover we obtain

$|A(z) \cap B(x)| = 2$, $|A(z) \cap C(x)| = k - 5 \quad (\forall z \in A(x)) \quad (3.4)$

$|A(z) \cap B'(x)| = 2$, $|A(z) \cap C(x)| = k - 5 \quad (\forall z \in A'(x)) \quad (3.5)$

$|A(z) \cap A(x)| = 1$, $|A(z) \cap B(x)| = 1$, $|A(z) \cap C(x)| = k - 5$

$|A(z) \cap B'(x)| = 1 \quad (\forall z \in B(x)) \quad (3.6)$

$|A(z) \cap A'(x)| = 1$, $|A(z) \cap B'(x)| = 1$, $|A(z) \cap C(x)| = k - 5$

$|A(z) \cap B(x)| = 1 \quad (\forall z \in B'(x)) \quad (3.7)$

$|A(z) \cap A(x)| = 1$, $|A(z) \cap A'(x)| = 1$, $|A(z) \cap B(x)| = 2$

$|A(z) \cap B'(x)| = 2$, $|A(z) \cap C(x)| = k - 8 \quad (\forall z \in C(x)) \quad (3.8)$

Moreover about the neighbourhoods of Δ it is easy shown that $\Delta_1(x) = A(x)$, $\Delta_2(x) = B(x) \cup C(x)$, $\Delta_3(x) = B'(x) \cup A'(x)$ and $\Delta_4(x) = \{x'\}$ for any $x \in X$.

About the neighbourhoods of Ω we have $\Gamma_1(x) = A(x) \cup \{\varphi(x)_1^+, \varphi(x)_2^+\}$, $\Gamma_2(x) = B(x) \cup C(x) \cup B'(x) \cup \{i^+, i^- \mid i \neq \varphi(x)_1, i \neq \varphi(x)_2\} \cup \{\infty^+, \infty^-\}$, $\Gamma_3(x) = A'(x) \cup \{\varphi(x)_1^+, \varphi(x)_2^-\}$ and $\Gamma_4 = \{x'\}$ for any $x \in X$.

Therefore it follows that $(x, y) \in R_i$ if and only if $(y, x) \in R_i$ for $0 \leq i \leq 6$. We also have $p_{i,j} = p_{i,h}^j$ and $p_{h,i}^j = p_{6-h,i}^j$ since $(x, y) \in R_j$ if and only if $(x', y) \in R_{6-j}$. Then $p_{i,h}^j = p_{6-j}^{6-h}$.

Now we prove that $p_{3,0}^3 = p_{3,6}^3 = 1$, $p_{3,1}^3 = p_{3,5}^3 = k - 8$ and $p_{3,2}^3 = p_{3,4}^3 = 2k - 12$ which means that $p_{3,3}^3 = k^2 - 13k + 48$ because of $\sum_{i=0}^6 p_{3,i}^3 = |C(x)| = (k - 2)(k - 5)$.

It is trivial that $p_{3,0}^3 = p_{3,6}^3 = 1$. Let x, y be elements of X such that $(x, y) \in R_3$, namely $y \in C(x)$. Then $|C(x) \cap A(y)| = k - 8$ from (3.8) and this implies $p_{3,1}^3 = k - 8$.

Considering x' instead of x, similarly above we have $p_{3,5}^3 = k - 8$. Let z be an element of X such that $(x, z) \in R_3$ and $(z, y) \in R_2$. Set $\varphi(x) = (i, j)$, $\varphi(y) = (k, \ell)$ and $\varphi(z) = (s, t)$, then $\varphi(x') = (j, i)$ and $s = \ell$ or $t = k$ holds because of $(z, y) \in R_2$. Suppose that $s = \ell$ holds. From (3.2) there is a unique element $u \in A(x)$ such that $\varphi(u)_1 = \ell$ and $v \in A'(x)$ such that $\varphi(v)_1 = \ell$. Then we can take any element of Ω except $\{i, j, k, \ell, \varphi(u)_2, \varphi(v)_2\}$ as a number t satisfying $\varphi(z) = (\ell, t)$ and $z \in C(x)$, namely $|\{t \mid \varphi(z) = (\ell, t), (z, y) \in R_2, (x, z) \in R_3\}| = k - 6$.
Similarly at the case \(t = k \), we get
\(|\{s \mid \varphi(z) = (s, k), (z, y) \in R_2, (x, z) \in R_3\}| = k - 6\). Hence \(p^2_{3,2} = 2(k - 6) \) holds. By the same arguments above we have \(p^2_{3,4} = 2(k - 6) \). Similarly we can decide other parameters \(p^i_{h,i} \) from (3.1) \(\sim \) (3.8). Thus the theorem is proved.

At the following theorem we prove that the inverse of the statement in theorem 3.2 is also true.

Theorem 3.3 Let \(\mathcal{X} = (X, R_i(0 \leq i \leq 6)) \) be a symmetric 6-association scheme with same parameters as \(p^i_{h,i} \) in Theorem 3.2 for \(k > 5 \). Then the antipodal double cover \(\hat{\Gamma} \) with \(\mathcal{d}(\hat{\Gamma}^*) = 4 \) of a strongly regular graph with parameters \((k, 0, 2)\) can be constructed from \(\mathcal{X} \). Moreover the graph \((X, R_1)\) is isomorphic to the second neighbourhood of \(\hat{\Gamma} \) with respect to any vertex.

We now start with a short sketch of the proof. At first we consider the graph \(\hat{\Gamma} = (X, R_4) \). The parameters of this graph is that of the graph deleting the diagonal vertices of \(k \times k\)-grid. We reconstruct the graph \(\hat{\Gamma} \) isomorphic to \(k \times k\)-grid from \(\hat{\Gamma} \) by adding a set of some pairs of maximal cliques as new vertices to the vertices of \(\hat{\Gamma} \). Next using the graph \(\hat{\Gamma} \), an extended graph \(\Gamma^* \) of the graph \((X, R_1)\) is constructed. This \(\Gamma^* \) is the graph to be constructed in this theorem.

We use the following notation here. Let \(\Gamma' = (V(\Gamma'), E(\Gamma')) \) be a finite connected graph and \(\mathcal{d} \) be the metric of \(\Gamma' \). For two vertices \(x, y \) of \(\Gamma' \) such that \(\mathcal{d}(x, y) = i \), we denote by \(c_i(x, y), b_i(x, y) \) and \(a_i(x, y) \) the cardinalities of the sets \(\{z \in V(\Gamma') \mid d(x, z) = i - 1, d(z, y) = 1\} \), \(\{z \in V(\Gamma') \mid d(x, z) = i + 1, d(z, y) = 1\} \) and \(\{z \in V(\Gamma') \mid d(x, z) = i, d(z, y) = 1\} \) respectively.

We state four lemmas to prove the theorem. We note that \(k_0 = k_6 = 1, k_1 = k_5 = k - 2, k_2 = k_4 = 2k - 4 \) and \(k_3 = (k - 2)(k - 5) \) hold. Therefore we have \(|X| = k(k - 1)\). For any element \(x \in X \) there exists a unique element \(x' \in X \) such that \((x, x') \in R_6 \) because of \(p^6_{0,6} = 1 \). We consider a bijective mapping \(\psi \) on \(X \) defined by \(\psi(x) = x' \) for any \(x \in X \). It is clear that \(\psi^2 = id_X \). We denote by \(\tilde{\Gamma} \) the graph \((X, R_4)\) and by \(\tilde{\mathcal{d}} \) the metric of \(\tilde{\Gamma} \).

Lemma 3.1 The graph \(\tilde{\Gamma} \) is a regular graph with the valency \(2k - 4 \) and \(\mathcal{d}(\tilde{\Gamma}) = 3 \). Moreover it follows that \(a_1(\tilde{\Gamma}) = k - 3, b_1(\tilde{\Gamma}) = k - 2, a_2(\tilde{\Gamma}) = 2k - 6, c_4(x, y) = 2 \) for \(x, y \in X \) such that \(\tilde{\mathcal{d}}(x, y) = 2 \) and \(y \not\in \tilde{\Gamma} (\psi(x)) \) and \(c_2(x, y) = 1 \) for \(x, y \in X \) such that \(\tilde{\mathcal{d}}(x, y) = 2 \) and \(y \in \tilde{\Gamma} (\psi(x)) \). We have also \(\tilde{\Gamma}_3(x) = \{\psi(x)\} \) for any \(x \in X \).

Proof
It is easily verified that \(\tilde{\Gamma} \) is a regular graph of the valency \(2k - 4 \) as \(p^4_{0,4} = 2k - 4 \). We take elements \(x, y \in X \) such that \((x, y) \in R_i \) for \(i \in \{1, 2, 3, 4, 5\} \). Then \(p^i_{0,4} \neq 0 \) holds and this implies that there is an element \(z \in X \) such that \(\tilde{\mathcal{d}}(x, z) = 1 \) and \(\tilde{\mathcal{d}}(z, y) = 1 \). Moreover \(\tilde{\mathcal{d}}(x, \psi(x)) = 3 \) holds. Therefore we have \(\mathcal{d}(\tilde{\Gamma}) = 3 \) and \(\tilde{\mathcal{d}}(x, y) = 3 \) holds if and
only if $y = \psi(x)$. Here we note that

$$(x, y) \in R_4 \text{ if and only if } (\psi(x), y) \in R_2.$$ (3.9)

because of $p_{4,i}^6 = 0$ for any $i(0 \leq i \leq 6, i \neq 2)$ and $p_{2,i}^6 = 0$ for any $i(0 \leq i \leq 6, i \neq 4)$. Therefore it follows that

$$\rho(x, y) = 1 \text{ if and only if } \rho(\psi(x), \psi(y)) = 1.$$ (3.10)

We now get $a_1(\bar{\Gamma}) = k - 3$ and $b_1(\bar{\Gamma}) = k - 2$ because of $p_{4,4}^4 = k - 3$ and $\sum_{1 \leq h \leq 5(h \neq 4)} p_{h,4}^4 = k - 2$. For any elements $x, y \in X$ such that $\rho(x, y) = 2$ and $y \notin \tilde{\Gamma}(\psi(x))$, we get $c_2(x, y) = 2, a_2(x, y) = 2k - 6$ and $b_2(x, y) = 0$ because of $p_{4,4}^4 = 2, \sum_{1 \leq h \leq 5(h \neq 4)} p_{h,4}^4 = 2k - 6$ for $i = 1, 3$ and 5 and from (3.9). Next let x, y be elements of X such that $\rho(x, y) = 2$ and $y \in \tilde{\Gamma}(\psi(x))$. Then $(x, y) \in R_2$ from (3.9). We get $c_2(x, y) = 1, b_2(x, y) = 1$ and $a_2(x, y) = 2k - 6$ because of $p_{4,4}^4 = p_{6,4}^2 = 1$ and $\sum_{1 \leq h \leq 5(h \neq 4)} p_{h,4}^4 = 2k - 6$. We also have $c_3(x, \psi(x)) = 2k - 4$ for any $x \in X$. This completes the proof of the lemma.

Lemma 3.2 Let x be an element of X. Then $\tilde{\Gamma}(x)$ is a disjoint union of two cliques of the same cardinalities $k - 2$.

Proof). Let $x \in X$ and $y \in \tilde{\Gamma}(x)$. Since $a_1(x, y) = k - 3$ and $k(\tilde{\Gamma}) = 2k - 4$ hold, we may set $\tilde{\Gamma}(x) = \{y, y_1, y_2, \ldots, z_{k-3}, z_1, z_2, \ldots, z_{k-2}\}$ for $\{y_1, y_2, \ldots, z_{k-3}\} \subset \tilde{\Gamma}(y)$ and $\{z_1, z_2, \ldots, z_{k-2}\} \subset \tilde{\Gamma}(y)$. We set $S = \{y, y_1, y_2, \ldots, y_{k-3}\}$ and $T = \{z_1, z_2, \ldots, z_{k-2}\}$. Let z be any element of T. Then $\rho(y, z) = 2$. Since $c_2(y, z) = 2$, $\rho(x, y) = \rho(x, z) = 1$ and $S \cap \tilde{\Gamma}(z) \subset \tilde{\Gamma}(y) \cap \tilde{\Gamma}(z)$ hold, it follows that $|S \cap \tilde{\Gamma}(z)| \leq 1$. Then we have $|T \cap \tilde{\Gamma}(z)| \leq k - 4$ since $a_1(x, z) = k - 3$. But T contains only $k - 3$ elements except z, therefore $|T \cap \tilde{\Gamma}_2(z)| \leq 1$ holds. Suppose that $T \cap \tilde{\Gamma}_2(z) \neq \emptyset$. Then there exists an element $u \in T$ where $\rho(z, u) = 2$, and every other elements of T except z and u are adjacent to z. Moreover $|T \cap \tilde{\Gamma}_2(u)| \leq 1$ holds as same as $|T \cap \tilde{\Gamma}_2(z)| \leq 1$. Hence we get $T \cap \tilde{\Gamma}_2(u) = \emptyset$. Therefore it follows that x and every elements of T except z and u are contained in $\tilde{\Gamma}(z) \cap \tilde{\Gamma}(u)$, which implies $k - 3 \leq 2$. Thus $k \leq 5$, which contradicts $k > 5$. Hence we get $T \cap \tilde{\Gamma}_2(z) = \emptyset$ and any element of T except z is adjacent to z. However since z is any element of T, T is a clique. Applying the same arguments to a fixed element of T instead of y, we also have S is a clique. Thus the lemma is proved.

We denote by $C_1(x)$ and $C_2(x)$ the set $S \cup \{x\}$ and $T \cup \{x\}$ for S, T in lemma 3.2. We note $|C_1(x)| = |C_2(x)| = k - 1$. Obviously $C_i(x)$ is a maximal clique of $\bar{\Gamma}$ for $i = 1, 2$ and any maximal clique of $\bar{\Gamma}$ is equal to $C_i(x)$ for an element $x \in X$ and $i \in \{1, 2\}$. We denote by $MC(\bar{\Gamma})$ the set of maximal cliques of $\bar{\Gamma}$ and put $D = \{C \cup \psi(C) \mid C \in MC(\bar{\Gamma})\}$. We note that $C \cap \psi(C) = \emptyset$ for any $C \in MC(\bar{\Gamma})$. For index $i \in \{1, 2\}$ we have $y \in C_i(x)$ if and only if $C_i(x) = C_j(y)$ for some $j \in \{1, 2\}$, as we saw in the proof of lemma 3.2. Hence we have $|MC(\bar{\Gamma})| = \frac{2|X|}{k - 1} = 2k$ and $|D| = k$. For $i \in \{1, 2\}$ we have $\psi(C_i(x)) = C_j(\psi(x))$.
for some $j \in \{1, 2\}$ from (3.10). Hence we may put $\psi(C_i(x)) = C_i(\psi(x))$ without loss of generality. We have the following lemma about \mathcal{D}.

Lemma 3.3 (1) Let x be any element of X. Then there exists exactly two elements of \mathcal{D} containing x.

(2) Let x, y be any elements of X such that $\tilde{\rho}(x, y) = 1$. Then there exists exactly one element of \mathcal{D} containing x and y.

(3) Let x, y be any elements of X such that $\tilde{\rho}(x, y) = 2$ and $y \in \tilde{\Gamma}(\psi(x))$. Then there exists exactly one element of \mathcal{D} containing x and y.

(4) Let D_1 and D_2 be distinct elements of \mathcal{D}. Then $|D_1 \cap D_2| = 2$.

(5) Let D be an element of \mathcal{D} and x be an element of X such that $x \notin D$. Then $|\tilde{\Gamma}(x) \cap D| = 2$.

Proof.

(1): For $x \in X$, $C_1(x) \cup \psi(C_1(x))$ and $C_2(x) \cup \psi(C_2(x))$ are distinct elements of \mathcal{D} containing x. Let D be an element of \mathcal{D} such that $x \in D$. Then there is an element $a \in X$ such that $D = C_i(a) \cup \psi(C_i(a))$ for some $i \in \{1, 2\}$. We may suppose $x \in C_i(a)$ because of $\psi(C_i(a)) = C_i(\psi(a))$. Then we have $C_i(a) = C_j(x)$ for some $j \in \{1, 2\}$ and $D = C_j(x) \cup \psi(C_j(x))$. Thus (1) is proved.

(2): Let x, y be any elements of X such that $\tilde{\rho}(x, y) = 1$. Then there is a unique maximal clique C of $\tilde{\Gamma}$ containing x and y from lemma (3.2). Then $C \cup \psi(C)$ is a unique element of \mathcal{D} containing x and y. Thus (2) is proved.

(3): Let x, y be any elements of X such that $\tilde{\rho}(x, y) = 2$ and $y \in \tilde{\Gamma}(\psi(x))$. Then $\tilde{\rho}(\psi(x), y) = 1$. Therefore from (2) there exists exactly one element D of \mathcal{D} containing $\psi(x)$ and y. Then obviously $x \in D$ holds. Thus (3) is proved.

(4): Let D_1 and D_2 be distinct elements of \mathcal{D}. Then there are elements a and b of X such that $D_1 = C_i(a) \cup \psi(C_i(a))$ and $D_2 = C_j(b) \cup \psi(C_j(b))$ for some $i, j \in \{1, 2\}$. We set $\{i, i'\} = \{j, j'\} = \{1, 2\}$. We will prove that $D_1 \cap D_2 \neq \emptyset$.

Suppose that $a \in \tilde{\Gamma}(b)$. If $a \in C_j(b)$ or $b \in C_i(a)$, then $D_1 \cap D_2 \neq \emptyset$. Hence we may assume $a \in C_{i'}(b)$ and $b \in C_{i'}(a)$.

Moreover since $\tilde{\rho}(a, \psi(b)) = 2$ and $\tilde{\rho}(\psi(a), \psi(b)) = 1$, there is a unique element $u \in X$, which is adjacent to a and $\psi(b)$ from lemma (3.1). If $u \in C_i(a) \cap C_{i'}(b)$, then $D_1 \cap D_2 \neq \emptyset$. Hence we may assume $u \in C_{i'}(a)$ or $u \in C_{i'}(b)$. If $u \in C_{i'}(a)$, then u is adjacent to b because of $b \in C_{i'}(a)$, which means $\tilde{\rho}(b, \psi(b)) = 2$. This is a contradiction. If $u \in C_{i'}(b)$, then $\psi(u) \in C_{i'}(b)$, then $\psi(u)$ is adjacent to a because of $a \in C_{i'}(b)$, which means $\tilde{\rho}(u, \psi(u)) = 2$. This is also a contradiction. Thus we may assume that a is not adjacent to b. Similarly we may assume a is not adjacent to $\psi(b)$. Hence $\tilde{\rho}(a, b) = 2$ and $\tilde{\rho}(a, \psi(b)) = 2$, and there are exactly two elements $u, v \in X$ which are adjacent to both a and b and there are exactly two elements $u', v' \in X$ which are adjacent to both a and $\psi(b)$ from lemma 3.1. If u is adjacent to v then a is adjacent to b from (2). This contradicts our assumption. Therefore it does not occur.
that both \(u \) and \(v \) are contained in one of \(\{C_i(a), C_i'(a), C_j(b), C_j'(b)\} \). For \(u', v' \), the same arguments hold. If \(u \in C_i(a) \cap C_j(b) \) or \(v \in C_i(a) \cap C_j(b) \), then \(D_1 \cap D_2 \neq \emptyset \). Hence we may assume that \(u \in C_i(a), v \in C_i'(a), u \in C_j'(b) \) and \(v \in C_j(b) \). Similarly we may assume that \(u' \in C_i(a), v' \in C_i'(a), u' \in C_j'(\psi(b)) \) and \(v' \in C_j(\psi(b)) \). Then \(u \) and \(u' \) are adjacent because of \(u, u' \in C_i(a) \) and \(\psi(u) \) and \(u' \) are adjacent because of \(\psi(u), u' \in C_j'(\psi(b)) \). Therefore we have \(\hat{\rho}(u, \psi(u)) = 2 \), which is a contradiction. Thus it follows that \(D_1 \cap D_2 \neq \emptyset \).

Now suppose that \(C_i(a) \cap C_j(b) \) contains at least two elements \(u, z \). Then from (2) there exists a unique \(C \in CM(\tilde{\Gamma}) \) containing \(u, z \), and we have \(C = C_i(a) = C_j(b) \), which implies \(D_1 = D_2 \). Therefore \(|C_i(a) \cap C_j(b)| \leq 1 \).

Similarly \(|C_i(a) \cap C_j'(\psi(b))| \leq 1, |C_i(\psi(a)) \cap C_j(b)| \leq 1 \) and \(|C_i(\psi(a)) \cap C_j'(\psi(b))| \leq 1 \). Since \(D_1 \cap D_2 = (C_i(a) \cap C_j(b)) \cup (C_i(a) \cap C_j'(\psi(b))) \cup (C_i(\psi(a)) \cap C_j(b)) \cup (C_i(\psi(a)) \cap C_j'(\psi(b))) \), \(\psi(C_i(a) \cap C_j(b)) = C_i(\psi(a)) \cap C_j'(\psi(b)) \) and \(\psi(C_i(a) \cap C_j(b)) = C_i(\psi(a)) \cap C_j'(b) \), we have \(|D_1 \cap D_2| = 2 \), if it is proved that \(C_i(a) \cap C_j(b) \neq \emptyset \) is not compatible with \(C_i(a) \cap C_j'(\psi(b)) \neq \emptyset \).

Suppose that there are elements \(u, v \) such that \(u \in C_i(a) \cap C_j(b) \) and \(v \in C_i(a) \cap C_j'(\psi(b)) \). Then \(u \) and \(v \) are adjacent because of \(u, v \in C_i(a) \). Moreover \(\psi(u) \) and \(v \) are adjacent because of \(\psi(u), v \in C_j'(\psi(b)) \). Therefore \(\hat{\rho}(u, \psi(u)) = 2 \), a contradiction. Thus (4) is proved.

(5): Let \(D \) be an element of \(D \) and \(y \) be an element of \(X \) such that \(y \not\in D \). For fix any \(j \in \{1, 2\}, D \neq C_j(y) \cup \psi(C_j(y)) \) because of \(y \not\in D \). Therefore \(|D \cap (C_j(y) \cup \psi(C_j(y)))| = 2 \) from (4). Hence \(|D \cap C_j(y)| = 1 \) under consideration \(\psi(D) = D \), which means that \(|D \cap \tilde{\Gamma}(y)| = 2 \). Thus (5) is proved, and the lemma was verified.

We now construct a graph isomorphic to the Hamming graph \(H(2, k) \) from \(\tilde{\Gamma} \) adding some vertices to \(X \). We define the graph \(\hat{\Gamma} \).

The set of vertices of \(\hat{\Gamma} \) is \(X \cup D \). The adjacency is defined by \(x, y \in X \) are adjacent if \(\hat{\rho}(x, y) = 1 \), \(x \in X \) and \(D \in D \) are adjacent if \(x \in D \).

The metric of the graph \(\hat{\Gamma} \) is denoted by \(\hat{\rho} \).

Lemma 3.4 The graph \(\hat{\Gamma} \) is isomorphic to the Hamming graph \(H(2, k) \)

Proof).

Let \(x \) be any element of \(X \), then there exists exactly two elements of \(D \) containing \(x \) and \(\psi(x) \). Therefore \(\hat{\rho}(x, \psi(x)) = 2 \) by the definition above. Hence we have the diameter of \(\hat{\Gamma} \) is two. For any \(x \in X \), there exists exactly two elements of \(D \) containing \(x \) from (1) of lemma 3.3. Moreover, since \(k(\tilde{\Gamma}) = 2k - 4 \), the valency of \(x \) in the graph \(\hat{\Gamma} \) is \(2k - 2 \). For any \(D \in D \), since \(D \) contains exactly \(2(k-1) \) elements of \(X \), the valency of \(D \) in \(\hat{\Gamma} \) is \(2k - 2 \). Thus the valency of \(\hat{\Gamma} \) is \(2k - 2 \). Let \(x, y \) be elements of \(X \) such that \(\hat{\rho}(x, y) = 1 \).

Then there exists exactly one element of \(D \) containing \(x \) and \(y \) from (2) of lemma 3.3.
On the other hand exactly $k - 3$ elements of X are adjacent to x and y because of $a_1(\hat{\Gamma}) = k - 3$. Hence it follows $a_1(x, y) = k - 2$ in $\hat{\Gamma}$. Let $x \in X$ and $D \in \mathcal{D}$ be adjacent in $\hat{\Gamma}$. Then $x \in D$ and $|D \cap \hat{\Gamma}(x)| = k - 1$. Hence it follows $a_1(x, D) = k - 2$ in $\hat{\Gamma}$. Thus $a_1(\hat{\Gamma}) = k - 2$ holds. Let x, y be elements of X such that $\hat{\rho}(x, y) = 2$. If $y = \psi(x)$, then obviously $c_2(x, y) = 2$ in $\hat{\Gamma}$. If $y \notin \hat{\Gamma}(\psi(x))$, then there exists exactly one element of \mathcal{D} containing x and y from (3) of lemma 3.3.

Moreover there exists exactly one element of X which is adjacent to x and y because of $c_2(x, y) = 1$ in $\hat{\Gamma}$ from lemma 3.1. Therefore $c_2(x, y) = 2$ in $\hat{\Gamma}$. If $y \notin \hat{\Gamma}(\psi(x))$, then there is no element of \mathcal{D} containing x and y since y is not adjacent to x or $\psi(x)$.

However there exists exactly two element of X which are adjacent to x and y because of $c_2(x, y) = 2$ in $\hat{\Gamma}$. Therefore $c_2(x, y) = 2$ in $\hat{\Gamma}$. Let D_1, D_2 be distinct elements of \mathcal{D}. Then $|D_1 \cap D_2| = 2$ from (4) of lemma 3.3. Therefore $c_2(D_1, D_2) = 2$ in $\hat{\Gamma}$. Let D be an element of \mathcal{D} and x be an element of X such that $x \notin D$. Then $|\hat{\Gamma}(x) \cap D| = 2$ from (5) of lemma 3.3. Therefore $c_2(D, x) = 2$ in $\hat{\Gamma}$. Thus $c_2(\hat{\Gamma}) = 2$ holds. Hence the graph $\hat{\Gamma}$ has the same parameters as those of the Hamming graph $H(2, k)$. Thus the graph $\hat{\Gamma}$ is isomorphic to the Hamming graph $H(2, k)(\text{cf. } [9])$. This completes the proof of the lemma.

From lemma 3.4 there exists a bijection φ: $X \cup \mathcal{D} \rightarrow \Omega \times \Omega$ such that $\varphi(\mathcal{D}) = \{(i, i) \mid i \in \Omega\}$ and for any distinct elements $x, y \in X$, $(x, y) \in R_4$ if and only if $\varphi(x) \varphi(y) = \varphi(x) \varphi(y)$. We can now construct the antipodal double cover Γ^* of a strongly regular graph with parameters $(k, 0, 2)$.

The set of vertices of Γ^* is $V(\Gamma^*) = X \cup \Omega^+ \cup \Omega^- \cup \{\infty\}^\pm$ where $\Omega^+ = \{1^+, 2^+, \cdots, k^+\}$ and $\Omega^- = \{1^-, 2^-, \cdots, k^-\}$.

The adjacency of Γ^* is defined by

\begin{align*}
\Gamma^*(\infty^+) &= \Omega^+, \quad \Gamma^*(\infty^-) = \Omega^-; \\
\text{for } x, y \in X, \text{ } x \text{ and } y \text{ are adjacent if } (x, y) \in R_1; \\
x \in X \text{ and } i^+ \in \Omega^+ \text{ are adjacent if } \varphi(x)_1 = i, \\
x \in X \text{ and } j^- \in \Omega^- \text{ are adjacent if } \varphi(x)_2 = j.
\end{align*}

The metric of the graph Γ^* is denoted by ρ. Then we get the following.

$$\rho(x, y) = 2 \text{ if } (x, y) \in R_4 \quad (3.11)$$

We can verify that Γ^* is a distance regular graph whose intersection array is $(k, k - 1, 1, 1, 1; 1, 1, k - 1, k)$ in the sequel. For any $x \in \{\pm \infty\} \cup \Omega^+ \cup \Omega^-$, it is clear that the valency of x is k. For any $x \in X$, there are exactly $k - 2$ elements of X which are adjacent to x because of $p_{1, 1}^\circ = k - 2$. Moreover x is adjacent to only one element $\varphi(x)^\uparrow$ in Ω^+ and $\varphi(x)^\downarrow$ in Ω^- respectively. Therefore the valency of x is k. Thus the valency of Γ^* is k.

We note the bijection φ is a graph isomorphism from $\hat{\Gamma}$ onto the Hamming graph $H(2, k)$ on $\Omega \times \Omega$ such that $\varphi(\mathcal{D}) = \{(i, i) \mid i \in \Omega\}$. Moreover in the subgraph of $H(2, k)$ being deleted the vertices $\{(i, i) \mid i \in \Omega\}$, there exists exactly one vertex at distance 3 from a vertex (i, j) in the subgraph, namely (j, i). This implies the following.

$$\varphi(x) = (i, j) \text{ if and only if } \varphi(\psi(x)) = (j, i) \text{ for } x \in X \quad (3.12)$$
Now we have the following lemma.

Lemma 3.5 Let x, y be elements of X such that $\varphi(x) = (i, j)$ and $\varphi(y) = (\ell, h)$. Then the following (1) and (2) hold.

1. If $\rho(x, y) = 1$, then $\{i, j\} \cap \{\ell, h\} = \emptyset$.
2. If $t \in \Omega$ and $t \notin \{i, j\}$, then there exists exactly one element u of X such that $\rho(x, u) = 1$ and $\varphi(u)_{1} = t$ and exactly one element v of X such that $\rho(x, v) = 1$ and $\varphi(v)_{2} = t$.

Proof.

(1): Suppose that $\rho(x, y) = 1$. Then $(x, y) \in R_{1}$. If $i = \ell$ or $j = h$, then $(x, y) \in R_{4}$, a contradiction. If $i = h$ or $j = \ell$, then $(x, \psi(y)) \in R_{4}$ from (3.12), therefore $(x, y) \in R_{2}$ from (3.9), a contradiction. Therefore $\{i, j\} \cap \{\ell, h\} = \emptyset$. Thus (1) holds.

(2): For any distinct elements $u, v \in X$ such that $\rho(x, u) = 1$ and $\rho(x, v) = 1$, we have $\varphi(u)_{1} \neq \varphi(v)_{1}$ and $\varphi(u)_{2} \neq \varphi(v)_{2}$ because of $p_{1,1}^{i} = 0$.

Moreover since $|\{u \in X \mid \rho(x, u) = 1\}| = k - 2$, we have $\Omega = \{\varphi(u)_{1} \mid u \in X, \rho(x, u) = 1\} \cup \{i, j\}$ and $\Omega = \{\varphi(u)_{2} \mid u \in X, \rho(x, u) = 1\} \cup \{i, j\}$ from (1). Thus (2) holds.

Proof of Theorem 3.3:

Suppose that $x, y \in X$. Since $p_{1,1}^{i} \neq 0$ for $i \in \{2, 3\}$ and $p_{1,1}^{5} = 0$, the following holds.

$$\rho(x, y) = 2 \text{ if } (x, y) \in R_{2} \cup R_{3}$$

(3.13)

$$\rho(x, y) > 2 \text{ if } (x, y) \in R_{5}$$

(3.14)

For any $x \in X$, we set as follows.

$A(x) = \{y \in X \mid (x, y) \in R_{1}\}$,

$B(x) = \{y \in X \mid y \neq \psi(x), \varphi(y)_{1} = \varphi(x)_{2} \text{ or } \varphi(y)_{2} = \varphi(x)_{1}\}$,

$B'(x) = \{y \in X \mid y \neq x, \varphi(y)_{1} = \varphi(x)_{1} \text{ or } \varphi(y)_{2} = \varphi(x)_{2}\}$,

$A'(x) = \{y \in X \mid (x, y) \in R_{3}\}$ and

$C(x) = X \setminus (A(x) \cup B(x) \cup B'(x) \cup A'(x) \cup \{\psi(x)\})$.

We note that $y \in B'(x)$ if and only if $(x, y) \in R_{4}$ and $y \in B(x)$ if and only if $(x, y) \in R_{2}$ from (3.9) and (3.12). Hence it follows that $y \in C(x)$ if and only if $(x, y) \in R_{3}$.

Suppose that $x \in X$ and $\varphi(x) = (i, j)$. Then we have $\Gamma_{3}^{*}(x) = A(x) \cup \{i^{+}, j^{-}\}$ and $\Gamma_{3}^{*}(x) = B(x) \cup C(x) \cup B'(x) \cup (\Omega^{+} \setminus \{i^{+}, j^{+}\}) \cup (\Omega^{-} \setminus \{i^{-}, j^{-}\}) \cup \{\infty^{+}\}$ from (3.11), (3.13) and (2) of Lemma 3.5.

Moreover obviously $A(y) \cap \Gamma_{3}^{*}(x) \neq \emptyset$ for any $y \in A'(x)$. Hence we have $\Gamma_{3}^{*}(x) = A'(x) \cup \{i^{-}, j^{+}\}$ from (3.14) and $\Gamma_{4}^{*}(x) = \{\psi(x)\}$. On the other hand for any $i \in \Omega$, we have $\Gamma_{3}^{*}(i^{+}) = \{x \in X \mid \varphi(x)_{1} = i\} \cup \{\infty^{+}\}$, $\Gamma_{3}^{*}(i^{-}) = \{x \in X \mid \varphi(x)_{1} \neq i \text{ and } \varphi(x)_{2} \neq i\} \cup (\Omega^{+} \setminus \{i^{+}\}) \cup (\Omega^{-} \setminus \{i^{-}\})$, $\Gamma_{4}^{*}(i^{+}) = \{x \in X \mid \varphi(x)_{2} = i\} \cup \{\infty^{-}\}$ and $\Gamma_{4}^{*}(i^{-}) = \{\infty^{-}\}$. Therefore especially it follows that the diameter of Γ^{*} is 4.

Now since $p_{3,6}^{i} = 0$ for $i \in \{0, 1, 2, 3, 4, 6\}$ and $p_{5,6}^{i} = 0$ for $i \in \{0, 2, 3, 4, 5, 6\}$, we obtain the following.

$$(x, y) \in R_{1} \text{ if and only if } (x, \psi(y)) \in R_{5}$$

(3.15)
This statement with (3.9) and (3.12) imply that $\Gamma^*(x) = \Gamma_3^*(\psi(x))$, $\Gamma_2^*(x) = \Gamma_2^*(\psi(x))$ and $\Gamma^*_3(x) = \Gamma^*(\psi(x))$ for any $x \in X$. Therefore we have $c_1(\Gamma^*) = b_3(\Gamma^*)$, $c_2(\Gamma^*) = b_2(\Gamma^*)$, $c_3(\Gamma^*) = b_1(\Gamma^*)$ and $c_4(\Gamma^*) = b_0(\Gamma^*)$.

Lastly we will prove that $a_1(\Gamma^*) = 0$ and $c_2(\Gamma^*) = 1$, which lead to a complete proof of Theorem 3.3. Since $p_{1,1}^1 = 0$, there are no triangle whose vertices are all in X. Moreover for any elements $x, y \in X$ such that $\rho(x, y) = 1$ it follows that $\psi(x)_1 \neq \psi(y)_1$ and $\psi(x)_2 \neq \psi(y)_2$ from (1) of Lemma 3.5. Thus there are no triangle in Γ^*. Hence we have $a_1(\Gamma^*) = 0$ and $b_1(\Gamma^*) = k - 1$.

Let x, y be elements in X and suppose that $\rho(x, y) = 2$. Then $y \in B(x) \cup C(x) \cup B'(x)$. If $y \in B(x) \cup C(x)$, then $c_2(x, y) = 1$ because of $p_{1,1}^2 = 1$ and $p_{1,1}^3 = 1$. If $y \in B'(x)$, then $c_2(x, y) = 1$ because of $p_1^4 = 0$ and either $\varphi(x)_1 = \varphi(y)_1$ or $\varphi(x)_2 = \varphi(y)_2$ occurs.

Next suppose that $\rho(x, i^+) = 2$ for $x \in X$ and $i \in \Omega$. Then from (2) of Lemma 3.5, we have $c_2(x, i^+) = 1$. Obviously $c_2(\infty^+, x) = 1$ for any $x \in X$. $c_2(i^+, j^+) = 1$ for any distinct $i, j \in \Omega$ and $c_2(i^+, j^-) = 1$ for any distinct $i, j \in \Omega$. Thus it is proved that $c_2(\Gamma^*) = 1$. This completes the proof of the theorem.

参考文献

[8] A.Munemasa, Strongly regular graphs with parameters $(k, \lambda, \mu) = (k, 0, 2)$, private communication.