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1 Introduction

In this talk we study tight distance-regular graphs. We show an inequality for
distance-regular graphs and we call a non-bipartite distance-regular graph tight when
equality holds in this inequality. We give some characterizations of those graphs and
give all examples known to us. At last we will study tight distance-regular with di-
ameter 3 and 4.

This talk is based on joint work with Aleksandar Jurisi¢ (Ljubjana) and Paul Ter-
williger (Madison).

In the remainder of this section we introduce some basic definitions and notation. An
equitable partition of a graph I' is a partition of its vertices into cells Cy, Cy, ..., Cs
such that for all 7 and j the number ¢;; of neighbours, which a vertex in C; has in
the cell C;, is independent of the choice of the vertex in C;. In other words each cell
C; induces a regular graph of valency c;;, and between any two cells C; and C; there
is a biregular graph, with vertices of the cells C; and C; having valencies ¢;; and c;j;
respectively. |

A graph I' = (X, R) with diameter d is distance-regular when the distance
partition corresponding to any vertex z € X is equitable and the parameters of
the equitable partition do not depend on z. In a distance-regular graph for a pair
of vertices (z,y) at distance h the number pg of vertices at distance ¢ from z and J
;from y depends only on integers i, j, h, and not on (z,y). We denote the intersection
numbers p;, Pé,i+1’ p::ﬂ-_l and pf; respectively by a;, b;, ¢; and k;, for i = 0,1,...,d,
note by = a; +b; +¢; is the valency of the graph I and call {bo,...,b4s_1;c1,...,cq} the

intersection array of I'. For a detailed treatment and all the terms which we do not
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define see [1]. A graph is i-homogeneous when a distance partition corresponding to
any pair of vertices at distance ¢ is equitable, see Nomura [5]. A graph I' of diameter
d is antipodal if the vertices at distance d from a given vertex are all at distance d
from each other. Then ‘being at distance d or zero’ induces an equivalence relation
on the vertices of I', and the equivalence classes are called antipodal classes. For an
antipodal graph I' we define the antipodal quotient of I', to be the graph with the
antipodal classes as vertices, where two classes are adjacent if they contain adjacent

vertices.

2 Tight graphs

We show that strongly régular graphs are special kind of é){tremal graphs. From
this one quickly derives an in‘eQuality for distance-regular graphs; see (3). A graph
T' on n vertices is called strongly regular with parameters (k, A, p) if and only if
its adjacency matrix A satisfies A? = kI + MA + u(J — I — A) and AJ = kJ for
some intégers k, A and p, i.e., when it is k-regular and has at most three éigenvalues
A connected strongly regular graph is dlsta,nce—regular and has dlameter two. The
nontrivial eigenvalues r and s (whose eigenvectors can be assumed to be orthogonal
to the all ones vector, which corresponds to the trivial eigenvalue k) are the roots of

the quadratic equation z? —»()\ - ,u)x + (¢ — k) = 0 and thus
A—pu=r+s, p—k=rs. (1)

The above relations show that the parameter (k, A, 1) could be expressed also by the
eigenvalues (k,r, s) of the strongly regular graph. By counting the edges between the
neighbours and non-neighbours of a vertex in a connected strongly regular graph we
obtain: pu(n—1-k) = k(k—X—1), and so in the case when the graph is not complete

graph we derive, by (1),
(k= r)(k = 9)
= ) 2
" k+rs 2)

We will now show that the right side of the equality (2) is an upper bound on the

number of vertices of a k-regular graph with the eigenvalues other then k from the

interval [s, r].

Theorem 2.1 Let ' = (X, R) denote a k-regular graph on n vertiées, n>k+1,

with eigenvalues k = 1y, ...,n, (not necessarily distinct). Letr and s be such numbers
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that r <m; <s, fori=2,...,n. Thenn(k+rs) < (k—r)(k—s). Equality holds if

and only if ' is strongly regular with eigenvalues in {k,r,s}.

Proof. The trace of the édjacency matrix A equals the sum of its eigenvalues and
is zero. The trace of A% equals the sum of squares of eigenvalues and is nk, i.e., the
number of walks of length two which start and end in the same vertex. Summing the
inequalities (n; — r)(mi — s) < 0 for 1 = 2,...,n, and using the above two facts we
obtain the desired inequality, which holds with equality if and only if n; € {r,s} for
; = 2,...,n. It follows that in the case of equality the graph I' has at most three

eigenvalues, namely k, s and r, and is therefore strongly regular. - , (]

We will now apply this result to distance-regular graphs. Let ' = (X, R) be a
distance-regular graph with diameter d, and éigenvalues k=260y>0, > - >0,
For a vertex € X let I';(z) denote the set of vertices at distance : from z, and
for a vertex y € X let Di(z,y) := ['i(z) N I'j(y). The graph induced on the vertices
I'i(z) is called the i-th subconstituent graph of z. It is the regular graph on k;
vertices and with valency a;. The first subconstituent graph of z will be called also
the local graph of z, and will be denoted by A = A(z). Let d(z,y) denote the
distance between the vertices  and y. Then for d(z,y) = 2 the graph induced on
D}(z,y) is called the pu(z,y)-graph, or just the y-graph.

For d > 2, an easy eigenvalue interlacing argument guarantees 0, >0and 0y < —\/5,
so we can define

b and bt :=—-1-— b

b= —-1— .
6, +1 0s+1

Suppose the graph I' is nonbipartite with diameter d >3,and let ay = 2> 12 2
. > ni be the eigenvalues of the local graph A(z). Then, by Terwilliger’s result
[1, Thm. 4.4.3 and Thm. 4.4.4] b+ > n; > b7, for ¢ = 2,...,d, and therefore, by

Theorem 2.1, we have
k(al -+ b+b ) (a1 — b+)(a1 — b ) ’ (3)

Equality holds in (3) if and only if n; € {6%,b7} forz = 2,...,k, i.e., the local graph A
is strongly regular with eigenvalues a;, b~ and b*. The nonbipartite distance-regular
graphs for which the equality holds are called tight graphs.

In the following theorem we will give some characterizations of tight graphs
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Theorem 2.2 Let I'= (X, R) be a non-bipartite distance-regular graph with diam-
eter d > 3. The following are equivalent:

(i) T is tight,
(it) T' is 1-homogeneous and aq = 0,
(iii) For each vertex x the local graph A(z), i.e. the subgraph induced by [(z), is
strongly regular with eigenvalues ay, b¥, b™. '

(iv) For some vertex z the local graph A(z), i.e. the subgraph induced by T'(x), is

strongly regular with eigenvalues ay, bt, b™.

3 Examples

The following examples (i)-(xii) are all the known tight distance-regular graphs with
diameter at least 3. In each case we give the intersection array, and the parameters

and eigenvalues of the local graph.

(i) The Johnson graph J(2d, d) has diameter d and intersection numbers b; = (d—1)?,
¢ =i fori=0,1,...,d. It is locally the lattice graph Ky x Kg, with parameters
(d*,2(d = 1),d —2,2) and non-trivial eigenvalues r = d — 2, s = —2. |

(ii) The halved cube H(2d,2) has diameter d and intersection numbers b; = (d —
1)(2d — 20 — 1), ¢ = i(21 — 1) for i = 0,1,...,d. It is locally the Johnson graph
J(2d,2), with parameters (d(2d —1),4(d —1),2(d — 1),4) and non-trivial eigenvalues
r=2d—4,s=-2. -

(iii) The Taylor graph are the distance-regular graphs with ks = 1. See Taylor [8]

and Seidel and Taylor [6] for more information.

(iv) The Conway-Smith graph has intersection array {10,6,4,1;1,2,6,10}. It is
locally the Petersen graph, with parameters (10,3,0,1) and non-trivial eigenvalues

r=1,s8= -2

(v) The Blokhuis-Brouwer graph with intersection array {45,32,12,1;1,6,32,45}.
It is locally the generalized quadrangle GQ(4,2), with parameters (45,12,3,3) and
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non-trivial eigenvalues r = 3,s = —3.

(vi) The graph 3.0,(3) with intersection array {117,80,24,1;1,12,80,117}. It is
locally strongly regular, with parameters (117,36,15,9) and non-trivial eigenvalues

r=9,s =-3.

(vii) The graph 3.Fi,4 with intersection array {31671,28160,2160,1;1,1080,28160,
31671}. It is locally strongly regular, with parameters (31671,3510,693,351) and

non-trivial eigenvalues r = 351,s = —9.

(viii) The Soicherl graph with intersection array {56,45,16,1;1,8,45,56}, cf. [7].
It is locally strongly regular, with parameters (56,10, 0,2) and non-trivial eigenvalues

r=2s=—4.

(ix) The Soicher2 graph with intersection array {416,315,64,1;1,32,315,416}, cf.
[7]. It is locally strongly regular, with parameters (117,36,15,9) and non-trivial

eigenvalues r = 9,5 = —3.

(x) The Meixnerl graph with intersection array {176,135,24,1;1,24,135,176}, cf.
[4]. It is locally strongly regular, with parameters (176,40,12,8) and non-trivial

eigenvalues r = 8, s = —4.

(xi) The Meixner2 graph with intersection array {176,135,36,1;1,12,135,176}, f.
[4]. Tt is locally strongly regular, with parameters (176,40, 12, 8) and non-trivial eigen-

values r = 8,5 = —4. It is a 2-cover of example (x).

(xii) The Patterson graph with intersection array {280,243, 144, 10; 1, 8,90,280}. It
is locally generalized quadrangle GQ(9,3), with parameters (280,36,8,4) and non-

trivial eigenvalues r = 8,s = —4.

For more information about the examples (i) and (ii), see [1, Chapter 9] and for
examples (iii), (iv), (v), (vi), (vii), (xii), see [1, Chapter 13].
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4 Tight graphs with small diameter

With the exception of Patterson graph all known tight graphs are antipodal, see [3].
For diameter larger than four there are only two examples known, the Johnson graph
J(2d, d) and the halved cube 1H(2d,2), both having diameter d.

In this section we focus on tight graphs of small diameter. The Taylor graphs are
the distance-regular graphs with intersection array of the form {k,c,1;1,¢,k}. We
show that these are all the tight graphs with diameter three.

Theorem 4.1 Let I' = (X, R) be a tight distance-regular graph with diameter three.
Then T is a Taylor graph.

In the following we will concentrate on antipodal graphs with diameter 4.
We say that a distance-regular graph I' is an AT4(p,q,7) (p,¢,r real numbers) if it
has intersection array |

(r—=1)q(p+4q)

r

q(p+ q)

{a(pg+p+q), (¢*=1)(p+1), 151, ,(@®=1)(p+1),q(pg+p+9)}-

Theorem 4.2 Let I' = (X, R) be an antipodal distance-reqular graph with diameter

fou"r.» Then the following are equivalent.

(i) T is tight.
(ii) T is an ATy(p,q,r), for some real numbers p, q and r.

(iii)  The antipodal quotient of T' has the following parameters

(kA1) = (alpg+p + Q),p(“q +1),4(p {r'q))-

for some real numbers p, and q. .
(iv)  The graph T is locally strongly regular with parameters (k', N, p') = (p(qﬂ—l—
1),2p — q,p) for some real numbers p, and q.

If (i)-(iv) holds for some real numbers p,q,r, then p,q,r are integers with p > 1,q >
2,r>2.

A graph with diaméter at least two is calléd Terwilliger graph when every u-
graph has the same number of vertices and is complete. We now give new feasibility
conditions for the parameters of tight graphs with parameters (p, ¢,r) and group them

with all previously known conditions in the following result.
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Theorem 4.3 Let I' = (X, R) be an AT4(p,q,r) for some real numbers p,q,r. Then

(i) pg(p+q)/r is even.

(i) r(p+1) < qlp+q), with equality of and only if T' 1s Terwilliger graph.
(i) r|p+q. :

(iv) p>q-—2.

(v) p+qld’(e®—1).

(i) p+¢ 1P -1 +q—1)(g—2).

In the next theorem we show when an ATy(p, ¢,r) is a Terwilliger graph.

Theorem 4.4 Let T' = (X, R) be an AT4(p,q,r) for some real numbers p,q,r. Then

the following are equivalent.

(i) T isa Terwiliger graph.

(i) p= 1.

(i1i) (p,q,7) = (1,2,3) and I' is the Conway-Smith graph.
(iv) p+q=r.

In the following we study the family AT4(gs,q,q) where ¢ and s are integefs, with
q,s > 2.

Theorem 4.5 Let ' = (X, R) be an AT4(qs,q,q) for some real numbers q,s. Then
one of the following holds.

(g,8) = (3,1) and I is the Blokhuis-Brouwer graph.

(g,5) = (2,1) and T is the Johnson graph J(8,4).

(iii) (q,8) = (2,2) and I is the halved 8-cube.

(g,8) = (3,3).

)=(4,2).

In case (iv) and (v) of the above theorem we are able to show that I' is locally locally
locally GQ(2,2) and locally locally GQ(3,3), respectively. Note that the 3.07(3)-
graph and the Meixner2 graph are examples of case (iv) and (v) respectively. In the

near future we hope to show that those two examples are unique.
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