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Rigidity and Nonrigidity of the Geometric structure on the

boundary of Quaternionic (Complex) Hyperbolic space
Yoshinobu KAMISHIMA

MBEE (3 b L REHEH )

Introduction

This paper is a sequel of our result in the symposium #1022-“Analysis of Discrete Groups
II” in 1996. The isometry group of quaternionic hyperbolic space Hpt! acts transitively
on the boundary sphere as projective transformations. The action on the boundary gives
rise to a geometry (PSp(n + 1,1),5***3). A (4n + 3)-manifold locally modelled on this
geometry is said to be a spherical pseudo-quaternionic manifold. We studied rigidity of
compact spherical pseudo-quaternionic manifolds and proved the following result which
was announced in the above symposium that '

Theorem A Let M be a compact spherical pseudo-quaternionic (4n + 3)-manifold whose
fundamental group m (M) is isomorphic to a discrete uniform subgroup of PSp(m,1) for
some m where 2 S m S n. Then M is pseudo-quaternionically isomorphic to the locally
homogeneous space S*"+3 — §4m=1/p(7r),

The restricted spherical pseudo-quaternionic structure on the sphere complement S54"+3 —

S§4m=1 coincides canonically with the homogeneous spherical pseudo-quaternionic structure
compatible with the automorphism group Sp(m,1)-Sp(n —m + 1).
If p: m(M)— PSp(n + 1,1) is the holonomy map, then it maps the fundametal group
7 isomorphicaly onto the discrete uniform subgroup p(r7) in Sp(m,1) - Sp(n — m + 1).
In the present paper we examine non-rigidity of a compact spherical pseudo-quaternionic
(4n + 3)-manifold. ’

Theorem B There exists a compact non-locally homogeneous spherical pseudo-quaternionic
(4n+3)-manifold My (n 2 1). Let Sp(n—m+1) be a symplectic group where (1 < m < n).
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Fort € Sp(n —m+1) such that |t] is sufficiently close to 1, there exists a nontrivial family
of distinct spherical pseudo-quaternionic structures {p;,dev,} on M.

In §1, we prove Theorem B. In §2, we examine the properties of developing maps dev
for the geometric structures obtained from the boundary of hyperbolic spaces. In §3, we
prove Theorem A. Our proof of Theorem A requires not only using the results of §2 but
also to know a Carnot-Carathéodory structure on spherical pseudo-quaternionic manifolds
in connection with the Sasakian 3-structure. However the Carnot-Carathéodory structure
has been developed in its own right. From the organization of our paper, it is not suitable
to discuss it in the present context. So we shall find another time to examine the Carnot-
Carathéodory structure on odd dimensional manifolds. (Compare [13].)

1 Nonrigidity of spherical pseudo-quaternionic struc-
ture

Let HZ*! be a totally geodesic subspace of He'' (0 £ m £ n). The subgroup of
PSp(n—H 1) = Iso(Hg*") preserving Hi ' is isomorphic to (O(m+1,1)-Sp(1))-Sp(n—m).
Let 7 be a discrete torsionfree cocompact subgroup of (O(m + 1,1) - Sp(1)) - Sp(n — m).
Then it is isomorphic to Iso(Hgt') = PO(m +1,1). Since 5™ = 8IHI§+1, 7 leaves invariant
the complement §%"+3 — §™ so that we have a spherical pseudo-quaternionic manifold
§4+3 _ 8™ [, Since S4"+3— S™ is homeomorphic to Hyt' x S4n-—m+2 Gintd _ gm r jg
compact. Note that the compact symplectic group Sp(n — m) does not act transitively on
§4n=m+2 G4 the group (O(m +1,1) - Sp(1)) - Sp(n — m) is not transitive on S4+3 — 5™,

Proposition 1  There exists a compact non-locally homogeneous spherical
pseudo-quaternionic manifold S¥"*3 — S™ /1 for 0 S m < n.

Let HZ C Hpt' C Hit' be the canonical inclusion of totally geodesic real hyperbolic
subspaces where 1 £ m £ n. As above the subgroup of PSp(n + 1,1) preserving Hg
is isomorphic to (O ( 1) - Sp(1)) - Sp(n — m + 1) = Iso(Hpt', HZ'). We have also the
embedding : Hg C H@ C HP by taking its span. The subgroup Sp(1) - Sp(n — m + 1)
leaves HY fixed pointwisely. The subgroup Sp(n —m + 1) leaves fixed its span Hg* (D HE)
as well. However, letting HY' as an axis, each element of Sp(n —m+ 1) rotates ]H["+1 around
Hm

Let (PO(m,1),H2) C (PO(m + 1,1),Hg*) C (PSp(n + 1,1),Hg*!) be the canonical
inclusion as above. Suppose that a compact hyperbolic (m+1)-manifold Hﬁ‘“ /7 contains a
totally geodesic closed m-dimensional submanifold at least one, say Hg' /n’. Then according

to Thurston, Apanasov, we can bend Ht! /7 along HF /=’ 1nsxde II-IH}“ /7.
More directly suppose that Hg ™' /7 is two-sided. Then 7 = 7 * m,. Choose a 1-parameter
ﬂ"
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family {g:} C Sp(n —m + 1) and define a representation p; : 7— PSp(n +1,1):

P = lda
pe(y) = v (yE€mM),
pe(Y) = G-y g7t (v €E€m).

Suppose that 1 £ m < n. By Proposition 1, a compact manifold M; = S4n+3_G6™ /1 admits
a (non-locally homogeneous) spherical pseudo-quaternionic structure for which the develop-
ing pair (devy, p1) is the inclusion. We have a nontrivial deformation p; : 7— PSp(n+1,1)
starting at p; = id. Then by the Thurston’s nearby structure we obtain a spherical pseudo-
quaternionic structure (dev;, p;) (t € Sp(n—m+1)) on M;. For ¢ sufficiently close to 1, the
holonomy representation p; : m—s PSp(n + 1,1) is discrete faithful and so the developing
image becomes dev(M;) = S*"*+3 — L(py(m)) where L{p(m)) is the limit set of p;(7). The
limit set L(p,(r)) is not homeomorphic to the geometric sphere S™. (See §2.)

Theorem 2 There are examples of compact non-locally homogeneous spherical pseudo-
quaternionic manifolds, which are not mutually geometrically rigid.

The result of this type has been obtained in [1]. I was taught by Apanasov about the
bending of this type.

2 Rigidity of developing maps and correction

Recall that a geometric structure on a smooth n-manifold is a maximal collection of charts
modeled on a simply connected n-dimensional homogeneous space X of a Lie group G whose
coordinate changes are restrictions of transformations from G. We call such a structure
a (G, X)-structure and a manifold with this structure is called a (G, X)-manifold. In the
paper [9], we have used the following lemma to show the uniqueness of developing maps in
compact conformally flat manifolds.

Lemma Let A be a [-invariant closed subset in X. Suppose that in the complement of A
in X there exists a component U which admits a T'-invariant complete Riemannian metric.
Then the developing map dev : V. — U on each component V of dev (V) is a covering
map.

However we recognized that the statement of the above lemma is not valid in some
geometric structure, which is shown by the example by Kapovich (Compare [5].) And under
some additional condition on X, Choi and Lee [5] have shown that the lemma is true for
any geometric structure. On the other hand, we have noticed that our results in [9] can be
proved more directly without use of the above lemma. So the purpose of this section is to
show that the geometric uniqueness of developing maps are true in compact conformally flat
manifolds, compact spherical C R manifolds, and spherical pseudo-quaternionic manifolds.
That is, our previous results of [9] will be generalized into the geometry on the boundary
of Rank 1 noncompact symmetric spaces.
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Let K stand for the field of real numbers R, the field of complex numbers C or the field

of quaternions F. Denote |K| = 1,2, or 4 respectively. Let K"*? denote the vector space,
equipped with the Hermitian pairing over K ; B(z,w) = —Zjwy +Zwa+- - - + Znp2Wny2. De-
fine the (n+2)|K|-dimensional cone V_ to be the subspace {z € K**?| Re(z) > 0, B(z,2) <
0}. If P : K**2 — {0}—KP"*! is the canonical projection onto the K-projective space,
then the image P(V_) is defined to be the K-hyperbolic space Hg" of dimension (n+1)|K].
(cf. [3)]).
Let O(n+1,1;K) be the subgroup of GL(n + 2, K) whose elements preserve the Hermitian
form B. Since O(n+1, 1; K) leaves V_ invariant, it induces an action on Hy*' whose kernel
is the center Z(n + 1,1;K). It is isomorphic to {1} if K = R or F or the circle S! if
K = C. Denote by PO(n + 1,1; K) the quotient group O(n + 1,1;K)/Z(n + 1,1;K). We
usually write PO(n+1,1),PU(n+1,1) or PSp(n+1,1), which are known as the full group
of isometries of complete simply connected K- hyperbolic space H%H respectively.

The projective compactification of HEt! is obtained by taking the closure I[:]I%+1 of Hyt!
in KP™+!, If we put an (n + 2)| K| — 1 dimensional subspace V5 = {z € K"*?| B(z, z) = 0},
then HZ'' = HE'' U P(V4) so that the boundary OHg™' = P(V,) is the standard sphere of
dimension n, 2n + 1, 4n + 3 according to that K = R,C, F. Put OHEt! = SC+DIKI-1,
Then the group of isometries PO(n + 1,1; K) extends to a transitive action of projective
transformations of S(**DIKI=1 Thus we obtain the geometry (PO(n + 1, 1; K), SC+VIKI-1),
In each case note that the geometry (PO(n +1,1),5") is called conformally flat geometry,
the geometry (PU(n + 1,1),5***!) is called spherical CR geometry, and we call
(PSp(n + 1,1), $4"*3) a spherical pseudo-quaternionic geometry.

If Hgt! (1 £ m < n—1) is the totally geodesic subspace of Ht!, then the geometric sub-
sphere S(M+DIKI=1 of G(1+DIKI-1 i5 defined to be HE ™. Put Y = S+DIKI-1 _ g(m+1)|K|-1
and denote by Aut(Y) the subgroup of PO(n+1, 1; K) whose elements preserve S{m+1IKI-1,
Then Aut(Y) is isomorphic to the subgroup P(O(m + 1,1; K) x O(n — m; K)) (cf. [11],[3]).
Moreover Y is a Riemannian homogeneous space :

P(O(m +1,1;K) x O(n — m; K))/P(O(m + 1;K) x O(;K) x O(n —m — 1;K)).
Then the homogeneous Riemannian metric A on Y induces a Riemannian submersion:
Sr=mIKI=1_, (Aut(Y), Y, k) = (PO(m + 1, 1; K), HE 1, hy).

Here hy is the hyperbolic metric on Hg*'. (See [14], [13].)

Note that if O(n — m; K)— Sr+DIKI-1 i DR*! is the projection onto the closed disk
such that the fixed point set Fix (O(n — m;K), SCHDIKI-1) = gm+DIKI-1 “then P|Y = v
and v maps the ideal boundary S(m+DIKI-1 = g(S(r+1)IKI-1 _ g(m+1)IK|-1) jdentically onto
Sm+1)IK|-1 — am£+l.

Recall that if a smooth connected manifold M admits a (PO(n + 1,1; K), SC+DIKI-1).
structure, then there exists a developing pair (¢, dev), where dev : M — SCHDIKI-1 s 5
structure-preserving immersion and ¢ : m; (M) — PO(n+1,1; K) is a homomorphism whose
image ¢(m1(M)) is called the holonomy group for M. We prove the following proposition.
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Proposition 3 Let M be a compact (PO(n+1,1; K), S®+DIKI=V)manifold in dimension
(n+1)|K|—1. Suppose that ¢(m1(M)) leaves a geometric subsphere SmTIKI=1 (0 < <
n — 1). Then the restriction of the developing map

dev: M — dev'1(LS”("”"I)'K'*)—)S(""'l)”{l — §im+1)IK]-1

s a covering map.

Proof. Put 7 = m(M) and I' = ¢(m). Since the holonomy group I' leaves invariant a
geometric subsphere S(m+VIKI=1 we have the restriction of the developing pair:

(p,dev) : (m, M — dev™* (S +DIKI=1))_(Aut(Y), Y).
As above note that the Riemannian metric & on Y induces a Riemannian submersion:

Sr=mIKI=1_ (Aut(Y), Y, h) == (PO(m + 1, 1; K), HE*! | ho).

Let dev* A be the induced Riemannian metric on M —dev™(S™+DIKI=1) which is invariant
under 7.

We prove that dev* h on M —dev ™! (S(™+DIKI=1) is complete. Let {z,} be a Cauchy sequence
in M — dev™}(S(m+DIKI-1y with respect to dev* h. Assume that dev™'(S(m+DIKI-1) oL ¢,
Let p* (resp. p) be the distance function on M — dev™!(S(+DIKI=1) (resp. Y), and po be
the (hyperbolic) distance function on Hg !, As dev™!(S™+VIKI-1) is invariant under 7, M
decomposes into the union (M — dev™'(S+DIKI=1)) /r and dev™'(Sm+DIKI=1) /7 where
dev™Y(S(mH+DIKI-1) /7 consists of a finite number of compact submanifolds. If P : M— M
is a covering map, then the sequence { P(z;)} has an accumulation point y (after passing to a
subsequence). Choose §j € dev™!(S(m+DIKI=1) with P(§) = y. There exists a neighborhood
W of § in M such that the closure W is compact. Moreover, P : W—P(W) and dev :
W —sdev(W) are diffeomorphic. As y € P(W), there exist elements {v;} € 7 such that
{7i-z;} € Wfor i 2 L where L is a sufficiently large number. We have lim~y; - z; = §.
Since {z;} is Cauchy in (M — dev™!(S*+DIKI=1) p*) associated with each integer n, there

exists an integer A(n) satisfying that if 1,5 2 M(n), p*(2i,z;) < —. Let Bi(xx(n)) be the
n n

1 ~ .
ball of radius — centered at zy(n) in M — dev™1(Sm+VIKI=1) 1 particular,
n

{z:} € Bi(xpny) fori 2 A(n).

As A(n) increases as n does, we can assume that A(n) 2 n for n 2 N where N is a
sufficiently large number with N > L. Note that {yz(n) - Zzx(n)} € W for n 2 N as above.
Then we show that there is an integer m such that B (yi(m) - Zxm)) C W. Suppose not.
Put O'W = W N (M — dev™!(S™+DIKI=1)) " Then for each n = N, there is a point of
B1(Ya(n) - Ta(n)) outside W. Thus we have that

S|

(*) P"(Vr(n) * Ta(n), OW) S
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In general, for every z € 'W C M‘— dev‘1(5’(m+1)|1‘f|—1)7
po(v © de"(“/A(n) : $A(n))»V odev(z)) P(dev(%\(n) : x)\(n))a dev(z)) <p (7A(n) ZA(n)s z).
Taking the infimum for all z € 3W and using (*) imply that

‘ 1
(%) po(v o dev(ya(m) - Ta(n)), v 0 dev(z)) -

On the other hand, as W C M — dev™(S*+VIKI-1) 'y o dev z) € Hﬁ“
Since v o dev(Yam) * Zr(n))—>v 0 dev(§) € p(SHDIKI-L) = SenFDIKI-L — R+ it follows
that

lim po(v 0 dev(1sn - 2a(n)s 0 dev(2)) = oo,

which is impossible by (#x). Hence we obtain that B#('y;\(m) - Z\(m)) C W for some m. If
we recall that {xi}@)\(m) € B#(:c,\(m)) and 7(m) is an isometry with respect to p*, then
{a@m) * Titizam) € BL (7,\(m) - Ty(m)). As W is compact, there is a point w € W such that
hm 0 Ya(m) * &i = W- Therefore ,1.1—%10 T; = 'h—én) - w for which dev(’yl\'(in) cw) = z1_1}r(1)1o dev(z;).
Smce the sequence of images {dev(z;)} is also Cauchy in Y, {dev(z;)} has a limit point in
Y, which therefore implies that dev(w;(;l) -w) € Y. Thus dev('y)”"(in) -w) is not contained in
SmADIKI-1 4 e 7;(171) -w € M —dev™!(Sm+VIKI-1) This shows that the Cauchy sequence
{z;} converges in M — dev™*(S(m+DIKI- 1) so that M — dev(S(m+DIKI-1) j5 complete. As
a consequence, the local isometry dev : M — dev™!(S(»+VIKI-1)__,Y is a covering map.

O

Remark 4 (1) For the induced Riemannian metric from an arbitrarily geometric struc-
ture, the above proof does not work with respect to the argument of minimal geodesic;
the covering map P : M—sM induces a local isometry of (M — dev™(S(+DIKI=1) )
onto (M — dev™}(S+DIKI=1) /. 5%). Given a Cauchy sequence {y;} lying in P(W),
choose a lift of sequence {§;} from W. Since P : W—P(W) is diffeomorphic, P :
W — dev}(StHDIKI=1)_5 P(W) — dev™ ! (SmHIIEI-Y) /7 s an isometry, however, note
that given two points y;, y; in P(W), the minimal geodesic between y; and y; does not
necessarily lie in P(W) — dev™(S(WIKI=1) /r " So the equality p*(yi,y;) = p*(i, §;) does
not hold in general, which implies that the lift {§,} is not necessarily Cauchy. We did not
check this point for an arbitrarily geometric structure, which is the mistake of the argument
of the proof in Lemma B of [9] (also Lemma 4 of [10] ).

As a consequence, Propositions 1.1.1 and 1.1.2 of [9] are valid for the conformally flat,
spherical CR, and spherical pseudo-quaternionic structures respectively. More precisely,
we obtain the following developing results in each case.

Corollary 5 (K =R): Let M be a closed conformally flat n-manifold.
1. If 0 Sm <n—3, then dev : M - dev}(S™)—S™ — S™ is diffeomorphic.
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2 Ifm=n—2, thendev: M —dev™!(5""2)— 5" — S"2 is a covering map with
fiber isomorphic to an infinite cyclic group.

8. If m = n — 1, then dev maps each component of M — dev™*(5§"1) diffeomor-
phically onto the real hyperbolic space Hg.

(K=C): Let M be a closed spherical C R-manifold of dimension 2n + 1.

1. If0 £m < n—2, then dev : M — dev™}(§?™+1)— §2n+1 _ 2741 s diffeomor-
phic.

2. If m=n—1, then dev : M — dev™!(S¥"~1)— 521 _ §27=1 5 g covering map
with fiber isomorphic to an infinite cyclic group.

(K =TF): Let M be a closed spherical pseudo-quaternionic manifold of dimension 4n + 3.
Then, dev : M —dev™!(S4m+3)— §4n+3 _ §4m+3 s diffeomorphic for 0 S m S n—1.

Let (¢,dev) : (my (M), M) = (PO(n + 1,1; K), S(+DIKI=1) be the developing pair, and
~put ' = p(m(M)). For a group H C PO(n + 1,1;K), the limit set L(H) in SC+DIKI-1
is defined to be the boundary of the closure of the orbit H - w for a point w € HE*'.
(Compare [3].) First of all we can restate Theorems 2.2.1, 2.3.1 and Proposition 2.3.2 of
[9] by using the above proposition 3.

Theorem 6 Let M be a closed conformally flat n-manifold. Suppose that the holonomy
group I' leaves invariant a geometric m-subsphere S™ for 0 S m < n —1.

(i) If m < n — 3, then dev : M— 5" — L(T) is diffeomorphic.

(i1) If m = n—2 then according to whether L(T') is a proper subset of "2 or L(T') = S" 2,
dev: M— 8™ — L(T') is diffeomorphic or dev : M—HE ™' x R? is diffeomorphic.

Here Hz~! x R! is conformally equivalent to the universal covering space of the Rie-
mannian manifold Hy~' x S! of nonpositive sectional curvature with the group of
isometries PO(n —1,1) x O(2). (Note that ' is contained in PO(n —1,1) x O(2) but
not necessarily discrete in it.) ’

(151) If m = n—1, then M or its two-fold covering decomposes into the union My UMRUM_
composed of complete hyperbolic n-manifolds with ideal boundaries from My and the
unton boundary components in Mg.

Finally we continue the same argument to spherical C' R manifolds and spherical pseudo-
quaternionic manifolds to yield the following result stated in the beginning.

Theorem 7 Let M be a compact (PO(n + 1,1; K), S®+DIKI=1)_manifold in dimension
(n+ 1)|K| — 1 where K = C,F. Suppose that the holonomy group I' leaves a geometric
subsphere S(HVIKI=1 (0 <m < n —1). Then the restriction of the developing map

dev : M— SHOIKI=1 _ (T) s a covering map.
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Proof. First note that S(m+UIKI=1 ig 5 closed proper subset of S+DIKI=1 - According to
whether m < n—2 for the case (1) of C or m < n—1 for the case of K of Corollary 5, dev :
M —%dev(f\;[ ) is injective. In particular, I acts properly discontinuously on dev(M )- So the
developing image misses the limit set L(I'). The developing map reduces to the following:
dev : M—SCHDIKl . [(T'). Moreover, as I' acts properly discontinuously and freely on

Sr+DIKT — [(T), choosing a Riemannian metric on the orbit space (St+DIKl — [(T))/T
if necessary, we conclude that dev : M—sS™+DIKl _ [(T') is a covering map and hence a
diffeomorphism. ‘

Now, let M be a spherical C R manifold of dimension 2n 4+ 1 such that I' leaves a
geometric subsphere S**~! (m = n —1). By the case (2) of C of Corollary 5, dev :
M — dev™!(§2"1)— §%+1 — G2=1 i5 a covering map where 1 (S*"+! — §¥71) = Z.
Suppose that dev™'(5?"~!) # (. Since dev is a local homeomorphlsm, dev, : 7r1(]\7l -
dev™1(§2n1))—my(S™ — S772) & Z is onto. Hence dev : M — dev™!(S=1)— G2+ —
5271 is diffeomorphic. By the same argument as above, dev : M—S?**! — [(T) is a
diffeomorphism. Especially L(T) is a proper subset of 52”"1 in this case. If dev™!(S%*"1) =
0, then dev : M—S?"t1 — §27=1 is a covering map. In this case, ' C P(O(n,1;C) x
0(1;C)) = U(n,1). There exists an exact sequence S*—U(n,1)— PU(n,1) where S' =

Z(n,1;C) is the center. Let U(n,1)™ be the lift of U(n,1) corresponding to S*. Then
dev maps M onto the universal covering space X of §?"+' — §?*~! for which m maps
isomorphically onto the subgroup I lying in U(n,1)~. We obtain a compact Lorentz space
form of negative constant curvature F\U(n 1) /U(n) diffeomorphic to M. Then we know
that I' admits a central extension: Z—I' —= I for which v maps ' discretely onto T of
U(n,1). Compare [14]. Therefore I' acts properly discontinuously on S+l [(T). Since
L(T) ¢ 8?1, choosing a I-invariant Riemannian metric on $***! — L(T'), we can show
that dev : M—— 52"+ — L(T') is a covering map. As a consequence, L(I') = S?*~1.

O

Corollary 8 Let M be a compact (PO(n + 1, 1; K), S®+VIKI=Y)_manifold in dimension
(n + 1)|K| — 1 where K = C,F. Suppose that the holonomy group ¢(mi(M)) leaves a
geometric subsphere SMTVIKI=1 (0 <m S n —1).

(C) If L(T') C §*~2 at most, or L(T') is a proper subset of S**~1, then dev : M— 82+t
L(T) is a diffeomorphism. When L(I') = S**~', dev : M—sGtm+1 _ g2+l s g

covering map.

(F) If L(T) is contained in S*~! at most, then dev : M—S*+3 — L(T) is a diffeomor-
phism.

When the limit set of a (generalized) Schottky group I' of PO(n + 1,1;K) is embedded in
the small geometric subsphere, we can state the following result (Compare [10].)

Corollary 9 Let M be a compact (PO(n + 1,1; K), SCHUIKI=1 ) .manifold in dimension
(n + 1)|K| — 1 where K = R,C,F. Suppose that the limit set A of the holonomy group
$(m1(M)) is a proper subset of S*% = OHE ™', S?~! = OH or S*"~' = OHy respectively.
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Then M is (PO(n + 1,1; K), SCHUIKI=1) _equivalent to the orbit space
(SCHDIRIEL — A) [ (i (M)

3 Horospherical geometry

The PO(n + 1,1; K), S(»+VIKI=1) _ structure restricted to the sphere SMUIKI=1 with one
point removed is called the horospherical geometry. If {oo} is the point at infinity, then
S+DIKI=1 _ {00} is isomorphic to the nilpotent Lie group H where Im K—H — K" is
a central group extension. In particular, if K = R, then H = R" is the vector space and
if K = C,F, then the center Im K is the vector space isomorphic to R, R® respectively.
Denote by Sim(#) the stabilizer of PO(n+1, 1; K) at {oo}. Since the maximal noncompact
amenable Lie group of O(n+1,1; K) (viewed as the noncompact symmetric space of rank 1)
is isomorphic to the semidirect product H x (O(n; K) x K*) where K* is the multiplicative
group, Sim(#) is isomorphic to the quotient group H x (P(O(n; K) x O(1; K)) x R*). More
precesicely, according to whether K = R, CF, Sim(H) is R"x (O(n) xR*), N x(U(n) xR*),
or M x (Sp(n) - Sp(1) x R*).

A representation p : = PO(n+1, 1; K) is said to be amenable if the closure of the image
p(T) in PO(n +1,1;K) lies in the maximal amenable Lie subgroup of PO(n +1,1; K). We
note the following result.

Theorem 10 Let M be a compact (n+1)|K|—1 dimensional (PO(n+1, 1; K), S(+DIKI=1)_
manifold. If the holonomy group is amenable, then M is finitely covered by the sphere
SCHDIKI-1 g Hopf manifold S* x SMHVIKI=2 or ¢ nilmanifold H/T.

The horospherical geometry (Sim(R"™),R") is said to be a similarity geometry. The
above theorem was first proved by Fried [7] when M is a compact similarity manifold
(i.e., (Sim(R™), R")-manifold). In general, the theorem for a compact conformally flat
manifold with amenable holonomy has been seen in [19], [18], [11]. For the Heisenberg
similarity geometry (Sim(A'), A'), the theorem is proved by Miner [19], and for the pseudo-
quaternionic Heisenberg similarity geometry (Sim(M), M), proved by Kamishima [13].

The idea of proof for K = C,F in [13] is to examine the Carnot-Carathéodory structure
on (PO(n + 1,1;K), S®*+VIKI-1)_manifold for C or F respectively. We verify that the
restricted (PO(n + 1,1;K), SC+DIKI=1)_ structure gives a certain Carnot-Carathéodory
structure (a codimension 1 or 3 - bundle B) on H. In fact the projection v in the above
extension maps B isomorphically onto the tangent space of K* at each point. Moreover,
the restriction to B of the left invariant metric on H coincides with the complex (resp.
quaternionic) euclidean metric on K*. We then apply the Fried’s incompleteness argument
to the Carnot-Carathéodory structure, which gives the desired result. Using Theorem 10,
we obtain the following result, which has been indicated by Kulkarni and Pinkall [17] and
proved in [11] for the conformally flat case.

Theorem 11  Let M be a compact (PO(n + 1,1;K), SRV manifold. If the devel-
oping map dev is not surjective, then dev : M—dev(M) is a covering map.
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Proof. Given a developing pair (¢,dev), denote by ddev(M ) the boundary of the devel-
oping image in S(*+VIKI=1_If ddev(M) consists of one point, say {oo}, then the holonomy
group ¢(m(M)) =T 1eaves {oo} fixed. So, the representation is amenable by the defi-
nition. Appllying Theorem 1, the developing map is a homeomorphism onto its image.
Suppose that ddev(M) contains more than one point. By the minimal property, the limit
set L(I') C 8dev(M) so that dev(M) ¢ SCHIIKI-1_[(T). If T is discrete in PO(n+1, 1; K),
then I acts properly discontinuously on the domain of discontinuity Q = SC+UIKI=1 _ [(T).
Therefore there is a [-invariant Riemannian metric on 2 (cf. [15], [23]). As M is compact,
dev is a covering map onto its image 2. Let I'° be the identity component of the closure of
I. If ['° is compact, then it fixes the unique point in Hg™ or a totally geodesic subspace
Hz ! pointwisely (0 £ m < n —1). If I’ is noncompact, then it follows from the theorem
of [3 [ ] that T° leaves invariant a totally geodesic subspace Hgt' (0 < m S n—1). As I®
is normal in T, T has the unique fixed point or leaves invariant H’n"' in each case. Thus
either I is contamed in the maximal compact group P(O(n + 1; K) x O(1;K)) or it leaves
invariant S(m+tUIKI=1 " Tn the former case, M will be covered by the sphere S(r+DIKI-1,
Suppose I' leaves invariant a positive dimensional geometric subsphere S(™+DIKI=1 " [et
K = C,F. If M is a compact (PO(n + 1,1;K), S(*+DIKI=1).manifold, then Theorem 7
implies that dev : M—S™*+DIKl _ [(T) is a covering map.

Consider the case that M is a closed n-dimensional conformally flat (PO(n + 1,1), S™)-
manifold. In this case, I' leaves S™ invariant (0 S m S n—1),or ' C PO(n + 1). If
m < n—2, then dev : M—S™ — L(T') is a covering map by Theorem 6.

Let m = n—1. The holonomy group I' C PO(n, 1) leaves invariant S*~!. If T is discrete,
then I' acts properly discontinuously on 5™ — L(I’). The same argument as above implies
that dev : M—S™ — L(T') is a covering map. '

Let S¢ be a geometric subsphere of S”~! = OHE. Suppose that ['° is nontrivial and
compact. Then I'® fixes S* for some £ or stabilizes a unique point inside HZ. The latter
case implies that M is a spherical space form so I is finite, which contradicts that I'° is
nontrivial. If £ < n — 1, the result follows by the preceding argument because I' leaves
Sf invariant. On the other hand, if T° fixes S™~!, it must fix the whole sphere S”, hence

= {1} by effectivity. Thus, ['° is noncompact, again by the theorem of [3], I'* is transitive
on a totally geodesic subspace IH[E +1 and so I leaves invariant the geometric subsphere S
As above, only # = n — 1 is necessary to check. Then note that L(T') = L(I°) = "1,
As S — L(F) consists of two components of hyperbolic spaces and dev(M) C §™ — L(T),
this implies that dev : M —Hz. By Corollary 5, dev is a homeomorphism onto Hg. As a
matter of fact, I' would be discrete, which contradicts the above hypothesis. So the case

that I'° is nontrivial does not occur. This completes the proof.
a

Proof of Theorem A (Compare [13].)

We may assume that # C PSp(m,1) (2 £ m < n). Let p : m—PSp(n + 1,1) be the
holonomy representation. Considering the Zariski closure of p(7) in PSp(n + 1,1) and by
the classification [3] of connected subgroups in PSp(n +1,1), we see that p(r) is conjugate
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to a subgroup of an almost direct product K - H of the compact Lie subgroup K with a
noncompact semisimple Lie subgroup H, or conjugate to a subgroup of an amenable Lie
subgroup in PSp(n+1,1). Let P: K- H—PH be the projection onto the semisimple Lie
group PH for which PH has no compact factor and no center. If p(v) C K - H, then we
can assume that PH is the smallest semisimple connected group containing P o p(m) and so
Pop(r) is Zariski dense in PH. Then the Corlettes’ superrigidity says that Pop extends to a
continuous homomorphism ¢ : PSp(m,1)—PH for m 2 2. It is easy to see that ¢ is onto.
Since PSp(m,1) has no normal subgroup, ¢ : PSp(m,1)—PH is an jsomorphism. As
PH C PSp(n+1,1), PH must be conjugate to PSp(m, 1) by the classification of connected
Lie groups from [3]. Then PH leaves invariant a geometric sphere 54™~! and so does K- H.
In particular, p(r) leaves S*™~! invariant so that L(p(7)) C S4m-1 Since 2 < m < n,
applying Corollary 8 yields that dev : M—54+3 — L(p(r)) is homeomorphic. As M is
compact, L(p(m)) = S*™~1. We obtain that M is pseudo-quaternionically isomorphic to
Sant3 _ S4m_1/p(7r).

On the other hand, if p(r) is amenable, then dev is homeomorphic by Theorem 10, which
implies that m would be virtually nilpotent. This is impossible from our hypothesis. This

proves Theorem A.
O
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