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This paper is a progress report of the research aimed at the following objectives: .

(1) To get precise understanding of Jorgensen’s unfinished work [3] on the space of quasi-
fuchsian groups representing a pair of punctured tori and to understand his construction
of the hyperbolic structures of punctured torus bundles over a circle.

(2) To establish an analogue of Jorgensen’s work for the Riley slice of Schottky space
(i.e., the space of discrete free subgroups of PSL(2, C) generated by two parabolic trans-
formations).

(3) To understand the hyperbolic structures of the 2-bridge knot complements (equiva-
lently, the 3-dimensional hyperbolic manifolds of finite volume whose fundamental groups
are generated by two parabolic transformations) from the above view point, and to prove
the conjecture proposed by the second author and J. Weeks [9] on the combinatorial
structure of their Ford domains.

In this paper, we describe the following:

(1) Our interpretation of Jorgensen’s work.

(2) An analogue of Jorgensen’s result for the Riley slice of Schottky groups.

(3) A certain conjecture on the existence and the shape of continuous families of hy-
perbolic cone manifolds joining “rational” boundary points of the Riley slice and 2-bridge
knot complements: an affirmative answer to the conjecture implies that to the conjecture
in [9].

Unfortunately, we have not been able to prove the whole of the assertions in (1) and (2)
as yet. The continuous families of cone manifolds in (3) can be considered as continuations
of the rational pleating rays discussed by Keen-Series [4] and Komori-Series [5]. We
present some computer experiments, based on a software written by the third author [11]
which support the conjecture. In particular, we construct the hyperbolic structure of the
figure-eight knot complement from this view point.

1. FRICKE SURFACES AND THE MODULAR DIAGRAM

Let T, S, O, respectively, be a (once) punctured torus, a 4-times punctured sphere,
and a (2,2, 2, co)-orbifold (i.e., the orbifold with underlying space a punctured sphere and
with three cone points of index 2). They have R?> — Z? as the common covering space.
To be precise, let I' and T, respectively, be the groups of transformations on R Z?
generated by m-rotations about points in Z* and (1Z)%. Then T = (R® - z*)z?,
S = (R?—Z%/T and © = (R* — Z*)/T. In particular, there is a Zy-covering T — O
and a Zy @ Z,-covering S — O: the pair of these coverings is called the Fricke diagram
(cf. [10]) ' '
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For an clement 7 € Q U {1/0}, let 4, be a line in R* — Z? of slope r. Then ¢, projects
to simple loops in T, S, and O, which are essential, i.e., each of them does not bound a
disk, a disk with one cone point, nor a punctured disk. Conversely, any essential loop a
in T, S, or O is isotopic to the one obtained in this way from a unique r € Q U {1/0}.
Then 7 is called the slope of a, and is denoted s(a).

Since T" and S are coverings of the orbifold O, the fundamental groups of 7" and S are
regarded as subgroups of the orbifold fundamental group of 0. These groups have the
following group presentations:

(1) m(T) = <AB>,
(2) m1(S) = < Ko, K1, Ky, K3|KoK1 KoKz =1 >,
(3) m(0) = <P QRPP=Q*°=R>=1>,

Here the generators satisfies the following condition: Put K = (PQR)™!, then K is
represented by the puncture of O, and we have K? = [A,B], A = KP = RQ, B =
K 'R=PQ,Ky=K, K, = K, K, = K9, K3 = KE where X denotes Y XY L.

Throughout this paper, we reserve the symbol K to denote the element of m1(Q) defined
in the above.

Definition 1.1. (1) An ordered pair (A, B) of elements in m(7") is a generator pair of
7 (T) if they generate m1(T") and satisfies [A, B] = K. In this case, A and B, respectively
are called the left and right generators, and (A, AB, B) is called a generator triple. The
slope of an essential loop in T realizing A [resp. B] is called the slope of A [resp. B] and
is denoted by s(A) [resp. s(B)].

(2) An ordered triple (P, @, R) of elements of m;(O) is called an elliptic generator triple
if they generate m;(O) and satisfies P? = Q? = R? = 1 and (PQR)™! = K. A member of
an elliptic generator triple is called an elliptic generator.

Proposition 1.2. (1) There is a one-to-one correspondence between the set of elliptic
generator triples and the braid group Bj.

(2) For any elliptic generator triple (P, Q, R), the following holds:

(2.1) Any three consecutive elements in the following bi-infinite sequence is also an
elliptic generator triple.

’PI(_]’QK¥17RK"1’PjQ’R’pK’riyRK,_”

(2.2) (P, R, Q%) is also an elliptic generator triple.

(3) Conversely, any elliptic generator triple is obtained from (P,Q, R) by successively
applying the operations in (2).

(4) If (P,Q,R) is an elliptic generator triple of 71 (O), then (KP,KQ,K 'R) is a
generator triple of i (T). Conversely, every generator triple of m(T) is so obtained.

For each elliptic generator P of m(Q), KP and K 'P = PK, respectively, are left
and right generators of m;(T) by Proposition 1.2. Further, we see s(K~'P) = s(PK).
We define the slope s(P) of P by s(P) = s(K~'P) = s(PK). Throughout this paper,
We assume that the slopes of A and B in the group presentation (1) are 1/0 and 0/1,
respectively and that the slopes of P, Q and R in the group presentation (3) are 1/0, 1/1
and 0/1, respectively.

The modular diagram D is the ideal triangulation of the hyperbolic plane H? with ideal
vertices @ U {1/0}, such that a typical ideal simplex of D is spanned by {&, L, ’;i—:[zf}

P1 P2

q1 4o

where = #£1. The symbol < s1,$9,53 > denotes the ideal simplex spanned
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by {s1,892,83}. It also represents the oriented one, where the orientation is given by
the ordered triple (sy,s2,53). Any ideal simplex of D is the image of the ideal simplex
< 1/0,1/1,0/1 > by an element of SL(2,Z). We say that an oriented ideal simplex
is positive if the orientation is coherent with that of < 1/0,1/1,0/1 >. For each ideal
simplex o in D, the union of the lines in R? intersecting Z* with slopes the ideal vertices
of o determines an ideal triangulation of R? — Z? which projects to mazimal arc systems
of T, S, and O.

The (abstract) simplicial complex whose combinatorial structure is equal to that of D
is also denoted by the same symbol D.

Proposition 1.3. (1) For two elliptic generators P and P', s(P) = s(P’). if and only if
P' = PE" for some integer n.

(2) For any elliptic generator triple (P,Q, R), < s(P),s(Q),s(R) > is a positive ori-
ented 2-simplex of D. '

(3) The slopes of two elliptic generator triples span the same 2-simplex of D if and only
if they are related by the operation (2.1) of Proposition 1.2.

(4) For any elliptic generator triple (P, Q, R), s(QF) = s(QF) holds and it is the image
of s(Q) by the reflection in the edge < s(P),s(R) >.

(5) Let (A, AB, B) be a generator triple of my(T). Then (AB™!, A, B) is also a generator
triple, and both < s(A),s(AB), s(B) > and < s(AB™'), s(A), s(B) > are positive oriented
simplices of D. In particular, s(AB™") is the image of s(AB) by the reflection in the edge
< s(A),s(B) >. '

For a 2-simplex o of D, the bi-infinite sequence - - - , PK™' QX" RX™' P,Q, R, PX, Q¥ RX, ...
of elliptic generators whose slopes are the vertices of ¢ is called the sequence of elliptic
generators associated with o.

2. MARKOFF MAPS AND REPRESENTATION SPACES

By a Markoff triple we mean an ordered triple (z,y, z) of complex numbers satisfying
the Markoff equation:

x? -{—’yg + 2% = zy2.

The triple (0,0,0) is called the trivial Markoff triple. If (z,y, z) is a Markoff map, then
(1) we can obviously obtain other Markoff triples by permuting entries, and (2) the triples
(z,y,xy — 2), (x,zx —y, 2), and (yz — x,y, z) are also Markoff triples. On repeating such
substitutions, we generate an equivalence class of Markoff triples which has a natural
“trec” structure. Such a structure is referred to as a “Markoff map” (see [1]):

Definition 2.1. A Markoff map is a map ¢ : D = Q U {1/0} — C satisfying the
following conditions:

(1) For any 2-simplex < si, 89,53 > of D, the triple (¢(s1), ¢(s2), #(s3)) is a Markoff
triple.

(2) For any pair of 2-simplices < s, S9, 53 > and < 81, Sz, 84 > of D sharing a common
edge < s1, 85 >, we have

P(s3) + P(s4) = P(51)B(s2)-
For each Markoff triple (z,y, z) without O entries, we have
L Y

ay+as+az=1, where a;=—, a=—, a3=—.
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We call (a1, ay,a3) a complex probability. Conversely, the Markoff triple (z,y,2), up to
multiplication by +1, is recovered from the complex probability (a1, a2, as) by the following
identities:
po L a1 L 1
a203 a3, aiag
Explicitly, the transformations (z,y,2) — (—z,—y, 2) and (z,y, z) — (2, —y, —z) gener-
ate a free Z, @ Z,-action on the space of the nontrivial Markoff triples, and the quotient
space is identified with the space {(a1,as,a3) € C?la; +ay + a3 = 1,a; # 0(1 < i < 3)}
of complex probabilities. .
We now introduce the concept of a “complex probability map”. Let ¥ be a binary
tree (a countably infinite simplicial tree, all of whose vertices have degree 3) properly
embedded in H? dual to D. A directed edge, €, of & can be thought of an ordered pair
of adjacent vertices of 3, referred to as the head and tail of @. We introduce the notation
@ > (81,52 83,84) to mean that s1, sp, s3 and s4 are the ideal vertices of D such that
(1) < 81,89 > is the dual to & and that (2) < s1,52,83 > [resp. < 81, 52,54 >] is dual to
the head [resp. tail] of €.
Let ﬁ(Z) be the set of directed edges of . For a Markoff map ¢, let fd,(E) be the
subset of ﬁ(Z) consisting of those directed edges € such that if € « (s1, So; 3, 54) then
&(s1)P(s2) # 0. Then we define a map 1 : ﬁ(ﬁ(E) — C by

¢(S3)
P(s1)¢(s2)

We call ¥ the complex probability map corresponding to the Markoff map ¢.

A triple (€1, @9, €3) of elements of ﬁ(Z) is said to be dual to an oriented simplex
0 =< 81,89,83 >if € (1 <i<3)isdual to < s;, s;+1 > (where the indices are considered
modulo 3) and has ¢*, the vertex of ¥ dual to o, as the head. Then we have the following:

9() =

Lemma 2.2. (1) Let o be an oriented 2-simplex of D, and (€1, €2, €3) a tm’ple of
elements of Fd)(Z) dual to 0. Then:

(e )+ (€9 + P(e3)=1.

We call the triple (1(€1),v9(€2),¥(€3)) the complex probability of ¢ (or the value of
Y) ato. »

(2) For each & € 'E’¢(E), let —€ be the element of ﬁd,(Z) obtained from € by
reversing the direction. Then

P(e) +y(=¢) =1L

(3) Let o and o' be positive oriented 2-simplices of D which are adjacent, and let
(€1, €9, €3) and (€1, €4, %), respectively, be triples of elements of Ti?gﬁ(i]) dual to
o and o', and assume that ¢} = —e3. Then:

— — 3 —
(T = 1 — (), vl = L) oy PE)U(Es)
1/( l) - 1/)( 3) w( 2) 1 — 1/)(———@—)3) d( 3) 1 — d)(??,)

Let ® be the space of the non-trivial Markoff maps and W that of the complex probability
maps. (A Markoff map is called trivial if its image is {0}.) Then we have a natural four
to one map ® — W. In fact the free Zy ® Zy-action on the non-trivial Markoff triples
induces that on ® with quotient .
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3. REPRESENTATION SPACES

H? denotes the upper half-space model of the 3-dimensional hyperbolic space, and its
ideal boundary is identified with C U {oo}. For a Mobius transformation X, the symbol
o(X), [resp. I(X), D(X), E(X), Ih(X), Dh(X), Eh(X)] denotes the pole [resp. the
isometric circle of X, the disk bounded by I(X), ¢l(C — D(X)), the isometric hemi-sphere
of X, the half-ball in H? bounded by Ih(X), cl(H® — Dh(X))]. For a discrete subgroup
G of Isom(2,C) with non-trivial stabilizer G, the extended Ford domain, denoted by
Ph(@G), is defined by Ph(G) = N{Eh(X)|X € G—Gs}. A Ford domainis the intersection
of Ph(G) with a fundamental region of G, |

The following lemma can be proved by using the arguments in [2] (Proof of Proposition
1.1).

Lemma 3.1. (1) Let p be a PSL(2, C)-representation of m(T) sending [A, B] = K? to
a parabolic transformation. Then (i) p lifts to a SL(2, C)-representation p, and (ii) p
extends to a representation of m(O) if and only if tr(p(K?)) = —2.

(2) Let p be a PSL(2, C)-representation of m1(S) sending K; (0 < i < 3) to parabolic
transformations. Then (i) p lifts to a SL(2, C)-representation, and (i) p extends to a
representation of mi(O) if and only if p(K;) = p(K;)~' whenever p(K;) and p(K;) share
the same parabolic fixed point.

A PSL(2, C)-representation of 71(T") [resp. m1(S)] is said to be type-preserving if it
satisfies the condition of Lemma 3.1 (1) [resp. (2)]. A PSL(2, C)-representation of 71(O)
is said to be type-preserving if it sends K to a parabolic transformation. For X =T, S and
O, Let R(X) be the space of type-preserving PSL(2, C)-representations of m;(X) modulo
conjugacy, and let R(X) be the space of SL(2, C)-representations modulo conjugacy which
project to type-preserving PSL(2, C)-representations. Then, by Lemma 3.1, we may
identify R(T), R(S) and R(O); they are denoted by the common symbol R. Similarly,
we may identify R(T) and R(S); they are denoted by the common symbol R. (Note that
R(O) =0.) i

For a SL(2, C)-representation p € R, let ¢; be a map from DO = QU{1/0} to C define
by ¢5(r) = tr(¢(ay)), where o, is an element of m;(T') represented by the simple loop of
slope r. (Note that this definition does not depend on the orientation of the loop nor the
choice of the base point of the fundamental group.) Then ¢; is a non-trivial Markoff map
by the following well-known trace identities for matrices X and Y in SL(2, C):

tr(X)? + tr(Y)? + tr(XY)? — tr(X)tr(Y)tr(XY) = 2 + tr([X, Y]),
tr(XY) + tr(XY L) = tr(X)tr(Y). |

Further, the correspondence p — ¢; is a homeomorphism from R to ® by [3]. This yields
a homeomorphism between R and W. Therefore we have,

Proposition 3.2. There are natural homeomorphisms R=P and R V.

We denote the element of R corresponding to ¢ € ® [resp. 9 € W] by py [resp. py].
Jorgensen [3] gave a nice construction of the representation p, from a Markoff map ¢:

Lemma 3.3. Let ¢ be an element of ®, put (z,y,z) = (¢(1/0),¢(0/1),$(1/1)), and
assume z # 0. Then the following identities define a representation p € R corresponding

to ¢:
r—Yy/z X 22 - Z - z —Tr/z — 22
s = ("0 am = (2, ) = (VT UE)

x y/z -

?
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Further we have p(K?) = 7)1 :?) This representation projects to a representation
p € R which satisfies the following identities:

AR Kl BRI

— —y/z z 0 Yy x/z

where [ ] denotes elements in PSL(2, C). In the above, A, B, P, Q, and R are generators
in the group presentations (1) and (3) in Section 1.

)

The following lemma gives a geometric meaning of the traces:

Lemma 3.4. Let p and (x,y, z) be as in Lemma 3.3. (However, we do not need to assume
2 #0.) Then we have the following:

d,(P,Q) = 2cosh™'(y/2), d,(Q, R) = 2cosh™'(z/2), d,(R,P) = 2cosh™!(z/2).

where d,(P,Q), for example, denotes the complex distance between the azes of the elliptic
transformations p(P) and p(Q).

Corollary 3.5. Suppose z = 0. Then d,(R, P) = tirn/2, i.e., the azes of the w-rotations
p(P) and p(R) intersect orthogonally. In particular, p(P) and p(R) are commuting.

By this corollary, we see that the image of the PSL(2, C)-representation pg of m(O)
corresponding to the trivial Markoff map is Klein’s four group.

In the following, we give a geometric construction (using only a pair of compasses and a
ruler) of the PSL(2, C')-representations given by Proposition 3.2. We start from a complex
probability (a1, asy,a3) € C?, i.e., a triple of complex numbers satisfying a1 + as + a3 =1
and a; # 0 (1 <i < 3). By repeatedly drawing the three vectors a;, as, as, we obtain an
infinite, possibly singular, broken line £ on the complex plane C. Explicitly, £ consists
of the vertices {o;]i € Z} and the directed edge 0;0;1; which is equal to agi), where [i]
denotes the unique integer between 1 and 3 such that [i] = ¢ (mod 3). For each vertex
o of L, let P, be the elliptic transformation of H? of order 2 whose axis has end-points
0 £ \/—a;a;, where a; and a; are the entries of the complex probability corresponding to
the pair of edges of £ meeting at 0. To give a geometric construction of P,, let C, be the
hemisphere in H® with center o and with radius / laia;|, the multiplicative mean of |a;]|
and |a;|, and let H, be the hyperbolic plane in H? whose ideal boundary is the line in

C passing through o and bisecting the angle between the pair of edges of £ meeting at o.
Then

P, = (reflection in H,) o (reflection in C,).

It should be noted that the isometric hemi-sphere Ih(P,) of P, is equal to C, and that the
pole of F, is 0. Choose any three consecutive vertices o;, 0o and 03 of £. Then we can see,
by an elementary Euclidean geometry, that the product P,, P,, P,, is equal to the parabolic
transformation (z,t) — (2 + 1,t) of H®. Hence, we obtain a PSL(2, C)-representation p
of m,(O) belonging to R by putting

p(P) = p(Po), p(Q)=p(F,,), p(R) = p(P,y).

Let ¢ be a complex probability map such that (¢(),¥ (7€), v(€3)) = (a1, a9, a3),
where (77|, €5, @3) is dual to the oriented ideal simplex < 1/0,1/1,1/0 >. Further, we
choose 0y, 0y and o3 so that
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Then the representation p is equal to that corresponding to 1 € ¥ by the homeomorphism
in Proposition 3.2. If we choose £ so that o, is the origin 0 of C, then p is equal to that
given by Lemma 3.3.

Example 3.6. If (a;,a9,a3) = (1/3,1/3,1/3), then the image Im(p) = p(m1(0)) is a
Fuchsian group, and its Ford domain is supported by the isometric hemispheres of the
elliptic generators of slopes 1/0, 1/1 and 0/1. In fact, we can see that the intersection
of a fundamental domain of K and the common exterior of the isometric hemispheres of
these elliptic generators satisfy the conditions of the Poincare’s theorem on fundamental
polyhedra [6].

4. ANGLE PARAMETERS AND TRIANGLES

Let p be an element of R, and let ¢ be a Markoff map such that p = ps. D, denotes
the subcomplex of D formed by the 2-simplices whose vertices are sent by ¢ to non-zero
complex numbers. (Note that this does not depend on the choice of ¢.) Let 0 =<
51,52,53 > be a positive oriented simplex of D,, and let {Pi}ie 7 be the sequence of
elliptic generators corresponding to o such that s(P;) = s;. We denote by L(p;0) the
infinite possibly singular broken line which is obtained by successively joining the poles
{o(p(P;))} by edges. By the construction in the previous section, we see

O(P(R‘))O(P(—Piﬂ)j =y(€p),
where v is the complex probability map corresponding to p, and (€1, €9, €3) is dual
to 0. Put a; = ¢(€;) (1 <i < 3). Then we have the following:

Lemma 4.1. The following conditions are equivalent:
(1) I{p(P;)) and I(p(P;1)) intersect in two points for some i € Z.
(2) I{p(P,)) and I(p(P;y1)) intersect in two points for any i € Z.
(3) There ezists a Euclidean triangle whose edges have lengths v/]a1], v/]az] and \/[ch—I .
If the above conditions do not hold, then we have D(p(P;)) C D(p(Pi-1)) N D(p(Pit1))
for some 1.

Suppose the conditions of the above lemma are satisfied. Let [3; be the angle of the
triangle in Lemma 4.1 (3) between the edges of lengths y/]a;_1| and 1/]a;], where the
indices are considered modulo 3.

Suppose further that £(p; o) is simple. Then it divides C into the “upper and lower”
parts. For ¢ = =+, let af be the angle (0 < of < m) at the vertex o(p(F;)). Put 6 =
s(a§—20;). Then it is the signed angle of the arc in I(p(F;)) bounded by the fixed point of
p(P;) and the point of I(p(F;))NI(p(Pix1)) on the e-side of L(p; o) in C. It is determined
by peR, sy € D and o. So, we denote it by 9;(5{2-], o), and call it the angle parameter
of p at s;; with respect to o.

Lemma 4.2. The following identity holds:
, r
0,(s51,0) + 05(s2,0) + 0;(s3,0) = 3

Lemma 4.3. D(p(P;)) C D(p(P;-1))UD(p(Piy1)) if and only if 05(spy, 0) < 0 fore = +.
Let ¢’ be a Iﬁositive oriented 2-simplex of D such that ¢ N o’ =< s1,83 >, and as-

sume that ¢’ also belongs to D,. Let {F/}, 7 be the sequence of elliptic generators
corresponding to ¢’. Then, by Proposition 1.2, we may assume

Pl=P, Pj=P, Pj=DP"
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Then by Lemma 2.2 (3), the Euclidean triangle < o(p(P1)), o(p(P2)),0(p(Ps)) > is similar
to the Euclidean triangle < o(p(F})), o(p(P3)), o(p(Fy)) >. In particular, the union of two
infinite broken lines £(p; o) and L(p;0’) forms a bi-infinite sequence of mutually similar
triangles. (The triangles are possibly degenerate and the interiors of the triangles possibly
intersect.) _

More generally, let o1, 09, -+ , 0, be a finite sequence of 2-simplices of D,, whose duals
form the vertex set of a simple path in ¥. Let A(p;0y,09,---,0y,) be the union of the
bi-infinite broken lines {L£(p;0;)}1<i<n in C. Then this gives a finite array of bi-infinite
sequences of mutually similar triangles. In some cases, this gives a triangulation of a
region of C (see. Figure 1).

5. JORGENSEN’S THEOREM ON QUASI-F'UCHSIAN GROUPS REPRESENTING PAIRS OF
PUNCTURED TORI

Let 7 be the subspace of R consisting of the quasi-conformal deformations of the repre-
sentation in Example 3.6, and let 97 be the subspace of 97 consisting of geometrically

finite representations. Let | D] be the topological realization of abstract simplicial complex
D, and put int(|D]) = |P| — P and §(D?) = {(v,v) € |D| x |D|jv € D”}. Then the
following is our interpretation of a result of Jorgensen in [3].

Theorem 5.1. There is a bijection v = vt x v~ from T U 8Q’T to |D| x |D| — 6(D)
€

sending T to int(|D]) x int(|D|) which satisfies the following conditions. For each p
TU OQT let £(p) be a “straight” line segment joining v*(p) and v~ (p), and let ot (p) =

01,09, 0, = 0 (p) be the sequence of 2-simplices of D covering ¢(p) in this order,
where v(p) € a*(p) (e = £). Then the following holds:
(1) The configuration A(p; oy, 09, ,0,) is non-singular and “dual” to the extended

Ford domain Ph(Im(p)) (see Figure 2). In particular, the extended Ford domain is sup-
ported by the isometric hemi-spheres of the images of the elliptic generators each of whose
slope is a vertex of some o; (1 <1< n).

(2) Let s (1 < i < 3) be the vertices of o¢. Then the angle parameter of p at s§ with
respect to o¢ is non-negative (1 < i < 3), and the triple of these angle parameters gives
the barycentric coordinate of v<(p) in o°. ‘

(3) The restriction of v to T is a homeomorphism to int(|D|) x int(|D|). In particular,
the cellular structure D X D gives that of T .

However, we have not succeeded in proving the whole of the theorem. Though we have
proved the part characterizing the combinatorial structures of the Ford domains of the
groups in 7, we have not proved that part for the groups in 8Q(T) nor proved that v is
bijective.

6. JORGENSEN TYPE THEOREM FOR THE RILEY SLICE OF SCHOTTKY GROUPS

Let G, be the subgroup of PSL(2,C) generated by the following pair of parabolic

transformations:
1 1 1 0
0 1y’ w 1|

Following Keen-Series [4], define S by:
S ={p e C|QG,)/G, is a homeomorphic to a four times punctured sphere S}.
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This has been called the Riley slice of Schottky groups. The space of the boundary points
of § which are geometrically finite is denoted c’)Q (S).

We first show that G, is represented by a Markoff map with 0. Let oy [resp. & /0]
be an element of m1(O) [resp. m(S)] represented by a simple loop of slope 1/0. Let P, @
and R be as in the group presentation (3) of Section 1. Then we may assume:

a0 = o0 = (QR)? in m(O).

Let G [resp. G] be the quotient group of 7;(S) [resp. m1(O)] by the normal subgroup
normally generated by &0 = o 0= (QR)?. Then:

G=<Ky>+<Ky> G=<P|lP’=1>x<Q,R|Q°?=R*=(QR)*=1>.

Thus a representation p € R induces a representations of G and G, if and only if p(cv /o)
has order 2: this is equivalent to the condition ¢(1/0) = 0, where ¢ is a Markoff map
that induces p. Let Ry be the subspace of R consisting of those representations p € R
satisfying these (mutually equivalent) conditions. Let ®; = {¢ € ®|¢(1/0) = 0}, and
let (@, €9, €3) be the triple of elements of ﬁ(Z) dual to the oriented 2-simplex <
0/1,1/2,1/1 >. For ¢ € &y, put x = #(0/1). Then ¢(1/1) = iz and ¢(1/2) = Fiz®.
Hence, the complex probability map 1 corresponding to ¢ satisfies the identity:

(W(€1),¥( ), ¥(3)) = (a,—a,1), where a=1/z"

Let ¥, be the subspace of ¥ consisting of those elements satisfying the above condition
for some a € C*. Then we can identify ¥y with C* by the correspondence i — a. The
PSL(2, C)-representation p corresponding to i € ¥y satisfies:

p(P) = [OZ 'éY] . p(Ky) = {(1) ﬂ . p(K3) = L}} (1)] ,  where w = 1/a.
In particular p(P) acts on C as the 7-rotation about the point 1/2, and we have p(G) =
G,,. Hence the Riley slice S of schottky groups is regarded as a region in ¥, = C*.

To study the Ford domain of the groups in S, we prepare some concepts and lemmas.
By the term an elliptic generator [resp. an elliptic generator triple, a sequence of elliptic
generators] of G, we mean the image of that of 7;(O0). Let A be the subgroup of the
automorphisms of the simplicial complex D generated by the reflection in the edge <
1/0,0/1 > and that in the edge < 1/0,1/1 >. Then A is isomorphic to the infinite
dihedral group, and the region bounded by the edges < 1/0,0/1 > and < 1/0,1/1 >
is its fundamental region: in fact, it is identified with the quotient D/A. The quotient
DO /A = QU {1/0}/A is identified with Q@ N[0, 1]. By Theorem 1.1 of [5], two (left or
right) generators of m;(T') determine the same element in G if and only if their slopes are
equal in QU {1/0}/A. Hence we can define the slope s(Q) of an elliptic generator Q of G
as the image in Q U {1/0}/A of the slope of an elliptic generator of m (O) which projects
to ). Then the following holds:

Lemma 6.1. Suppose two elliptic generators @ and Q' of G have the same slopes. Then
Q' is equal to Q or QF modulo conjugation by an element of < K >.

The following example is the starting point of our investigation of the Riley slice.

Example 6.2. The region 0 < |a| < 1/4 (equivalently, the region w > 4) is contained
in the Riley slice. To see this, let {P;} be the sequence of elliptic generators of G corre-
sponding to the 2-simplex < 1/1,1/2,0/1 >, such that s(P) is equal to 1/1, 1/2 or 0/1
according as i is congruent to 1, 2 or 3 modulo 3. The for any p € Ry and for any integer
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n we have I(p(Pii3n)) = I(p(Pst3n)). Suppose the parameter a satisfies the condition
0 < [a| < 1/4, then we can see {I(p(Pry3.))}, .z are disjoint and that its exterior is the
extended Ford domain of Im(p).

Let 0,09, ,0, be a finite sequence of mutually distinct 2-simplices of D/A, such
that o, =< 1/0,1/1,0/1 > and that o; and 0, are adjacent for each 7 (1 <i<n —1).
For p € Ro, let Ag(p; 01,09, ,0,) be the union of the broken lines, {L(p;0;)}o<i<n,
and let AO(/); 01,09, ,0y) be the union of Ag(p; 01,09, -+ ,0,) and its image by p(P),
the m-rotation about 1/2. Then we conjecture that the following analogue of Jorgensen’s
theorem holds:

Perhaps Theorem 6.3. Let Do = (D—{1/0})/A. Then there is a map from SUIg(S)
onto Dy which satisfies the following conditions. For each p € S U BQS, let £(p) be a
“straight” line segment joining 1/0 and v(p). Let oy =< 1/0,1/1,0/1 >, 09,--- ,0, be
the sequence of 2-simplices of D covering £(p) in this order. Then the following holds:

(1) The configuration Ao(p; 01,09, ,0y) 18 non-singular and “dual” to the extended
Ford domain of Ph(Im(p)). In particular, the extended Ford domain is supported by the
isometric hemi-spheres of the images of the elliptic generators each of whose slope is a
vertex of some oy (2 <i < n).

(2) Suppose n > 2, and let s; (1 < i < 3) be the vertices of o,. Then the angle
parameter of p at s; with respect to o, is non-negative (1 < i < 3), and the triple of these
angle parameters gives the barycentric coordinate of v(p) in on,.

(3) The restriction of v to S determines a homeomorphism from S/ ~ to Dy, where ~

is the cquivalence relation defined by w ~ —w. In particular, the cellular structure of D
induces that of S.

7. CONTINUOUS FAMILY OF CONE MANIFOLDS APPROACHING TO 2-BRIDGE KNOT
COMPLEMENTS

A trivial tangle is a pair (B3,t), where B is a 3-ball and ¢ is a union of two arcs in B?
which is parallel to a union of two mutually disjoint arcs in dB3. A meridian of (B3,t) is
a simple loop on B3 — t which bounds a disk in B? separating-the components of t. A
rational tangle is a trivial tangle (B?,t) equipped with a homeomorphism from 9(B3,t) to
(R?, Z*)/T. The slope of a rational tangle is defined to be the slope of its meridian. The
rational tangle of slope p/q is denoted (B?,t(p/q)). Then we can identify m (B* —t(p/q))
with m,(S)/ < &/, >. The Z, @& Zy-symmetry of S extends to that of (B* t(p/q)), and
the orbifold fundamental group m,((B* — t(p/q))/(Zs ® Z,)) is identified with 7 (0)/ <
af) sy > The 2-bridge knot of slope p/q, denoted K(p/q), is the “sum” of the rational
tangles of slopes 1/0 and p/q. Then the knot group G(p/q) = m,(S*— K(p/q)) is identified
with 7, (S)/ < &0, Gpjq >. The Zy @ Zy-symmetry of S extends to that of (S3, K(p/q)),
and the orbifold fundamental group G(p/q) = 7 ((S* — K(p/q))/(Z2 & Z5)) is identified
with 7, (0)/ < o? /00 af) /q > These observations implies that the non-elementary parabolic
SL(2,C)-representations of G(p/q) correspond to the Markoff maps which take the value
0 at 1/0 and p/q.

Following Riley [8], we define the Heckoid group G(p/q;n) (n > 1) and the extended
Heckoid group G(p/q; k) (k > 2) by:

Glp/g;n) = m(S)/ < ayo,dyy, >, Glp/ak) =m(0)) < oy ak), > .

It should be noted that the extended Heckoid group G(0/1;k) (k > 3) is isomorphic to
the classical Hecke group H(2,q) =< z,ylz? =y* =1 >.



71

Let K(p/q;n) be the orbifold with underlying space S* — K and with the cone type
singularity of angle 27/n along the “lower tunnel” 7 (i.e., an unknotted arc joining the
two components of ¢(p/q) in B* and intersecting the meridian disk transversely in one
point). Then the orbifold fundamental group of K(p/g;n) is isomorphic to G(p/q;n).
This orbifold can be considered as a cone manifold, denoted C(p/q;6), with cone angle
6 = 2n/n. The Zy @ Z,-symmetry of (S, K(p/q)) determines that of the cone manifold
C(p/q;0), and its quotient cone manifold is denoted O(p/q;20). If § = w/n for some
positive integer n, then the cone manifold is an orbifold with orbifold fundamental group
G(p/q;2n). If § = 0, then the (orbifold) fundamental groups of C(p/q;0) and O(p/q;20)
are regarded as the rational boundary points of the Riley slice S of slope p/q (i.e., op/q is
an accidental parabolic transformation).

Conjecture 7.1. (1) Suppose 0 < 6 < . Then O(p/q;20) is a hyperbolic cone manifold.
Let py be its holonomy. It induces a PSL(2, C)-representation of w1(O) which belongs to
Ro: we denote it by the same symbol py. Let 01,09, -+ ,0, be the sequence of 2-simplices
of D/A joining the vertices 1/0 and p/q. Then the configuration Ao(pe; 01,09, ,04) is
non-singular, and the “extended Ford domain” of O(p/q; 20) is “dual” to Ao(pe; 01,02, -+, 0n).
Here the extended Ford domain of O(p/q;20) means a fundamental region supported by
isometric hemi-spheres of elements of Im(pg) mudulo the action of the Euclidean transla-
11
0 1 ,

(2) As 8 approaches 7, the representation py converges to a representation, denoted py.

(i) Suppose p Z +1 (mod q). Then p, induces a faithful discrete representation of
the fundamental group G(p/q) of the orbifold O(p/q;m) = (S® — K(p/q))/(Z2 ® Z).
Let P and QQ, respectively, be elliptic generators of slopes 1/0 and p/q. Then p(P) and
pr(Q) fix 0o, and hence they induce (Euclidean) w-rotations of C. The configuration
Ao(pr; 01,09, ,0q_1) is “non-singular”, and the its image by the action of the infinite
dihedral group < pr(P), pz(Q) > give a triangulation of C. This triangulation is dual to
the Ford domain of ITm(p,(P)). :

(i1) Suppose p = 1 (mod q). pr induces a faithful discrete PSL(2, R)-representation
of the quotient of the fundamental group G(£1/q) by the infinite cyclic normal subgroup.
In particular, Im(p,) is equal to the classical Hecke group G(2,q).

tion pe(K) =

It is casy to verify the above conjecture for p/q = 0/1 and 1/2 (cf. Propositions 3.1
and 3.2 in [7]). Figure 3 shows computer experiments, by using the program written by
the third author [11], which convince us that the conjecture is valid for p/q = 2/5.
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