Notes on Discrete Subgroups of $PU(1, 2; \mathbf{C})$ with Heisenberg Translations

Shigeyasu KAMIYA Okayama University of Science

岡山理科大学(工学部) 神谷茂保

0. Recently Parker, Basmajian and Miner have independently given some conditions for a subgroup of $PU(1,2;\mathbb{C})$ to be non-discrete. In this paper we show that under some conditions Parker's theorem leads to some Basmajian and Miner's result.

1.To introduce Parker's theorem and Basmajian-Miner's theorem, we need some definitions and notation. Let C be the field of complex numbers. Let $V = V^{1,2}(C)$ denote the vector space C^3 , together with the unitary structure defined by the Hermitian form

$$\widetilde{\Phi}(z^*, w^*) = -(\overline{z_0^*}w_1^* + \overline{z_1^*}w_0^*) + \overline{z_2^*}w_2^*$$

for $z^* = (z_0^*, z_1^*, z_2^*), w^* = (w_0^*, w_1^*, w_2^*)$ in V.

An automorphism g of V, that is a linear bijection such that $\widetilde{\Phi}(g(z^*), g(w^*)) = \widetilde{\Phi}(z^*, w^*)$ for z^*, w^* in V, will be called a unitary transformation. We denote the group of all unitary transformations by $U(1,2;\mathbf{C})$. Set $PU(1,2;\mathbf{C}) = U(1,2;\mathbf{C})/(center)$. An element g in $PU(1,2;\mathbf{C})$ acts on the Siegel domain

$$H^2 = \{ w = (w_1, w_2) \in \mathbf{C}^2 \mid Re(w_1) > \frac{1}{2} |w_2|^2 \}$$

and its boundary ∂H^2 . Denote $H^2 \cup \partial H^2$ by $\overline{H^2}$. We define a new coordinate system in $\overline{H^2} - \{\infty\}$. To $q = (w_1, w_2) \in \overline{H^2} - \{\infty\}$ we can correspond the 3-tuple $(k, t, w_2) \in (\mathbf{R}^+ \cup \{0\}) \times \mathbf{R} \times \mathbf{C}$, where $k = Re(w_1) - \frac{1}{2}|w_2|^2$ and $t = Im(w_1)$. This 3-tuple $(k, t, w_2)_H$ is called the H - coordinates of q. For simplicity, we use $(t_1, w')_H$ for $(0, t_1, w')_H$.

The Cygan metric $\rho(p,q)$ for $p=(k_1,t_1,w')_H$ and $q=(k_2,t_2,W')_H$ is given by

$$\rho(p,q) = \left| \left\{ \frac{1}{2} |W' - w'|^2 + |k_2 - k_1| \right\} + i \left\{ t_1 - t_2 + Im(\overline{w'}W') \right\} \right|^{\frac{1}{2}}.$$

We note that this Cygan metric ρ is a generalization of the Heisenberg metric δ in ∂H^2 (see [7]). Let $f = (a_{ij})_{1 \leq i,j \leq 3} \in PU(1,2;\mathbb{C})$ with $f(\infty) \neq \infty$. We define the isometric sphere I_f of f by

$$I_f = \{ w = (w_1, w_2) \in \overline{H^2} \mid |\tilde{\Phi}(W, Q)| = |\tilde{\Phi}(W, f^{-1}(Q))| \},$$

where Q = (0, 1, 0), $W = (1, w_1, w_2)$ in V (see [3]). It follows that the isometric sphere I_f is the sphere in the Cygan metric with center $f^{-1}(\infty)$ and radius $R_f = \sqrt{1/|a_{12}|}$, that is,

$$I_f = \left\{ z = (k, t, w') \in (\mathbf{R}^+ \cup \{0\}) \times \mathbf{R} \times \mathbf{C} \mid \rho(z, f^{-1}(\infty)) = \sqrt{\frac{1}{|a_{12}|}} \right\}.$$

Remark 1.1. In $PU(1,1;\mathbb{C})$, our radius of isometric sphere is the square root of the usual one.

We have the same formulae as in Möbius transformations (see [3]).

Proposition 1.2. Let g and h be elements with $g(\infty) \neq \infty$ and $h(\infty) \neq \infty$. Then:

(1)
$$R_{gh} = \frac{R_g R_h}{\delta(g^{-1}(\infty), h(\infty))}.$$

(2)
$$R_h^2 = \delta((gh)^{-1}(\infty), h^{-1}(\infty))\delta(g^{-1}(\infty), h(\infty)).$$

Now we are ready to state Parker's Theorem.

Theorem 1.3 ([9]). Let g be a Heisenberg translation with the form

$$g = \begin{pmatrix} 1 & 0 & 0 \\ s & 1 & \overline{a} \\ a & 0 & 1 \end{pmatrix},$$

where $Re(s) = \frac{1}{2}|a|^2$. Let f be any element of $PU(1,2;\mathbb{C})$ with isometric sphere of radius R_f . If

$$R_f^2 > \delta(gf^{-1}(\infty), f^{-1}(\infty)\delta(gf(\infty), f(\infty)) + 2|a|^2,$$

then the group < f, g > generated by f and g is not discrete.

Remark 1.4. Suppose that g is a vertical Heisenberg translation. As a=0, this theorem is equivalent to the result in [5] and [6].

Let

$$B_r = \{ z \in \partial H^2 \mid \rho(z,0) = \delta(z,0) < r \},$$

and let $\overline{B}_s^c = \partial H^2 \cup \{\infty\} - B_s$. For 0 < r < 1, the pair of open sets $(B_r, \overline{B}_{1/r}^c)$ is said to be *stable* with respect to a set S of elements in $PU(1,2;\mathbb{C})$ if for any element $g \in S$,

$$g(0) \in B_r \quad g(\infty) \in \overline{B}_{1/r}^c$$

A loxodromic element f has a unique complex dilation $\lambda(f)$ such that $|\lambda(f)| > 1$. Let $S(r, \varepsilon(r))$ denote the family of loxodromic elements f with fixed points in B_r and $\overline{B}_{1/r}^c$, and satisfying $|\lambda(f) - 1| < \varepsilon(r)$.

For positive real numbers r with $r < 1/\sqrt{3+\sqrt{3}-\sqrt{2}} = 0.549...$, we define $\varepsilon(r)$ by

$$(*) \qquad \varepsilon(r) = \sup\{|\lambda(f) - 1| < \varepsilon\},\$$

where $\lambda(f)$ satisfies the inequalites below

$$|\lambda(f) - 1| < \sqrt{2 + \left(\frac{1 - (3 + |\lambda(f) - 1|)r^2}{1 - 2r^2}\right)^2 \left(\frac{1 - 3r^2}{1 - r^2}\right)^2} - \sqrt{2},$$

$$|\lambda(f)| < \frac{1 - 2r^2}{r^2}.$$

We show the graph of $\varepsilon(r)$ below.

If $r < 1/\sqrt{3+\sqrt{3}-\sqrt{2}}$ and $\varepsilon < \varepsilon(r)$, a pair of non-negative numbers (r,ε) is called a stable basin point.

For four points q_1, q_2, q_3, q_4 in ∂H^2 , define the real cross ratio $|[q_1, q_2, q_3, q_4]|$ by

$$|[q_1, q_2, q_3, q_4]| = \frac{\delta^2(q_3, q_1)\delta^2(q_4, q_2)}{\delta^2(q_4, q_1)\delta^2(q_3, q_2)}.$$

Note that this real cross ratio is invariant under PU(1, 2; C). We shall state Basmajian-Miner's result.

Theorem 1.4 ([1]). Fix a stable basin point (r, ε) . Let g be a parabolic element with fixed point ∞ . If f is a loxodromic element with fixed points 0 and g satisfying $|\lambda(f) - 1| < \varepsilon$. If $|[0, q, g(0), g(q)]| < r^4$, then the group < f, g > g enerated by f and g is not discrete.

2. In this section we show that Parker's Theorem leads to Basmajian-Miner's theorem under some conditions. First we treat a simple case.

Theorem 2.1. Fix a stable basin point (r, ε) . Let g be a Heisenberg translation with the form

$$g = \begin{pmatrix} 1 & 0 & 0 \\ s & 1 & \overline{a} \\ a & 0 & 1 \end{pmatrix},$$

where $Re(s) = \frac{1}{2}|a|^2$. Let f be a loxodromic element with fixed points $a_f = (0,0)$ and $b_f = (it,0)$ (t>0) such that $|\lambda(f)-1| < \varepsilon$. If $|[a_f,b_f,g(a_f),g(b_f)]| < r^4$, then the group < f, g > generated by f and g is not discrete.

Lemma 2.2 immediately leads to

Corollary 2.3. Fix a stable basin point (r, ε) . Let f and g be the same elements as in Theorem 2.1. If $\delta(a_f, b_f) > \frac{\delta(a_f, g(a_f))}{r^2} (1 + r^2 + \sqrt{1 + r^2})$, then the group < f, g > generatedby f and q is not discrete.

When the condition on fixed points of a loxodromic element is weakened, we obtain

Theorem 2.4. Fix a stable basin point (r, ε) , where r < 0.48. Let q be the same element as in Theorem 2.1. Let f be a loxodromic element with fixed point 0 and $q(\neq \infty)$ satisfying $|\lambda(f)-1|<arepsilon.$ If $\delta(0,q)>rac{\delta(0,g(0))}{r^2}(1+r^2+\sqrt{1+r^2}),$ then the group < f,g> generated by f and g is not discrete.

For our proof of Theorem 2.4, we need

Proposition 2.5. Let f be a loxodromic element with the attracting fixed point af and the repelling fixed point b_f . Then:

- (1) $|[f(z), z, b_f, a_f]| = |\lambda(f)|^2$ for any $z \in \partial H^2$. (2) $\delta(f(z), f(w)) = \frac{R_f^2}{\delta(z, f^{-1}(\infty))\delta(w, f^{-1}(\infty))} \delta(z, w)$ for $z, w \in \partial H^2$. (3) $R_f^2 = \delta(a_f, f^{-1}(\infty))\delta(b_f, f^{-1}(\infty)) = \delta(a_f, f(\infty))\delta(b_f, f(\infty))$.
- $(4) \frac{\delta(a_f, f^{-1}(\infty))}{\delta(b_f, f^{-1}(\infty))} = \frac{\delta(b_f, f(\infty))}{\delta(a_f, f(\infty))} = |\lambda(f)|.$
- $(5) \ \delta(a_f, f(\infty)) = \delta(b_f, f^{-1}(\infty)) = R_f |\lambda(f)|^{-\frac{1}{2}}.$
- (6) $\delta(a_f, f^{-1}(\infty)) = \delta(b_f, f(\infty)) = R_f |\lambda(f)|^{\frac{1}{2}}$.
- $(7) R_f(|\lambda(f)|^{\frac{1}{2}} |\lambda(f)|^{-\frac{1}{2}}) < \delta(a_f, b_f) < R_f(|\lambda(f)|^{\frac{1}{2}} + |\lambda(f)|^{-\frac{1}{2}}).$

Remark 2.6. If f is an element of $PU(1,1;\mathbb{C})$, then

$$R_f(|\lambda(f)| - |\lambda(f)|^{-1})^{\frac{1}{2}} = \delta(a_f, b_f).$$

But this is not true for an element of $PU(1,2;\mathbb{C})$.

3. The details of this paper will be published elsewhere.

References

- 1. A. Basmajian and R. Miner, Discrete subgroups of complex hyperbolic motions, Invent. Math. 131, 85-136 (1998).
- 2. A.F. Beardon, The Geometry of Discrete Groups, Springer, 1983.
- 3. L. R. Ford, Automorphic Functions (Second Edition), Chelsea, New York, 1951.
- 4. W. Goldman, Complex Hyperbolic Geometry, (to appear).
- 5. S. Kamiya, Notes on non-discrete subgroups of $\tilde{U}(1,n;F)$, Hiroshima Math. J. 13, 501-506, (1983).
- 6. S. Kamiya, Notes on elements of U(1, n; C), Hiroshima Math. J. 21, 23-45, (1991).
- 7. S. Kamiya, Parabolic elements of U(1, n; C), Rev. Romaine Math. Pures et Appl. 40, 55-64, (1995).
- 8. S. Kamiya, Discrete Subgroups of $PU(1,2;\mathbb{C})$ with Heisenberg Translations, Proceedings of the Fifth International Colloquium on Finite or Infinite Dimensional Complex Analysis, Beijing, 137-140, (1997).
- 9. J. Parker, Uniform discreteness and Heisenberg translations, Math. Z. 225, 485-505 (1997).

Okayama University of Science 1-1 Ridai-cho, Okayama 700-0005 JAPAN e-mail:kamiya@mech.ous.ac.jp