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Notes on Discrete Subgroups of PU(1,2;C)
with Heisenberg Translations
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0. Recently Parker, Basmajian and Miner have independently given some conditions
for a subgroup of PU(1,2; C) to be non-discrete. In this paper we show that under some
conditions Parker’s theorem leads to some Basmajian and Miner’s result.

1.To introduce Parker’s theorem and Basmajian-Miner’s theorem, we need some def-
initions and notation. Let C be the field of complex numbers. Let V = V12(C) denote
the vector space C3, together with the unitary structure defined by the Hermitian form

B(2*,w*) = —(2§w} + zfwy) + z3w;
for 2* = (27, 21, 23), w* = (w§, w},w}) in V.

An automorphism ¢ of V, that is a linear bijection such that 5(g(z*),g(w*)) =

®(z*,w*) for z*,w* in V, will be called a unitary transformation. We denote the group
of all unitary transformations by U(1,2;C). Set PU(1,2;C) = U(1,2;C)/(center). An
element ¢ in PU(1,2;C) acts on the Siegel domain

1
H? = {w = (wl,wg) € C? | Re(wl) > §|w2|2}

and its boundary 0H?2. Denote H? U 9H? by H2. We define a new coordinate system
in H2 — {oo}. To ¢ = (wy,ws) € HZ — {oo} we can correspond the 3-tuple (k,t,wy) €
(RTU{0}) xR x C, where k = Re(w;) — 1|w;|? and ¢ = Im(w,). This 3-tuple (k,t,ws)y
is called the H — coordinates of ¢. For simplicity, we use (¢1,w') gy for (0,¢1,w")g.

The Cygan metric p(p, q) for p = (ky1,t1,w’) g and ¢ = (ko,t2, W')y is given by

' 1 : — 1
p(p,q) = H5IW' = w'* + k2 = ka} + i{ts — 2 + Im(w'W)} .

We note that this Cygan metric p is a generalization of the Heisenberg metric § in OH?
(see [7]). Let f = (aij)i<ij<s € PU(L,2;C) with f(co) # co. We define the isometric
sphere I of f by

Iy ={w=(wy,we) € HZ | |®(W,Q)| = &(W, fH(Q))I},

where @ = (0,1,0), W = (1,w1,w2)in V (see [3]). It follows that the isometric sphere ¢
1s the sphere in the Cygan metric with center f~!(oco) and radius Ry = /1/]ais], that is,



29

lazz]

If = {z:(k,t,wl)E(R+U{0})xRXC | p(z,f_l(oo)-): ! }

Remark 1.1. In PU(1,1;C), our radius of isometric sphere is the square root of the
usual one. o

We have the same formulae as in Mobius transformations (sée (3]).

Proposition 1.2. Let g and h be elements with g(0o) # co and h(co) # oo. Then:
Ry Ry,

§(g=1(0), h(o0))’

(2) Ri, = 8((gh) 7 (c0), k™ (00))8(g ™ (00), h(00)).

(1) Rgn =

Now we are ready to state Parker’s Theorem.

Theorem 1.3 ([9]). Let g be a Heisenberg translation with the form

where Re(s) = 1|a|®. Let f be any element of PU(1,2; C) with isometric sphere of radius
Ry. If

R} > 6(gf ~*(00), f 71 (00)6(g f(00), F(00)) + 2lal?,
then the group < f,g > generated by f and g is not discrete.

Remark 1.4. Suppose that g is a vertical Heisenberg translation. As a = 0, this
theorem is equivalent to the result in [5] and [6].

Let
B, = {z € 0H? | p(z,0) = §(z,0) <1},

and let B, = 0H2 U {oo} — B,. For 0 < r < 1, the paif of open sets (Br,.g:/,) is said to
be stable with respect to a set S of elements in PU(1,2; C) if for any element g € S,

9(0) € B, g(co0) € By,

A loxodromic element f has a unique complex dilation A(f) such that |A(f)| > 1. Let
S(r,e(r)) denote the family of loxodromic elements f with fixed points in B, and B,

1/m
and satisfying |A(f) — 1| < &(r).
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For positive real numbers » with r < 1/4/3 4+ /3 — v/2 = 0.549..., we define £(r) by

(¥)  e(r) = sup{|M(f) — 1] <€},

where A(f) satisfies the inequalites below

A -1/ < \/2+ (BB (137 g

1—2r?2 1—r?
1-2r?
"\(f)l < 1,2 :
We show the graph of €(r) below.

"
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figure 1.

r<1/V3+vV3-+v2ande < €(r), a pair of non-negative numbers (r,¢) is called

a stable basin point.

For four points q1,¢2,¢3, g4 in OH?, define the real cross ratio |[q1, 92, ¢3,,94))| by

62(Q31 q1)52(q4) Qz) )
62(‘]4> 91)52(93,(12)

Note that this real cross ratio is invariant under PU(1,2;C).
We shall state Basmajian-Miner’s result.

![Q'hqz)%: 1q4]l =

Theorem 1.4 ([1]). Fiz o stable basin point (r,€). Let g be a paﬁzbblic element with fized
point co. If f is a lozodromic element with fized points 0 and q satisfying |A(f) — 1] <e.
If{[0,4,9(0), g(g)}l < 7%, then the group < f,g > generated by f and g is not discrete. '



31

2. In this section we show that Parker’s Theorem leads to Basmajian-Miner’s theorem
under some conditions. First we treat a simple case.

Theorem 2.1. Fiz a stable basin point (r,e). Let g be a Hewsenberg translation with
the form

where Re(s) = ila|®. Let f be a lozodromic element with fized points a; = (0,0) and
by = (2,0) (¢t > 0) such that |A(f)—1| <e. If |las, bs,g(af),g(bf)]| <%, then the group
< f,g > generated by f and g is not discrete.

Lemma 2.2 immediately leads to

Corollary 2.3. Fiz a stable basin point (r,c). Let f and g be the same elements as in

Theorem 2.1. If 6(ag,by) > M—aﬁ%(—gi(l +7r24+4/1+r2), then the group < f, g > generated
by f and g 18 not discrete.

When the condition on fixed points of a loxodromic element is weakened, we obtain

Theorem 2.4. Fiz a stable basin point (r,€), where r < 0.48. Let g be the same element
as in Theorem 2.1. Let f be a lozodromic element with fized point 0 and ¢(# o) satisfying

IA(f) = 1] < e. If §(0,q) > —‘&0—’%(0—))(1 + 72+ V1 +r?2), then the group < f,g > generated
by f and g 1s not discrete.

For our proof of Theorem 2.4, we need

Proposition 2.5. Let f be a lozodromic element with the attracting fized point ay and
the repelling fived point by. Then:

(1) f(=), 2, b5, a0)l = NP for any = € OB

(2) 6(£(2), f(w)) = se7=rrmyag=reayy 62> w) for z,w € OH?.
(9) By = 6(ay, f71(00))b(by, f7(00)) = b(ay, £(00))é(by, f(o0)).
(4) SEfan = wadey = POl

(5) 6(ag, f(00)) = 6(bs, f~(c0)) = Rfl’\(f)[:%-
(6) 8(ay, f‘I(loo)) = 6(bs, f(c0)) = ReA()]7. 1 1
(7) Re(IA(HIz = IMH)I77) < 8(ag, by) < R(IMHIZ + IA(F)|72).

Remark 2.6. If f is an element of PU(1,1;C), then

Ry(IMAHI = INAHITHE = 8(ay, by).

But this is not true for an element of PU(1,2;C).
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3. The details of this paper will be published elsewhere.
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