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REMARKS ON BLOCH FUNCTIONS ON WEAKLY
PSEUDOCONVEX DOMAINS

JOE KAMIMOTO
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1. INTRODUCTION

In this note, we consider certain characterization of Bloch functions
due to H. Aral [1] in the case of Weakly pseudoconvex tube domains in
C2.

An analytic function f D:={ze€Clz| < 1} — C is called a Bloch
function on the unit disk if

sup{|f'(2)|(1 — |2?); = € D} < oo

There are many detailed studies about the class of Bloch functions on
the unit disk and this class can be characterized in many different ways
(ref. [6]). In the case of several complex variables, Hahn [3], Timoney
[6] and Krantz-Ma [5] generalized the definition of Bloch function in
terms of invariant metrics (the Bergman metric or the Kobayashi met-
ric). The class of Bloch functions in several complex variables has also
been characterized in many different ways. The study of Arai [1] is
one of these interesting characterizations. He characterized the class of
Bloch functions on bounded strongly pseudoconvex domains in terms
of invariant geometry, Bergman-Carlson measures and Kahler diffusion
process.

By the way the asymptotic expansion of the Bergman kernel due
to C. Fefferman plays an important role in the argument of Arai [1].
Since an appropriate asymptotic formula of the Bergman kernel is not
generally obtained in the case of domains of finite type until now, Arai’s
characterization seems difficult to be generalized in this case. But the
author [4] obtained an asymptotic expansion of the Bergman kernel
in the case of weakly pseudoconvex tube domains of finite type in C2.
The purpose of this note is to show that his expansion can be applied
to the characterization of Bloch functlons for these domains.
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2. DEFINITIONS AND MAIN RESULTS

Let © be a bounded domain in C*. If z € 2 and £ € T,(Q2), then we
denote by Fk(z,€) the infinitesimal Kobayashi metric for .

Definition 2.1 (Krantz-Ma [5]). A holomorphic function defined on
Q is said to be a Bloch function f € B(RQ), if

[fu(2) - £l < CFk(2,6), 2€Q,{eT.(Q),
where f.(z) is the mapping from T,(2) to Ty(z)(C) induced by f.
The Bergman space B() is the subspace of L?() consisting of holo-

morphic L2-functions on ). The orthogonal projection B : L?(Q) —
B(f2) can be written by using an integral kernel:

Bf(z) = /Q K(z,w)f(w)dV(w) for f € L*(Q),

where dV is the Lebesgue measure on ). Here K is called as the

Bergman kernel of (). The Bergman metric of € is the function Fjp :
2 x C* — R, defined by

. 1/2

= (Z gjz‘c(z)fjé_k) , (2.1)
7,k=1 :

where g;z(2) = 0/02;0/0%log K(z, z). Let (¢°%) be the inverse matrix

of (g;5). If f € C1(Q) and z € Q, then we denote by ||V f(2)|| the norm

of the gradient of f with respect to the Bergman metric of {2, that is,

VSN = ¥ ) D

J.k=1

A positive measure p on {1 is called as Bergman-Carleson measure,
if there exists a positive constant C such that

[ 1 @Pdu(z) < € [ 151V ()
for all f € B(2).

Remark. In this note we can use the Bergman metric instead of
the Kobayashi metric in the definition of Bloch function because it is
known in [2] that these metrics are comparable on domains of finite
type in C? .

The following is a main result of this note.
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Theorem 2.1. Let §) be a tube domain of finite type in C*. Let f
be a holomorphic function in Q Then the following conditions are
equivalent:

(1) f is a Bloch function.

(2) SUP,eq IVNT(2)||r(2)] < oo, where r(z) is a defining function of
Q and Vy is the normal demvatwe (This assertion is independent of
the choice of defining function.)

(8) sup,eq |V f(2)|| < 00.
(4) The measure :

dps(2) := |V F(2)|[*dV (2)

s a Bergman-Carleson measure on .

3. ANALYSIS OF THE BERGMAN KERNEL AND METRIC

In this section, we investigate the boundary behavior of the Bergman
kernel and metric of certain tube domains in C?, which plays an im-
portant role in the proof of Theorem 3.1.

Let f : R = R be a function such that f” > 0 on R and f(z) =
z*™g(z), where g(0) > 0 and m = 2,3,.... The tube domain Q; C C?
is defined by Q; = R?+ iw;, where wy = {(z,y) € R%y > f(z)}. The
projection m : C* — R? is defined by m(21, 22) = (S21,S2;). Note that

7~1({(0,0)}) is a set of weakly pseudoconvex points and their type is
2m. Let (z,y) = (B2, S22). We introduce two variables (7,7), which
are defined by

{ T = X(l — f(2)/y),
n= y'/

where the function x € C*([0, 1)) satisfies the conditions: x'(u) > 1/2
on [0,1], and x(u) = u for 0 < u < 1/3 and x(u) =1 — (1 — u)z= for
1—1/3>" < u < 1. The Bergman kernel of Q; can be clearly expressed
in terms of the above variables in [4]:

e @ T? =
K(z,2) = nﬁmﬁ) + @(7,n)logn, (3.1)

where & € C((0,1] x [0, ¢)) and ® € C=([0,1] x [0, ¢)).

Now let us investigate the boundary behavior of the Bergman metric
of (¢ near weakly pseudoconvex points by using the above asymptotic
formula. Let Sy be the class of all functions which can be written in
the form f(7,n,n*logn) with f € C*((0,1] x [0,€) x (—¢,¢€)). Note
that if & < k', then S, D Sy. The boundary behavior of the functions
g;x(2) in (2.1) can also be clearly expressed in terms of (7,n).
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Proposiﬁon 3.1.
| | | Hij Hyz
91 G1z\ _ nm+1/2 '
(921 gzi) I‘Zi Hys | | (3.2)
‘ nm+1/2 772m '
where Hii € Symy1, Hiz = Hyi € Som, Hyz € Som-1.
From the above proposition, we can obtain the complete estimate

of the Bergman metric of Q2 on an approach region U, := {(z1,22) €
Qf, S29 > af(\le)} (a > 1)

Corollary 3.1 ([2)). If z € U, and |¢| = 1, then there exist positive
constants C,, C! depending on a such that

[S1 |§2| (16l | 16
Ca (771/2 < Fp(#;€) < C, 771/2-}'7—7;;
Proof of Proposition 3.1. From the asymptotic formula (3.1),
F(z) = ¢(r,n) — (2m +1)logn,

where ¢(r,7) = log(&(r,7) + &(r, n)?™*" log ).
Since F is a function depending only on the variables (z,y), F},z =
1/4Fx1;, F21§2 = 1/4F.1:y, FZ251 = 1/4Fy.’L‘ and F22§2 = 1/4Fyy‘

= 457 T Fy Fan ;/m{@ g — 2m+1}.

g :
2
qu L. (%) -,

o anzz + (Z_Z) ) Umffzfﬂ— : {qsg—n +y = 1}

1/m or 2m + 1
772/m 2 {QST +¢7‘n57'7’+¢7771 + 7]2 }

If we admit the two lemmas below, then we obtain the proposition from
the above equations. | O

Lemma 3.1.

or _a(r,n) 91 _ alnn)

R S AL —

dr 771/2 * On - n ’ |
ot _ C3(T, 77) 9’r _ 64(7-777) 0’ _ 65(7', 77)
0z @ Onlx qpitY2’ On? T2
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where ¢; € C*°((0,1] x [0,¢)) (7 =1,...,5).

Lemma 3.2.

¢T7¢TT € $2m+1, Qbm ¢7’TI € S2m, ¢7777 € 82m—1- (33)
Proofs of the above two lemmas. Much computation is necessary for the
proofs but it is easy. | ' O

4. THE PROOF OF THEOREM 2.1

By simple transformation, it is sufficient to prove the theorem in
the case of the domain )y, _WhiCh appears in Section 3. Moreover the
argument of [5],[1] implies that it is enough to check the equlvalence in
the theorem on the set N := {(z1,22) € Qy; Sz; = 0}.

(Proof of “(1) & (2)”.) The argument of Theorem 2.1 in [5] can be
easily generalized to this case. We remark that if z € NV, then

0 Cl Cg
< —< —
0z, (z) r T
implies
03 04
f(z) p1/Gm) = pif2’

where C is a positlve constant depending only on {2y by a similar
argument in [6].

(Proof of “(2) = (3).”) Let (¢°%) be the inverse matrix of (g;i).
From Proposition 3.1, the following is obtained by easy computation.

(gfl gfz) _ ( ‘th Hi2_77m+1/2) (4'1)
g g2) HAgm+/2 gogem |
where H’* € Sy_1 (j,k = 1,2). From the above we get
~ m 0
£ < 0 oo |2 g
22

Therefore the boundedness of ||@ f(2)|| can be shown by the remark in
the proof of “(1) = (2)”.

(Proof of “(3) = (4).”) This part is obvious.

(Proof of “(4) = (2).”) For a = (0,a2) € Qy, let P(a) be a polydisk
defined by

P(a) = {(wl, w2) € Qﬁ lel < ’71(9902)1/(27”) and lwz - a2| < ’72(302)},

where 7; is a positive constant depending only on §;. Now the following
lemma is analogous to Lemma 3 in [1].



Lemma 4.1. If w € P(a), then the Bergman kernel K of Q; has the
following estimate:

1(Sag) P < K(a,w) < (Sap) 7Y™,
where ¢y, ¢y are positive constants depending only on v1,7v, and ;.

Proof. We only note that this lemma can be deduced from an integral
representation of the Bergman kernel as in [4]. O

By using Lemma 4.1, we can show “(4) = (2)” by a similar fashion
in the argument of [1], p377-379.
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