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THEORY OF PSEUDO BIORTHOGONAL BASES AND ITS APPLICATION

LK /NIZES (Hidemitsu Ogawa)
Abstract

This paper introduces the theory of pseudo biorthogonal basés (PBOB) which is the
extension of the biorthonormal bases to linearly dependent over-complete systems. As an
application of the PBOB, a generalized sampling theorem is derived.

1 Introduction

In order to provide redundant expansions of signals, the concept of a pseudo orthogonal
basis (POB) was introduced in [2,3]. Although the POB uses larger number of elements than
the dimension of the signal space for expansions, it preserves the same form as orthonormal
expansion such as the Parseval’s equality. » v

As it is possible to extend the concept of the orthonormal basis (ONB) to the concept of
the biorthonormal basis (BONB), we extended the concept of POB to the concept of pseudo
biorthogonal basis (PBOB) [4, 5, 6]. PBOB and POB have already been used to various
applications such as signal restoration and the computerized tomography [7,8].

This paper reorganizes the theory of PBOB. The relationship between PBOB and the frame
theory is discussed. Properties of the PBOB are analyzed in detail.

As an application of PBOB, a generalized sampling theorem is derived. It uses only finite
number of sample points and provides the best approximation to the original function.

2 Definition of Pseudo Biorthogonal Basis

Let {¢m, o5, : 1 < m < M} be a set of 2M (M > N) elements in an N-dimensional Hilbert
space Hy. If any element f in Hy can be expressed as

M .
f=2(f,¢m)bm, I @

then {@dm, ¢k : 1 < m < M} is said to be a pseudo biorthogonal basis in Hy or a PBOB for
short. The set {¢%, : 1 < m < M} is called a dual sequence to {¢,, : 1 < m < M} and
{bm : 1 <m < M} is called a counter-dual sequence to {¢}, : 1 <m < M}.

Eq.(1) is the same expression of f in the form of a biorthonormal expansion. However, eq.(1)
uses two sets of M elements {¢,, : 1 < m < M} and {¢}, : 1 < m < M} in an N-dimensional
space Hy. Each of {¢, : 1 < m < M} and {¢}, : 1 < m < M} is a linearly dependent set if
M > N.

If ¢%, = ¢ for all m, the PBOB reduces to a pseudo orthogonal basis (POB). If M = N,
it will be either an orthonormal basis (ONB) if ¢ = ¢,, for all m or a biorthonormal basis
(BONB) if ¢}, # ¢m. These relationships are summarized in Table 1.

Example 1 Let o and § be arbitrary complex numbers. If we put

1 0 1
¢1=(0>,¢2=(1>,¢3=(1>, | (2)



25

Table 1: Relationships among the different bases

O = Pm O F P,
M = N | ONB: orthonormal basis BONB: biorthonormal basis

M # N | POB: pseudo orthogonal basis | PBOB: pseudo biorthogonal basis

o 7 a. (;a—l—l ‘ o
T P G

then, {$m,¢%, : 1 < m < 3} is a PBOB in C3.

Example 2 Let Hy be an M-dimensional Hilbert space which includes Hy, and Py be an
orthogonal projection operator from HM onto Hy. Let {um,ul, :1<m< M} bea BONB in
Hy. If we put .

then {¢m, ¢, : 1 <m < M} is a PBOB in Hy.

Eq.(1) is equivalent to the following operator equation:

M L : S '
> (¢m O ) = In (5)
m=1 ; )
where Iy is the identity operator on Hy and (- ® 7) is the Neumann-Schatten product defined
by

(v ®D)h = (h,v)u ‘ (6)

for fixed v and v in Hy and for any A in Hy.
Since (u ® )" = (v ® %), eq.(5) implies that we can exchange {¢m 1 <m < M} with
{#%, : 1 <m < M} in eq.(1),1.e., it is true that for a PBOB

f= Z Frbm)Oh o (7)

3 PBOB and Frame

Before going on with detailed discussions on PBOB, we shall show the relation between the
concepts of PBOB and frames. . '

A set of elements {¢,, : 1 < m < M} in Hy is said to be a fmme of Hy if there exist positive
-and finite constants A and B such that

A||f||2<Zlf,¢>m 12<Bl|fl|2 Fi ®)

for every f € Hy. The numbers' A and B are called the frame bounds[l 11]
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For a frame {¢, : 1 < m < M}, if we define

M ——
S = Z(d’m@d)m)’ : : : ) (9)
m=1 v )
Oy = 57 ¢m, » (10)

then eqs.(7) and (1) hold. Hence, a frame together with {¢}, : 1 < m < M} in eq.(10) is a
PBOB. The operator $ is called the frame operator, which is nonsingular. The set {¢%* : 1 <
m < M} is called the standard dual frame.

The converse also holds as follows. For a set {¢, : 1 < m < M} which spans Hy, there

always exists a dual sequence {¢; : 1 < m < M} which will be shown in Section 6. Hence, we
have

Theorem 1 If a set {¢, : 1 < m < M} spans Hy, then it forms a frame.

Proof. Let {¢% : 1 < m < M} be a dual sequence of {¢, : 1 <m < M}. If we put

M .
(O el (11)

m=1

M
B =3 lléml? (12)

A

then it follows from eq.(7) and the Schwarz inequality that

Mo
A2 =1 Z(f,¢m>¢*ml|2

IA

Z (f, ¢m M Nlml?

M
< (Z_ (£, ¢m)I?) Z_: I6mlI*.

Hence, applying the Schwarz inequality again, we have

M M
AFIZ < D0 [F ¢m)” < z_: £ éml® = Bl

m=1
This establishes the theorem. ll

PBOBs and frames are essentially the same for finite dimensional spaces as shown above.
However, if the name "PBOB’ is given to the set {¢,,,¢% } in eq.(1), the name frame’ is given
only to the set {¢n} in eq.(7). This means that PBOB emphasizes the fact that each PBOB
sequence {®n,, } has a dual sequence {¢7 }.

The concept of frame was proposed by Duffin and Schaeffer in 1952 in terms of nonharmonic
Fourier series [1]. It is only after a long period of silence that Young’s book in 1980 illuminated
again the concept of frame. And this was done also in terms of nonharmonic Fourier series [11].
However, in 1973, during this period of silence, Iijima and Ogawa proposed a concept of POB
for redundant expansions of signals independently of Duffin and Schaeffer’s work [2,4]. Ogawa
also extended the concept of POB to the concept of PBOB in 1978 [4,5,6]. He established in
detail general properties of frames in terms of PBOB. PBOB was applied to various problems

such as signal restoration, computerized tomography, and neural network learning problems
[7,8]
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4 Characterization of PBOB

In this section we provide a characterization of PBOBs. The following notations are funda-
mental in our theory of PBOB. For a given set of 2M (> N) elements {¢m, ¢}, : 1 < m < M}
in Hy, let Hy be any fixed M-dimensional Hilbert space. Let {¢n, : 1 < n < N} and

{¢l, 1 < m < M} be any fixed orthonormal bases in Hy and Hy, respectively. Let us
define

M
U= Z (P ® Pm), (13)
o
V= Z_(soin ® $5), (14)
W= Ve, | (15)
Umn = (n ) (16)
Vmn = (Pns Pm)s (17)
= (¢

:*
‘S~

m> (18)

The operators U and V play a central role in the theory of PBOB. It follows from eqs.(13)
and (14) that

M
UV =3 (¢m ® ) (19)
m=1
Though the operators U and V are defined by using {¢}, : 1 < m < M} in Hy, eq.(19)
means that U*V is independent of both the choice of space Hy and {¢;, : 1 <m < M} in Hy.
Since {¢!, : 1 < m < M} is an orthonormal basis in Hy, it is true that

Om = U@, =V (20)

Lemma 1 The following hold.

U= Z Z U, (@ ® P )y (21)

'm—l n=1

Z Z V(@ © Pr)s | (22)

m=1n=1

M. N

DD Wnalvm @), (23)

m=1n=1

v

w

Proof. It follows from eqs.(16) and (20) that

Um,n = (Son’¢m> - (99'!1.7 U*SO'Im> = (U()Onacp'lm>

Then, eq.(21) holds. The remaining parts can be derived similarly. ll

Eqgs.(21) and (22) state that (um,n) and (v 5 ) are the matrix representations of the operators
U and V, respectively, with respect to the ONBs {¢,, : 1 <n < N}in Hy and {¢}, : 1 <m <
M} in Hy. Similarly, eq.(23) means that (wp, ) is the matrix representation of the operator
W with respect to the ONB {¢], : 1 < m < M} in Hy.

Now we can characterize a PBOB as follows.



Theorem 2 The following statements are mutually equivalent.

(i) {¢m, ¥}, :1<m < M} isa PBOB,i.e., eq.(1) holds.
(i) UV = Iy.
(i) W?*=w,
~ N(@U)=N(V)={0}.
(iv) (Uf,Vg)=(fg)

M
) (fig)= D0 (F )@ 85

m=1

(Vi) Z UpmVpn = 5m,n :1<m,n<N.
p=1

Proof. (i)« (ii): It is clear from eqs.(19) and (5).
(i) — (iii): It follows from (ii) that

V*U = In.
Then, eq.(15) yields
W2 =UV*UV*=UINV* =W,
which implies eq.(25). Since eq.(30) yields
{0} C N(U)C N(V*U) = N(In) = {0},

it holds that N(U) = {0}. In the similar way, eq.(24) yields N(V') = {0}.
(iii) = (ii): It follows from eqs.(25) and (15) that

U(V*U - IN)V* = 0.
Since eq.(26) means R(V*) = Hn, eq.(31) yields
U(V*U - In) = 0.

Since N(U) = {0}, eq.(32) yields eq.(30), which implies (ii).
(ii) = (iv): It follows from eq.(24) that (U f,Vg) = (f,U*Vg) = (f,9).
(iv) = (ii): Since eq.(27) yields (f,(U*V — In)g) = 0, (ii) holds.
(iv)—(v): Since egs.(13) and (14) yield

M
Uf = Z(.ﬂd’m)ﬂo;m
m=1
Vg = 2{: ) s
we have
M .
(Uf,Vg) =" (f16m)(g, %),
m=1

since {¢7, :1 < m < M} is an orthonormal basis in Hy. This establishes (iv)«(v).
(ii)«(vi): It is clear from Lemma 1. H
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(24)
(25)
(26)
(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

Eq.(24) is the most important property of the PBOB. That is, U* ‘is a left inverse of V.

Eq.(25) means that W is an oblique projection operator in Hy;. More precisely, we have
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Corollary 1 If a set {¢m,¢}, : 1 < m < M}fis a PBOB, then W is an oblique projection
operator onto R(U) along the direction of R(V)t.

-Proof. Since N(V) = {0}, it holds that R(V*) = Hn. Then, eqi.'(15) yields

R(W)=R(UV*)=UR(V*) = UHy = R(U),

and hence R(W) = R(U). Since N(U) = {0}, we have UTU = Iy. Then, eq.(15) yields
V*=INV* =UUV* = U'W.

Hence, we have »
v =Utw. ‘ : o (36)

It follows from egs.(15) and (36) that |
N(W)=N(UV*) > N(V*) = N(U'W) > N(W).

Hence, N(W) = N(V*)= R(V):. l
From Corollary 1 and Lemma 1, we have

Corollary 2 If a set {¢m,¢% : 1 <m < M} is a PBOB, then (wn, ) is an oblique projection
matrix onto the range of (un, ) along the direction of the orthogonal complement of the range
of (Vm,n)- '

Eq.(28) is the extension of the Parseval’s equality for a BONB. We can see from eq.(35)
that the Parseval’s equality (28) is only another expression of eq.(27). Putting g=f in Theorem
1 yields '

Corollary 3 The following statements are mutually equivalent.

(i) {¢m,¥, :1<m < M}isaPBOB.

(it) (ULV ) =% (37)
M
(iii) [Ifl|2 = Z_(f,¢m><f,"¢;‘n>- (38)

When Hy is a functional space, the following theorem is useful.

Theorem 3 Let Hy be an N-dimensional reproducing kernel Hilbert space. Let K(z,2') be a
reproducing kernel of Hy. A set {¢m, %, :1 < m < M} in Hy is a PBOB if and only if

M [E—
2_: i (2)dm(2) = K(z,2"). | | (39)

Proof. Let us denote the left-hand side of eq.(39) by H(z,z’) temporarily. For any fixed z’,
H(z,z') belongs to Hy. Furthermore, we have for any fixed z’ and any f in Hy

I

M
(FC), H(,2h) = (f(), X_: G ()Pm(2"))

M

> (f,¢m)bm (),

m=1

and hence
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M

<f()7H(’ml)> = Z (f7 ¢:n>¢m(x’)

m=1
This implies the theorem. ll
The right-hand side of eq.(39) is independent of both the number of elements of the PBOB

and the choise of PBOB itself. That is, the left-hand side of the equation is a kind of invariant
of PBOB.

5 Properties of PBOB

As we can see from egs.(28), (38), and (39), the Parseval’s equality as well as the expression
of the reproducing kernel by using the PBOB has the same form with respect to the BONB.
This section focus on such form preservation properties of PBOB. Let B(Hy) be a set of all
bounded linear operators on Hy.

Theorem 4 Let {¢n, ¢, : 1 <m < M} bea PBOB in Hy. For any A € B(Hy)

M M .
A=Y (Abn, 95)(6m © BF) (40)

m=1n=1
Proof. It follows from eqs.(5) and (1) that

A = Alny

M ) .
n=1
M M

= S (X (Adn, b )dm] © B),
n=1 m=1 :
which implies eq.(40). l
Eq.(40) says that the Neumann-Schatten product expression of A in B(Hn) by using the
PBOB has the same form with respect to the BONB.
The expressions of the Schmidt norm, the Schmidt inner product, and the trace of an
operator by using the PBOB have also the same form with respect to the BONB as follows:

Theorem 5 Let {¢m,d}, : 1 < m < M} be a PBOB in Hy. For any A, B € B(Hn), we have
M

(A,B) = ) _(Ad},, Bém), | (41)
m];[l
Y (A, Adm), (42)
v
tr(A) = Y (Adn,bm). (43)

m=1

[1Al1Z

Proof. It follows from eq.(5) that

(A,B) = (A,BIn)

M —_—
= (4B ) (¢m @ 1))

m=1
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It
WE

(A, (Bm) @ ¢r,)

= Z (Ad):nansm)a

m=1

S

which implies eq.(41). The remaining is clear from eq.(41). Il

Theorem 6 Let {¢n, ¢, : 1 <m < M} bea PBOB in Hy. Then we have

M

(W) = 3 (¢ ém) = V. | (4)

m=1

Proof. Tt follows from egs.(15) and (20) that

M M
tr(W) = 3 (W, @) = D UV 00, 0l)
m=1 m=1
M M
= Z (V*¢;n, U*‘/Q;;m) = Z( :nv ¢m>7
m=1 m=1
and hence
M
tr(W) = D _ (¢, bm)- (45)
m=1
When {¢,,8%, : 1 < m < M} is a PBOB in Hy, putting A = Iy in eq.(43) yields
M
Z (Pms®m) = N.
m=1

This implies eq.(44) because of eq.(45). ll

The right-hand side of eq.(44) is independent of not only the number of elements of the
PBOB but also the chosen PBOB itself. That is, the left-hand sides of the equation is invariant
of the choice of PBOB.

Let {¢m,d} : 1 <m < M} be a PBOB in Hy. If the inner products (¢}, dm) = (¢}, én)
for all m and n, then it is called a pseudo biorthonormal basis or a PBONB for short. It follows
from eq.(44) that “

Corollary 4 Let {¢m,¢%, :1 <m < M} bea PBONB in Hy. It holds that
N N
<¢ma¢m>:'M— :1<m <M. (46)

The right-hand side of eq.(46) is independent of the choice of PBOB. It depends only on
the number of elements of the PBOB.

6 Construction of PBOB

Given a set {¢,, : 1 < m < M} which spans the whole space Hy', we shall give general
methods for the construction of a dual sequence {¢}, : 1 < m < M}.
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Theorem 7 Let Hy be any fixed M-dimensional Hilbert space and {¢}, : 1 < m < M} be any

fixed orthonormal basis in Hy. Let U be an operator defined by eq.(13). Let T' be any fixed
left inverse of U. If we put

O = T, (47)

then {¢pm,dy, : 1 < m < M} is a PBOB in Hy. All dual bases can be constructed by changing
the left inverse T

Proof. Eq.(24) is equivalent to eq.(30). It follows from eqs.(14) and (47) that

M M
V=2 (¢n®%n) =D (¢n ®)T" =T, (48)
m=1 m=1 ’
and hence V* = T'. Since T is a left inverse of U, we have V*U = TU = In. Then {¢m, ¢, :
1<m < M}isaPBOB in Hy because of eq.(30). The remaining of the theorem is clear from
Theorem 2. H

A general form of the left inverse of U is given as
T=Ut+Y(Iy - UUY), (49)

where Y is an arbitrary operator from Hy to Hy. Another general form of the left inverse of U
is given as

T =U'W, (50)

where W is an arbitrary oblique projection operator onto R(U). Note that eq.(50) is nothing
but eq.(36) because V* = T. By changing the operator ¥ or W, we can construct all dual
sequences by using eq.(47).

The following method essentially needs only the left inverse of a matrix even when Hy is a
space of functions.

Theorem 8 Let {¢n : 1 < n < N} be any fixed orthonormal basis in Hy. Let (um ) be an
M X N matrix defined by eq.(16). Let (ty,) be a left inverse of the matrix (Um,n):

M
Ztn,pup,m = Omn :1<m,n<N. (51)
p=1
If we put
N
¢:n = Z tn,m‘Pny (52)
n=1

then {¢m,¢5, : 1 < m < M} is a PBOB in Hy. We can use this method to construct any
PBOB.

Proof. It follows from eqs.(17) and (52) that

Umm = <99na ¢:n> = tm,nv (53)

Eqgs.(53) and (51) yield eq.(29). This implies that {@,.,¢% : 1 < m < M} is a PBOB in Hy.
The remaining of the theorem is clear from Theorem 2. W
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7 Sufficiency of PBOB

Let {$m, 8% : 1 <m < M} be a PBOB in Hy. If M > N, the set {¢, : 1 < m < M} is
linearly dependent. Hence, fin Hy can be expressed in infinitely many ways as

M
/= Z U P+ (54)

m=1

That is, we have infinitely many sets of expansion coefficients {am : 1 < m < M}. A basic
question on PBOB is that can all expansmn coeflicients be expressed as inner products of f and
elements of a dual sequence as

am = (f, %) | 1< m< M. (55)
We say that the PBOB is sufficient if eq.(54) and (54) holds.
If f =0, then (f, ¢%,) = 0 for all m. However, if M > N, there exist a set {a, : 1 <m < M}

which includes non-zero elements even if f = 0. Therefore, the concept of ”sufficiency of PBOB”
makes sense when eq.55 holds for any f # 0.

Theorem 9 Let {¢,, : 1 < m < M} be a set which spans the whole space Hy. Let f be a
non-zero element of Hy. Let {an, : 1 < m < M} be any fixed expansion coefficients of f such
that eq.(54) holds. There exists a dual sequence {¢7, : 1 < m < M} such that eq.(55) holds.

Proof. Let {e,, : 1 < m < M} be the standard basis in CM and U be an operator defined
by

o |
= 3 (em @ Fm) | (56)
Let
_ I __J
h=mm P (57)

and P; be the orthogonal projection operator onto the orthogonal complement of the one-
dimensional subspace spanned by f. Finally, let

¢% =T fo + PiU e, : ' (58)

We shall show the set {¢}, : 1<m<M } meets the requirment of Theorem 9. The set
{Utem : 1 < m < M} is a dual sequence to {¢, : 1 < m < M} because of eq.(49) and Theorem
7. Eqs.(58), (54), and (57) yield

M . M
Y @b = D bm @ (@S2 + PiUTen)
m=1 m_;/[ | B o
= [( Z am¢m) ® f2] + (Z ¢m @ Ufem)Pl
m=1 m=1
=(fof)+P
= (f1® f) +[In - (f1 ® f1)]
= IN’

which implies that {¢}, : 1 < m < M} is a dual sequence to {¢m : 1 < m < M}. Eqs.(58) and
(57) yield
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(fa¢:1> = (fvm.h + PlUTe'm.> = a'm(fa f2> = Qm,
which implies eq.(55). H

8 Pseudo Biorthogonal Bases of Type O and Type L

Let {¢m,¢;, : 1 < m < M} be a PBOB in Hy. In the previous sections, we discussed
general properties of the PBOB which are independent of the choice of dual sequence. Among
all dual bases, there exist very interesting classes. These will be discussed in this section.

Let us consider the operator W defined by eq.(15). For a PBOB, it is in general an oblique
projection operator as shown in Theorem 2. If W is an orthogonal projection operator, then
the PBOB is said to be a pseudo biorthogonal basis of type O or O-PBOB for short. The set
{¢, : 1 < m < M} is called a dual sequence of type O or an O-dual sequence to {¢,, : 1 <
m < M}. The appellation ”Q” refers to orthogonal”.

Let us consider the matrix (wm ) defined by eq.(18). Eq.(23) shows that the matrix (wm, )
is a representation of the operator W, and (wm, ) is an oblique projection matrix for a general
PBOB. An oblique projection matrix becomes an orthogonal projection matrix if and only if it
is Hermitian. Then, we have

Theorem 10 A PBOB {¢m, ¢}, : 1 < m < M} is type O if and only if the matrix (wm, ) is
Hermitian.

It turns out from Theorem 10 that the ONB, the BONB, and the POB are all type O.
Furthermore, the PBOB given in Example 1 is an O-PBOB if and only ifa = 2/3 and § = —1/3.
For a PBOB {¢m,¢;, : 1 <m < M} in Hy, if there exists a linear operator A such that

O = APm :1<m< M, (59)

then {¢m, ¢k, : 1 < m < M} is said to be a pseudo biorthogonal basis of type L or L-PBOB for
short. The set {¢7, : 1 < m < M} is called a dual sequence to type L or an L-dual sequence to
{¢m : 1 < m < M}. The appellation ”L” refers to ”linear”.

Since A is a linear operator on Hy;, it can be determined by using only N linearly independent
systems. Eq.(59), however, gives M(M > N) number of conditions. Hence, the operator A does
not exist in general, and the only special PBOB for which it exists is called an L-PBOB. The
ONB, the BONB, and the POB are all type L. Furthermore, the PBOB given in Example 1 is
an L-PBOB if and only if & = 2/3 and § = —1/3, which is the same condition for the O-PBOB.

Theorem 11 Let {¢m, ¢, : 1 < m < M} be a PBOB in Hy. The following statements are
mutually equivalent.

(i) {¢m,d), :1<m < M} is an O-PBOB.

(i) R(U) = R(V). (60)
(iv) {¢m, ¢y, :1 <m < M} is an L-PBOB.

(vi) ¢ = (U"U) ¢m. (61)
(vii) 41, = Ul (62)

(viii) V* = UT. (63)
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Proof. (i) « (iil): It is clear from Corollary 1.
(i) « (viii): Since (i) yields that W = UUT, it follows from eq.(36) that

v =Utw=vtvut=vt.
which implies (i) — (viii). The converse is clear from eq.(15).
(vili) > (vii): It is clear from eq.(20).
(vii) « (vi): It is clear from eq.(ZO)‘and Ut = (U*U) U~ N
(vi) & (iv): Let A be a linear operator such that eq.(59) holds. It follows from eq.(13) that
. M s .
m=1 '

Egs.(59), (64), and (5) yield
A(UU) = Iy.
Since N(U*U) = N(U) = {0}, U*U is nonsingular and we have
A= (UU), | o ~(65)

which implies (iv) — (vi). The converse is clear. ll v
Eq.(61) guarantees existence and uniqueness of the L-dual sequence. Hence, we have

Theorem 12 For any set {¢,, : 1 < m < M} which spans the whole space Hx, there always
exist an O-dual sequence and an L-dual sequence . They are uniquely determined and they are

the same.

The O-PBOB gives the minimal norm expansion coefficients in eq.(54) as follows. Let a
be an M-dimensional vector consisting of the expansion coefficients in eq.(54). Let f be an
M-dimensional vector consisting of the expansion coefficients of f with respect to the O-dual
sequence {¢%, : 1 <m < M}:

) M
F=2 {fdnlem. | (66)

m=1

Then, we have

Theorem 13 Let {¢n, ¢, : 1 < m < M} be an O-PBOB. For any vector a which satisfies
eq.(54), we have

171l < llall- | (67)

~

The equality holds if and only if a = f.

Proof. If we choose CM as Hy and ey, as ¢, in eqs.(13) and (14), then it holds that

M

U = Z(em ®$7—2’:)7 (68)
m=1
M

V=2 (em®0), | | (69)

Eq.(54) can be expressed as
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U*a = f7 (70)

because of eq.(68). Eq.(70) has a unique minimal norm solution, which is given by (U*tf.
Since it follows from eq.(63) that (U*)! = V, eqs.(69) and (66) yield (UDN'f =V f = f. This
implies the theorem. Il

Theorem 11 provides methods of construction of O-dual sequence or L-dual basis {¢r,:1<
m < M} for a given set {¢m : 1 < m < M} which spans Hy. For example, Theorem 11(i)
provides the method which is given by Theorem 7 with the orthogonal projection operator W in
eq.(50). Eq.(62) provides the method which is also given by Theorem 7 with Y = 0 in eq.(49).
Since U*U is the frame operator as indicated by eq.(64) and (9), eq.(61) provides the method
given by eqs.(9) and (10). That means that the standard dual frame is nothing but the L-dual
sequence.

9 General Sampling Theorem

In this section, we shall develop a general sampling theorem by using the theorey of PBOB.
Since the sampling theorem was introduced to communications theory by Someya [10] and Shan-
non [9] in 1949, it has been extended in various directions. The extensions include, for example,
sampling with nonuniformly spaced sample points, sampling for the band-pass functions instead
of the usual low-pass functions, sampling for functions of more than one variable, and sampling
for general integral transforms.

Two view points are considered in sampling theories. The first is the point of view of the
general Fourier expansion. Almost all results presented so far have been done from this point
of view. .

In practical applications, we can use only finite number of sample values. That means that
a direct application of the conventional sampling theorem causes the so-called truncation error.
It leads us to the point of view of the function approximation. That is the second viewpoint.

The conventional sampling theorem needs exact sample values of a function, which are
impossible to obtain in practical applications. Only blurred values which come out from some
measuring equipment are available. The sampling theorem for such blurred samples is called
a sampling with real pulse. On the other hand, the traditional sampling theorem is called a
sampling with ideal pulse.

In this section we propose a generalized sampling theorem which uses a finite number of
sample values of the original or blurred function. Two viewpoints mentioned above are unified.

Let H be an infinite or finite dimensional functional Hilbert space consisting of complex (or
real) valued functions f(z) defined on a one- or multi-dimensional domain D. Assume that H
has a reproducing kernel K(z,2'). Let g(z) be a degraded function of f(z) which comes out
from some measuring equipment. Let A; be the degradation operator which transforms f(z)
to g(z). Assume that Al is a linear bounded operator from H to H.

Let {z : 1 <m < M} C D be a set of sample points which is not necessarily distributed
uniformly in D. Let y be the M-dimensional vector consisting of sample values {g(zn) : 1 <
m < M}. Let Az be a sampling operator which transforms g(z) to y. Let A be the observation
operator defined by A = A3 A; which transforms f(z) to y.

The generalized sampling problem is to obtain the original function f(z) or its best approx-
imation from y. If A; = I with I the identity operator on H, then it becomes the sampling
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theorem with ideal pulse. If A; # I, then it becomes the samphng theorem with real pulse
The following lemma is fundamental. :

Lemma 2 Let Hy be a closed subspace of H and let Py be the orthogonal projection operator
onto Ho. We can obtain the orthogonal projection of every f € H onto Hy from y = Af by
using a linear operator X if and only if Hy C R(A*).

Proof The operator equatlon X A = P, has a solution X if and only it N (A) C N(FR),
which is equivalent to Hy C R(A*). A

Lemma 2 means that R(A*) is the largest subspace within which we can obtain the best
approximation to the individual original f € H from y. We, therefore, concentrate on the
maximal subspace R(A*) hereafter. Let P be the orthogonal projection operator onto R(A*)
and let fo = Pf. The function fp is the best approximation to f in R(A*).‘

Theorem 14 ( Generalized sampling theorem) Let

bm(z) = K(z,2m) | :1<m < M, | (71)
(@) = (4795)(2) | t1<m< M. (72)

Let {¢m : 1 < m < M} be a counter-dual sequence to {¢}, : 1 < m < M} in R(A*). Then, we
have

M :
fo(z) = X_: 9(em)dm(2)- | (73)

Proof. First, we shall show that {¢}, : 1 < m < M} in eq.(72) spans R(A*). Since
(f,¢m) = f(zm) for f in H, we have

Z em ® O, | (74)

m=1

Eqs.(74) yields

M . M
A=AA = (Z em @ ¢:n)A1 = Z em ® (Aitd):n)’

m=1 m=1

which implies

M : : "
A:,Z em ® ¢ , - (75)
m=1 o
because of eq.(72). Eqgs.(75) means that {¢}, : 1 < m < M} spans R(A*). Hence, we can
construct {¢n, : 1 < m < M} from {¢%, : 1 < m < M}. Eq.(72) yields

(fvdﬁn) = (f?AI¢:n> = <A1f) ¢:n> = (gv ¢:n> = g(xm)a

which implies eq.(73). l

If R(A*) = H, then fo = f and eq.(73) restores the exact original function f. If R(A*) H,
then eq.(73) provides the original f when f € R(A”) and the best approximation to f When
f ¢ B(A%).

Let N be the dimension of R(A*). There exist an infinite number of counter-dual sequences
if M > N. That means that there are an infinite number of restoration formulae (73) which
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provide the same function fo. This is due to the linearly dependency of {¢7, : 1 < m < M}.
If we choose the sample points {z,, : 1 < m < M} so that {¢}, : 1 < m < M} is linearly
independent and if the degradation operator A; has a good property such as regurality, then
{¢%, : 1 < m < M} is linearly independent and {¢m : 1 < m < M} is uniquely determined.
In that case, the PBOB {¢m, ¢}, : 1 < m < M} becomes a BONB in R(Al%). Furthermore, if
we choose the sample points {z,, : 1 < m < M} so that {¢}, : 1 < m < M} is an orthogonal
basis and if the degradation operator A; has a good property such as a unitary operator, then
{¢m :1 < m < M} becomes an ONB in R(A*).
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