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A REINFORCED SURROGATE CONSTRAINTS METHOD
FOR SEPARABLE NONLINEAR INTEGER PROGRAMMING

Yuji NAKAGAWA (fhjil &)

Kansai University, Faculty of Informatics,

Abstract
This paper provides a new reinforcement to the surrogate constraints method for
solving separable nonlinear integer programming problems with a few constraints.
The surrogate constraint;s method often has a duality gap, i.e., fails to find an exact
solution to the original problem. A reinforcement proposed to fill the gap is to solve
a sequence of target problems that enumerate all solutions hitting a target region with

a single constraint.

1. INTRODUCTION

This paper presents a surrogate constraints method reinforced for solving a separable nonlinear
integer problem with multiple constraints. The surrogate constraints method solves a sequence
of surrogate problems, which have a single constraint, instead of a primal multi-constrained
problem. However, surrogate constraints method often has a duality gap, i.e., fails to produce an
exact optimal solution of the primal problem. The present reinforcement caﬁ fill the surrogate
duality gaps when there exist gaps.

Consider the following separable nonlinear integer programming problem.
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P°]: Maximize f°(x)= 3 £°(x,)

i=1
sub;ectto °(x)= S °x, 59 for j=1, ...,
j g; (x) 'Zlg,.(x,)s ;  for j m, W
x, €K° for i=1,....n,

where X =(x,, X,,.., X,), Ko ={l, 2,..., k,o} and , without loss of generality, we assume that

fio(x,.)é 0 forx, =1..,k°, i=1...,n 2
gh(x)=0 forx; =1,...k°, i=1l..,n, j=1...m

The problem [P°] is called Multidimensional Nonlinear Knapsack Problem (MNKP) by Morin
and Marsten(1976). As several special cases, the MNKP includes 1) Nonlinear Resource
Allocation Problem, named by Bretthauer and Shetty(1995), has differentiable convex objective
- and constraint functions. 2) Resource Allocation Problem, e.g. Ibaraki and Katoh(1988), has the
convex objective function and the single constraint of the sum of variables. 3)Multiple Choice
- Knapsack Problem presented by Nauss(1978) is the linearization of problem [P°] with a single '
constraint.

Surrogate constraints are introduced into mathematical programming by Glover(1968).
Luenberger(1968) showed that any quasi-convex programming problems can be solved exactly if
the surrogate multipliers are correctly chosen. Karwan and Rardin(1984) give‘ some empirical
evidences on the effectiveness of surrogate constraints in integer linear programming. There are
several algorithms for clhoosing an optimal surrogate multiplier vector to MNKP. Dyer(1980)
proposed two algorithms; one analogous to generalized blinear programming and the othef to
subgradient method. Nakagawa et al.(1984) present Cutting-Off Polyhedron (COP) algorithm
that generates a sequence of mﬁltiplier vectors by cutting off polyhedrons and using a center of
the polyhedron as a next multiplier vector.

Most of problems [P°] includevsurrogate duality gaps unfortunately. In other words, solving a

surrogate problem with an optimal surrogate multiplier vectors, surrogate constraints method fails
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to produce an exact solution of [P°]. A ‘reinforced method, which we call Slicing algorithm, is
proposed to find an exact solution of [P°] in the feasible region of the optimal surrogate
proﬁlem. Slicing algorithm solves a sequence of target problems that enumerate all solutions in a
slice of the feasible fegion. Soﬁxetimes we have a difficulty of sblving target problems with too
wide a target solution space. The slicing method uses two practical techniques to reduce the
difficulty. One is to thin out the target»solution space and the other is to narrow the feasible

region.

2. SURROGATE DUAL

The surrogate problem [P%(u)] corresponding to [P°] are written as follows:

[P5(u)]: Maximize fo(‘x)

subject to ug’(x) = ub’,
x €K°,

where

u=u,u,,...,u,) ER",

£°(x) =(g7(x), &(X), ....8. (X)),
b° = (b, by, ..., 0

K° = {x:x €K} fori=12,.., n}.

The surrogate dual problem is defined by

PP):  min{v™" [P*(w)]: u EU}

where v°""[¢] means the optimal objective function value of problem [¢] and

U= {uER'":zuj =l,u=z 0}.

=
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The surrogate problem [P>(u)] has the following property.

Property 1: Let x? be an optimal solution to problem P%(u?) for a surrogate multiplier vector
w’ eU. For any u €U such that ug®(x?) >ub®, it is held that

v P (w)] = f(x).

This property means that the region {u €U:ug’x?) >ub°} can be removed from U as the
price of obtaining x? . An algorithm presented by Dyer (1980)vor Nakagawa et al. (1984) can
generate a sequence of multiplier vectors u',u’, ...,u? that covers the whole of U in the meaning
of Property 1. The multiplier vector u* such that
v P *)] = min{v " [P a)], v PS@O)L, . vT PPh)]}

is optimal to the surrogate dual [P5"]. If an optimal solution x*° to the problem [P*(u*)], i.e.
[P°] ,is feasible to the primal problem [P°], then x*° is an exact optimal solution of [P°].
When the séquence provides no feasible solutions to [P°], it is said that there exists a surrogaté
duality gap. Then the value f°(x*) provides an upper bound on the optimal objective function

value of [P°].

3. RESOLUTION OF SURROGATE DUALITY GAP

In order to fill the surrogate duality gap, consider the following problem.

[PT(f",b")]: Enumerate all solutions x hitting
atarget fP(x)z f*
subject to w*g’(x) <bh",
x €K°.
where u* is an optimal multiplier vector to [PSD] corresponding to a primal problem [PO] . Miyaji

et al. (1995) calls this problem target problem. If f” <v”"[P°], then a target problem
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[PT(f",u*b)] can enumerates exact optimal solutions to [P°]. The target values f* will be
chosen from an interval such as fO(x"* )= f =< fO(x™), where x" is a near optimal solution
to [P°]. The solutions hitting the target are called target solutions. MA without dominance testing
can solve exactly the target problem [P"( f”, w*b)]. The problem [P"( f7, u*b)] becomes harder
to solve with decreasing value of f” because of increasing number of target solutions.

Consider a sequence of problems [P”( f*, w*b)] with f* = @, @,,...,, Where

v, = (x —t)fo(xsi) —tfo&"") t=012,..K).

These target problems are solved by Slicing algorithm in the order of [PT((pO, u*b)],...,
[P*(g,, ub)], as shown in Figure 1. When Slicing algorithm finds out an optimal solution to
[P°] out of target solutions, the algorithm stops. However, the problems become much harder
to solve with increasing problem size. The difficulties are divided into two cases. The first case
of difficulty is that there exist too many target solutions with the same objective function value.
The second case is that the feasible region satisfying the constraint is too wide. In Slicing
algorithm, two techniques are used to decrease the difficulties. One technique is to thin out the
target solutions. When the number of alternative items for a variable exceeds a threshold value, a
thinning out law in Slicing algorithm is practiced. The other technique against the difficulties is to
slice off one piece after another of its feasible region by changing values of 3T . It should be
noted that an optimal solution obtained by using these techniques may not be guaranteed to be
exact optimal to the primal problem [P°].

Consider a sequence of problems [P (¢,, b")] with b" = B B,,-.., B, where

(v -t)u* g°(x™) - ru* b°
- g

v

B, (t=0,12,...v).

Slicing algorithm tries to solve the problems [PT((pk, B,)] in the order of t =0, 1,...,v. Figure 2

illustrates this technique.
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e 2 fO(x) = g,
Pz N
@z,

@2 =g

g (x)s b

fo(x) =@, .

w g () s b = B,
v g°(x) < B,

v g’(x) B, |
u* g°(x) su* g°(x"*) = B,

Fig. 2

4. EXAMPLE

Slicing algorithm will be demonstrated on the following simple problem with three constraints.
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This problemhas m =3, n =35, k,° =4 fori=1,..,5, and b‘? = (234,188,191)'. The values of

functions ﬁo(x,) and gg(xi) are as follows:

Table 1 Example

k|1 2 3 4 k|1 2 3 4 |12 3 a4 k|12 3 4
ol 29 35 47 11 gk)| 8 40 63 8 F(k)| 20 26 35 51  glk)| 20 34 45 69
ol 21 52 74 85 gok)| 28 54 74 8 gk 1 21 22 35  go(k)| 15 17 29 36
ol 5 12 36 66 Lk)|24 55 57 0 Ll 6 21 31 B Lk 12 29 61 73
o) 30 33 47 70 k)| 11 38 68 91 (k) 23 S0 73 96  g(k)| 27 55 58 81
k)] 28 51 58 70 g%k} 15 31 47 51 k)| 20 48 76 81 (k)| 4 13 27 46

Cutting-Off Polyhedron (COP) algorithm presented by Nakagawa et. al 1984 is started with
u' =(4.,4,1), as shown in Fig. 2. The surrogate subproblem is [P°(u')]: Max f°(x) s.t.
u'g®°(x)<u'b® and x cK©. The computer code based on MA produces an optimal solution x'
=(1, 3, 4, 1, 4), f°(x")=269.0. We have the first cutting plane —24u, —3u, >-4 from
ug® (x') > ub®and u, = 1 -u, —u,. COP algorithm generates y* = (0.0536, 0.4881, 0.4583) as a
center of balance of a material .points system that has an unit weight at all vertices. Similarly the
surrogate constraints method generates x>=(4,3,4,1,1), f°(x’)=269, -13u, — 40u, > -11, ¢’
=(0.0734, 0.1478, 0.7787), x> =(1, 4, 4, 1, 3), f°(x’) = 268, and the last cutting plane
~Tu, =17u, >—8. This plane cuts off the remaining region of U as shown in Fig. 3. Therefore
the optimal surrogate multiplier is w*= w’, the optimal solution of surrogate dual problem is
x® = x* and £O(x™)=268. However, x* is infeasible to the second constraint g7 (x)= b; .
There exists a surrogate duality gap. In order to fill this surrogate gap, consider target problems
[P (f,b")] of p*"=u*b°=193.7and f'=268, 267, ..., 261, where a near optimal solution
x" =(1,4,4,1,2), f°(x"*)=261 which obtained by a heuristic method. The sequence of the
target problems is solved by MA without dominance testing. The problems [P' (268, 193.7)], -
.., [PT(262,193.7)] have no target solutions that is feasible to the primal problem. The problem
[P"(261,193.7)] provides a target solution x5 =(1, 4, 4, 1, 2) satisfying all constraints of the

primal problem. The solution is the exact optimal solution to the primal problem.
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u, @ -24u - 3u, >-4
@ -13u,-40u, > -11
! "/’ ' @ =Tu, = 17u, >-8
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