<table>
<thead>
<tr>
<th>Title</th>
<th>Some Pseudo-Order of Fuzzy Sets on \mathbb{R}^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kurano, Masami; Yasuda, Masami; Nakagami, Jun-ichi; Yoshida, Yuji</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1998), 1068: 142-149</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62517</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Some Pseudo-Order of Fuzzy Sets on \mathbb{R}^n

千葉大学教育学部 蔵野正美 (Masami KURANO)
千葉大学理学部 安田正実 (Masami YASUDA)
千葉大学理学部 中神潤一 (Jun-ichi NAKAGAMI)
北九州大学経済学部 吉田祐治 (Yuji YOSHIDA)

Abstract

The aim of this paper is to define an order on a class of fuzzy sets which is extending a pseudo-order for fuzzy numbers, and its characterization and several relations of the previous results are discussed. The idea comes from a set-relation in n-dimensional Euclid space given by Kuroiwa, Tanaka and Ha (1997). We induce the order of a class of fuzzy sets by a closed convex cone and characterize it by using the projection into the dual cone. Especially, a structure of the lattice is described for the class of rectangle-type fuzzy sets.

Keywords: Pseudo-order, fuzzy max order, multidimensional fuzzy sets, rectangle-type fuzzy sets.

1. Introduction and notations

In the theory of optimization it is a quite important problem how to induce a natural definition of order on the class of considering systems. Since it isn’t a simple problem about a order on the fuzzy set theory, many author tried to consider its natural extension.

Ramík and Římanek [8] has introduced a partial order on the set of fuzzy numbers, called the fuzzy max order. The present authors also tried to optimize the dynamic fuzzy system [4]. Also there are various types of order relations on the class of fuzzy numbers. See [3], [11] and their references. Congxin and Cong [1] have described the fuzzy number lattice.

This paper is to extend the fuzzy max order of fuzzy numbers to a class of fuzzy sets defined on \mathbb{R}^n. The pseudo order for fuzzy sets is induced by a closed convex cone K in \mathbb{R}^n and characterized by the projection in the dual cone K^+. Also, the structure of a lattice is discussed for the class of rectangle-type fuzzy sets. By our works we can imagine the much wider application to the fuzzy optimization problem. Our idea of the motivation originates from a set-relation in \mathbb{R}^n given by Kuroiwa, Tanaka and Ha [5] and Kuroiwa [6], in which various types of set-relations in \mathbb{R}^n are used in set-valued optimizations.

In the remainder of this section, we will give some notations and review a vector ordering of \mathbb{R}^n by a convex cone. Let \mathbb{R} be the set of all real numbers and \mathbb{R}^n an n-dimensional Euclidean space. We write fuzzy sets on \mathbb{R}^n by their membership functions $\tilde{s}: \mathbb{R}^n \rightarrow [0, 1]$ (see Novák [7] and Zadeh [10]). The α-cut ($\alpha \in [0, 1]$) of the fuzzy set \tilde{s} on \mathbb{R}^n is defined as

$$\tilde{s}\alpha := \{x \in \mathbb{R}^n \mid \tilde{s}(x) \geq \alpha\} \ (\alpha > 0) \quad \text{and} \quad \tilde{s}_0 := \text{cl}\{x \in \mathbb{R}^n \mid \tilde{s}(x) > 0\}.$$
where cl denotes the closure of the set. A fuzzy set \(\tilde{s}\) is called convex if
\[
\tilde{s}(\lambda x + (1 - \lambda)y) \geq \tilde{s}(x) \wedge \tilde{s}(y) \quad x, y \in \mathbb{R}^n, \quad \lambda \in [0, 1],
\]
where \(a \wedge b = \min\{a, b\}\). Note that \(\tilde{s}\) is convex iff the \(\alpha\)-cut \(\tilde{s}_\alpha\) is a convex set for all \(\alpha \in [0, 1]\). Let \(\mathcal{F}(\mathbb{R}^n)\) be the set of all convex fuzzy sets whose membership functions \(\tilde{s}: \mathbb{R}^n \to [0, 1]\) are upper-semicontinuous and normal (\(\sup_{x \in \mathbb{R}^n} \tilde{s}(x) = 1\)) and have a compact support. When the one-dimensional case \(n = 1\), the fuzzy sets are called fuzzy numbers and \(\mathcal{F}(\mathbb{R})\) denotes the set of all fuzzy numbers.

Let \(\mathcal{C}(\mathbb{R}^n)\) be the set of all compact convex subsets of \(\mathbb{R}^n\), and \(\mathcal{C}_r(\mathbb{R}^n)\) be the set of all rectangles in \(\mathbb{R}^n\). For \(\tilde{s} \in \mathcal{F}(\mathbb{R}^n)\), we have \(\tilde{s}_\alpha \in \mathcal{C}(\mathbb{R}^n)\) (\(\alpha \in [0, 1]\)). We write a rectangle in \(\mathcal{C}_r(\mathbb{R}^n)\) by
\[
[x, y] = [x_1, y_1] \times [x_2, y_2] \times \cdots [x_n, y_n]
\]
for \(x = (x_1, x_2, \cdots, x_n), y = (y_1, y_2, \cdots, y_n) \in \mathbb{R}^n\) with \(x_i \leq y_i\) \((i = 1, 2, \cdots, n)\). For the case of \(n = 1\), \(\mathcal{C}(\mathbb{R}) = \mathcal{C}_r(\mathbb{R})\) and it denotes the set of all bounded closed intervals. When \(\tilde{s} \in \mathcal{F}(\mathbb{R}^n)\) satisfies \(\tilde{s}_\alpha \in \mathcal{C}_r(\mathbb{R}^n)\) for all \(\alpha \in [0, 1]\), \(\tilde{s}\) is called a rectangle-type. We denote by \(\mathcal{F}_r(\mathbb{R}^n)\) the set of all rectangle-type fuzzy sets on \(\mathbb{R}^n\). Obviously \(\mathcal{F}_r(\mathbb{R}) = \mathcal{F}(\mathbb{R})\).

The definitions of addition and scalar multiplication on \(\mathcal{F}(\mathbb{R})\) are as follows: For \(\tilde{m}, \tilde{n} \in \mathcal{F}(\mathbb{R})\) and \(\lambda \geq 1\),
\[
(\tilde{m} + \tilde{n})(x) := \sup_{x_1, x_2 \in \mathbb{R}; \ x_1 + x_2 = x} \{\tilde{m}(x_1) \wedge \tilde{n}(x_2)\},
\]
\[
(\lambda \tilde{m})(x) := \begin{cases}
\tilde{m}(x/\lambda) & \text{if } \lambda > 0 \\
I_{\{0\}}(x) & \text{if } \lambda = 0
\end{cases} \quad (x \in \mathbb{R}),
\]
where \(I_{\{\cdot\}}(\cdot)\) is an indicator. By using set operations \(A + B := \{x + y \mid x \in A, y \in B\}\) and \(\lambda A := \{\lambda x \mid x \in A\}\) for any non-empty sets \(A, B \subset \mathbb{R}\), the following holds immediately.
\[
(\tilde{m} + \tilde{n})_\alpha := \tilde{m}_\alpha + \tilde{n}_\alpha \quad \text{and} \quad (\lambda \tilde{m})_\alpha = \lambda \tilde{m}_\alpha \quad (\alpha \in [0, 1]).
\]

Let \(K\) be a non-empty cone of \(\mathbb{R}^n\). Using this \(K\), we can define a pseudo-order relation \(\preceq_K\) on \(\mathbb{R}^n\) by \(x \preceq_K y\) iff \(y - x \in K\). Let \(\mathbb{R}^+_n\) be the subset of entrywise non-negative elements in \(\mathbb{R}^n\). When \(K = \mathbb{R}^+_n\), the order \(\preceq_K\) will be denoted by \(\leq_n\) and \(x \leq_n y\) means that \(x_i \leq y_i\) for all \(i = 1, 2, \cdots, n\), where \(x = (x_1, x_2, \cdots, x_n)\) and \(y = (y_1, y_2, \cdots, y_n) \in \mathbb{R}^n\).

In Section 2, we will introduce a pseudo-order relation on \(\mathcal{F}(\mathbb{R}^n)\) which is characterized by the scalarization technique. In section 3, the lattice structure is discussed for the class of rectangle-type fuzzy sets.

2. A pseudo-order on \(\mathcal{F}(\mathbb{R}^n)\)

First we introduce a binary relation on \(\mathcal{C}(\mathbb{R}^n)\), by which a pseudo-order on \(\mathcal{F}(\mathbb{R}^n)\) is given. Henceforth we assume that the convex cone \(K \subset \mathbb{R}^n\) is given.

We define a binary relation \(\preceq_K\) on \(\mathcal{C}(\mathbb{R}^n)\): For \(A, B \in \mathcal{C}(\mathbb{R}^n)\), \(A \preceq_K B\) means the following (C.a) and (C.b) (c.f. [5], [6]):
(C.a) For any $x \in A$, there exists $y \in B$ such that $x \leq_{K} y$.

(C.b) For any $y \in B$, there exists $x \in A$ such that $x \leq_{K} y$.

Lemma 2.1. The relation \leq_{K} is a pseudo-order on $C(\mathbb{R}^{n})$.

Proof. It is trivial that $A \leq_{K} A$ for $A \in C(\mathbb{R}^{n})$. Let $A, B, C \in C(\mathbb{R}^{n})$ such that $A \leq_{K} B$ and $B \leq_{K} C$. We will check $A \leq_{K} C$ by two cases (c.a) and (c.b). Case(C.a): Since $A \leq_{K} B$ and $B \leq_{K} C$, for any $x \in A$ there exists $y \in B$ such that $x \leq_{K} y$ and there exists $z \in C$ such that $y \leq_{K} z$. Since \leq_{K} is a pseudo-order on \mathbb{R}^{n}, we have $x \leq_{K} z$. Therefore it holds that for any $x \in A$ there exists $z \in C$ such that $x \leq_{K} z$. Case(C.b): Since $A \leq_{K} B$ and $B \leq_{K} C$, for any $z \in C$ there exists $y \in B$ such that $y \leq_{K} z$ and there exists $x \in A$ such that $x \leq_{K} y$. Since \leq_{K} is a pseudo-order on \mathbb{R}^{n}, we have $x \leq_{K} z$. Therefore it holds that for any $z \in C$ there exists $x \in A$ such that $x \leq_{K} z$.

From the above (a) and (b), we obtain $A \leq_{K} C$. Thus the lemma holds. Q.E.D.

When $K = \mathbb{R}^{n}_{+}$, the relation \leq_{K} on $C(\mathbb{R}^{n})$ will be written simply by \leq_{n} and for $[x, y], [x', y'] \in C_{r}(\mathbb{R}^{n})$, $[x, y] \leq_{n} [x', y']$ means $x \leq_{n} x'$ and $y \leq_{n} y'$.

Next, we introduce a binary relation \leq_{K} on $\mathcal{F}(\mathbb{R}^{n})$: Let $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^{n})$. The relation $\tilde{s} \leq_{K} \tilde{r}$ means the following (F.a) and (F.b):

(F.a) For any $x \in \mathbb{R}^{n}$, there exists $y \in \mathbb{R}^{n}$ such that $x \leq_{K} y$ and $\tilde{s}(x) \leq \tilde{r}(y)$.

(F.b) For any $y \in \mathbb{R}^{n}$, there exists $x \in \mathbb{R}^{n}$ such that $x \leq_{K} y$ and $\tilde{s}(x) \geq \tilde{r}(y)$.

Lemma 2.2. The relation \leq_{K} is a pseudo-order on $\mathcal{F}(\mathbb{R}^{n})$.

Proof. It is trivial that $\tilde{s} \leq_{K} \tilde{s}$ for $\tilde{s} \in \mathcal{F}(\mathbb{R}^{n})$. Let $\tilde{s}, \tilde{r}, \tilde{p} \in \mathcal{F}(\mathbb{R}^{n})$ such that $\tilde{s} \leq_{K} \tilde{r}$ and $\tilde{r} \leq_{K} \tilde{p}$. We will check $\tilde{s} \leq_{K} \tilde{p}$ by two cases (F.a) and (F.b). Case(F.a):Since $\tilde{s} \leq_{K} \tilde{r}$ and $\tilde{r} \leq_{K} \tilde{p}$, for any $x \in \mathbb{R}^{n}$ there exists $y \in \mathbb{R}^{n}$ such that $x \leq_{K} y$ and $\tilde{s}(x) \leq \tilde{r}(y)$, and there exists $z \in \mathbb{R}^{n}$ such that $y \leq_{K} z$ and $\tilde{r}(y) \leq \tilde{p}(z)$. Since \leq_{K} is a pseudo-order on \mathbb{R}^{n}, we have $x \leq_{K} z$ and $\tilde{s}(x) \leq \tilde{p}(z)$. Therefore it holds that for any $x \in \mathbb{R}^{n}$ there exists $z \in \mathbb{R}^{n}$ such that $x \leq_{K} z$ and $\tilde{s}(x) \leq \tilde{p}(z)$. Case(F.b) Since $\tilde{s} \leq_{K} \tilde{r}$ and $\tilde{r} \leq_{K} \tilde{p}$, for any $y \in \mathbb{R}^{n}$ there exists $x \in \mathbb{R}^{n}$ such that $y \leq_{K} x$ and $\tilde{s}(x) \geq \tilde{r}(y)$, and there exists $x \in \mathbb{R}^{n}$ such that $x \leq_{K} y$ and $\tilde{s}(x) \geq \tilde{r}(y)$. Since \leq_{K} is a pseudo-order on \mathbb{R}^{n}, we have $x \leq_{K} z$. Therefore it holds that for any $z \in \mathbb{R}^{n}$ there exists $x \in \mathbb{R}^{n}$ such that $x \leq_{K} z$ and $\tilde{s}(x) \geq \tilde{p}(z)$.

From the above (a) and (b), we obtain $\tilde{s} \leq_{K} \tilde{p}$. Thus the lemma holds. Q.E.D.

The following lemma implies the correspondence between the pseudo-order on $\mathcal{F}(\mathbb{R}^{n})$ for fuzzy sets and the pseudo-order on $C(\mathbb{R}^{n})$ for the α-cuts.

Lemma 2.3. Let $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^{n})$. $\tilde{s} \leq_{K} \tilde{r}$ on $\mathcal{F}(\mathbb{R}^{n})$ if and only if $\tilde{s}_{\alpha} \leq_{K} \tilde{r}_{\alpha}$ on $C(\mathbb{R}^{n})$ for all $\alpha \in (0, 1]$.
Proof. Let \(\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n) \) and \(\alpha \in (0, 1] \). Suppose \(\tilde{s} \ll_{K} \tilde{r} \) on \(\mathcal{F}(\mathbb{R}^n) \). Then, Two cases (a) and (b) are considered. Case(a): Let \(x \in \tilde{s}_\alpha \). Since \(\tilde{s} \ll_{K} \tilde{r} \), there exists \(y \in \mathbb{R}^n \) such that \(x \ll_{K} y \) and \(\alpha \leq \tilde{s}(x) \leq \tilde{r}(y) \). Namely \(y \in \tilde{r}_\alpha \). Case(b): Let \(y \in \tilde{r}_\alpha \). Since \(\tilde{s} \ll_{K} \tilde{r} \), there exists \(x \in \mathbb{R}^n \) such that \(x \ll_{K} y \) and \(\tilde{s}(x) \geq \tilde{r}(y) \geq \alpha \). Namely \(x \in \tilde{s}_\alpha \).

Therefore we get \(\tilde{s}_\alpha \ll_{K} \tilde{r}_\alpha \) on \(\mathcal{F}(\mathbb{R}^n) \) for all \(\alpha \in (0, 1] \) from the above (a) and (b).

On the other hand, suppose \(\tilde{s}_\alpha \ll_{K} \tilde{r}_\alpha \) on \(\mathcal{F}(\mathbb{R}^n) \) for all \(\alpha \in (0, 1] \). Then, Two cases (a') and (b') are considered. Case(a'): Let \(x \in \mathbb{R}^n \). Put \(\alpha = \tilde{s}(x) \). If \(\alpha = 0 \), then \(x \ll_{K} x \) and \(\tilde{s}(x) = 0 \leq \tilde{r}(x) \). While, if \(\alpha > 0 \), then \(x \in \tilde{s}_\alpha \). Since \(\tilde{s}_\alpha \ll_{K} \tilde{r}_\alpha \), there exists \(y \in \tilde{r}_\alpha \) such that \(x \ll_{K} y \). And we have \(\tilde{s}(x) = \alpha \leq \tilde{r}(y) \). Case(b'): Let \(y \in \mathbb{R}^n \). Put \(\alpha = \tilde{r}(y) \). If \(\alpha = 0 \), then \(x \ll_{K} x \) and \(\tilde{s}(x) \geq 0 = \tilde{r}(y) \). While, if \(\alpha > 0 \), then \(y \in \tilde{r}_\alpha \). Since \(\tilde{s}_\alpha \ll_{K} \tilde{r}_\alpha \), there exists \(x \in \tilde{s}_\alpha \) such that \(x \ll_{K} y \). And we have \(\tilde{s}(x) \geq \alpha = \tilde{r}(y) \).

Therefore we get \(\tilde{s} \ll_{K} \tilde{r} \) on \(\mathcal{F}(\mathbb{R}^n) \) from the above Case (a') and (b'). Thus we obtain this lemma. Q.E.D.

Define the dual cone of a cone \(K \) by
\[
K^+ := \{ a \in \mathbb{R}^n \mid a \cdot x \geq 0 \text{ for all } x \in K \},
\]
where \(x \cdot y \) denotes the inner product on \(\mathbb{R}^n \) for \(x, y \in \mathbb{R}^n \). For a subset \(A \subset \mathbb{R}^n \) and \(a \in \mathbb{R}^n \), we define
\[
(2.1) \quad a \cdot A := \{ a \cdot x \mid x \in A \} \subset \mathbb{R}.
\]
The equation (2.1) means the projection of \(A \) on the extended line of the vector \(a \) if \(a \cdot a = 1 \). It is trivial that \(a \cdot A \subset C(\mathbb{R}) \) if \(A \subset C(\mathbb{R}^n) \) and \(a \in \mathbb{R}^n \).

Lemma 2.4. Let \(A, B \in C(\mathbb{R}^n) \). \(A \ll_{K} B \) on \(C(\mathbb{R}^n) \) if and only if \(a \cdot A \ll_{1} a \cdot B \) on \(C(\mathbb{R}) \) for all \(a \in K^+ \), where \(\ll_{1} \) is the natural order on \(C(\mathbb{R}) \).

Proof. Suppose \(A \ll_{K} B \) on \(C(\mathbb{R}^n) \). Consider the two cases (a) and (b). Case(a): For any \(a \cdot x \in a \cdot A \), there exists \(y \in B \) such that \(x \ll_{K} y \). Then \(y - x \in K \). If \(a \in K^+ \), then \(a \cdot (y - x) \geq 0 \) and i.e. \(a \cdot x \leq a \cdot y \). Case(b): For any \(a \cdot y \in a \cdot B \), there exists \(x \in A \) such that \(x \ll_{K} y \). Then \(y - x \in K \). If \(a \in K^+ \), then \(a \cdot (y - x) \geq 0 \) and i.e. \(a \cdot x \leq a \cdot y \). From the above cases (a) and (b), we have that \(a \cdot A \ll_{1} a \cdot B \).

On the other hand, to prove the inverse statement, we assume that \(A \ll_{K} B \) on \(C(\mathbb{R}^n) \) does not hold. Then we have the following two cases (i) and (ii). Case(i): There exists \(x \in A \) such that \(y - x \nexists K \) for all \(y \in B \). Then \(B \cap (x + K) = \emptyset \). Since \(B \) and \(x + K \) are closed convex, by the separation theorem there exists \(a \in \mathbb{R} \) \(a \neq 0 \) such that \(a \cdot y < a \cdot x + a \cdot z \) for all \(y \in B \) and all \(z \in K \). Hence we suppose that there exists \(z \in K \) such that \(a \cdot z \geq 0 \). Then \(\lambda z \in K \) for all \(\lambda \geq 0 \) since \(K \) is a cone, and so we have \(a \cdot x + a \cdot \lambda z = a \cdot x + \lambda a \cdot z \to -\infty \) as \(\lambda \to \infty \). This contradicts \(a \cdot y < a \cdot x + a \cdot z \). Therefore we obtain \(a \cdot z \geq 0 \) for all \(z \in K \). Especially taking \(z = 0 \in K \), we get \(a \cdot y < a \cdot x \) for all \(y \in B \). This contradicts \(a \cdot A \ll_{1} a \cdot B \). Case(ii): There exists \(y \in B \) such that \(y - x \nexists K \) for all \(x \in A \). Then we derive the contradiction in a similar way to the case (i).
Therefore the inverse statement holds from the results of the above (i) and (ii). The proof of this lemma is completed. Q.E.D.

For \(a \in \mathbb{R}^n \) and \(\tilde{s} \in \mathcal{F}(\mathbb{R}^n) \), we define a fuzzy number \(a \cdot \tilde{s} \in \mathcal{F}(\mathbb{R}) \) by
\[
(2.2) \quad a \cdot \tilde{s}(x) := \sup_{\alpha \in [0,1]} \min\{\alpha, 1_{a \cdot \tilde{s}}(x)\}, \quad x \in \mathbb{R},
\]
where \(1_D(\cdot) \) is the classical indicator function of a closed interval \(D \in \mathcal{C}(\mathbb{R}) \).

We define a partial relation \(\preceq_M \) on \(\mathcal{F}(\mathbb{R}) \) as follows (\cite{8}): For \(\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n) \), \(\tilde{s} \preceq_M \tilde{r} \) means that \(\tilde{s}_\alpha \preceq_M \tilde{r}_\alpha \) for all \(\alpha \in [0,1] \).

The following theorem gives the correspondence between the pseudo-order \(\preceq_K \) on \(\mathcal{F}(\mathbb{R}^n) \) and the fuzzy max order \(\preceq_M \) on \(\mathcal{F}(\mathbb{R}) \).

Theorem 2.1. For \(\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n) \), \(\tilde{s} \preceq_K \tilde{r} \) iff \(a \cdot \tilde{s} \preceq_M a \cdot \tilde{r} \) for all \(a \in K^+ \).

Proof. From Lemmas 2.3 and 2.4, \(\tilde{s} \preceq_K \tilde{r} \) iff \(a \cdot \tilde{s}_\alpha \preceq_K a \cdot \tilde{r}_\alpha \) for all \(a \in K^+ \) and \(\alpha \in (0,1] \). Is equivalent to \(a \cdot \tilde{s} \preceq_M a \cdot \tilde{r} \) for all \(a \in K^+ \). Q.E.D.

For \(\{\tilde{s}_k\}_{k=1}^\infty \subset \mathcal{F}(\mathbb{R}^n) \) and \(\tilde{s} \in \mathcal{F}(\mathbb{R}^n) \), \(\lim_{k \to \infty} \tilde{s}_k = \tilde{s} \) means that \(\sup_{\alpha \in [0,1]} \rho(\tilde{s}_{k,\alpha}, \tilde{s}_\alpha) \to 0 \) \((k \to \infty)\), where \(\tilde{s}_{k,\alpha} \) is the \(\alpha \)-cut of \(\tilde{s}_k \) and \(\rho \) is the Hausdorff metric on \(\mathcal{C}(\mathbb{R}^n) \).

Lemma 2.5. Let \(\{\tilde{s}_k\}_{k=1}^\infty \subset \mathcal{F}(\mathbb{R}) \) and \(\tilde{s} \in \mathcal{F}(\mathbb{R}) \) such that \(\tilde{s}_k \preceq_M \tilde{s}_{k+1} \) \((k \geq 1)\) and \(\lim_{k \to \infty} \tilde{s}_k = \tilde{s} \). Then \(\tilde{s}_1 \preceq_M \tilde{s} \).

Proof. Trivial. Q.E.D.

Theorem 2.2. Let \(\{\tilde{s}_k\}_{k=1}^\infty \subset \mathcal{F}(\mathbb{R}^n) \) and \(\tilde{s} \in \mathcal{F}(\mathbb{R}^n) \) such that \(\tilde{s}_k \preceq_K \tilde{s}_{k+1} \) \((k \geq 1)\) and \(\lim_{k \to \infty} \tilde{s}_k = \tilde{s} \). Then \(\tilde{s}_1 \preceq_K \tilde{s} \).

Proof. From Theorem 2.1, for all \(a \in K^+ \) we have \(a \cdot \tilde{s}_k \preceq_K a \cdot \tilde{s}_{k+1} \) \((k \geq 1)\) and \(\lim_{k \to \infty} a \cdot \tilde{s}_k = a \cdot \tilde{s} \). By Lemma 2.3, \(a \cdot \tilde{s}_1 \preceq_K a \cdot \tilde{s} \) all \(a \in K^+ \). From Theorem 2.1, \(\tilde{s}_1 \preceq_K \tilde{s} \). Q.E.D.

Remark. Let the map \(g : [0,1] \to \mathcal{F}(\mathbb{R}^n) \) be continuous. A point \(x_0 \in [0,1] \) is said to be efficient if \(x_0 \in [0,1] \) and \(g(x_0) \preceq_K g(x) \) for some \(x \in [0,1] \) implies \(g(x) = g(x_0) \). Then, by applying the same idea as in Lemma 3.2 of Furukawa [2], we observe that there exists at least one efficient point in \([0,1] \). In fact, considering, if necessary, a partial order \(\preceq_K \) on the class of the quotient sets with respect to the equivalence relation \(\sim_K \) defined by \(\tilde{s} \sim_K \tilde{r} \) iff \(\tilde{s} \preceq_K \tilde{r} \) and \(\tilde{r} \preceq_K \tilde{s} \), we can assume that \(\preceq_K \) is a partial order on \(\mathcal{F}(\mathbb{R}^n) \). By theorem 2.2 and the continuity of \(g \), \(\{g(x) \mid x \in [0,1]\} \) can be proved to be an inductively ordered set. So, by Zorn's lemma \(\{g(x) \mid x \in [0,1]\} \) has an efficient element.

3. Further results

In this section, we investigate a pseudo-order \(\preceq_K \) on \(\mathcal{F}_r(\mathbb{R}^n) \) for a polyhedral cone \(K \) with \(K^+ \subset \mathbb{R}^n \). To this end, we need the following lemma.
Lemma 3.1. Let $a, b \in \mathbb{R}_{+}^{n}$ and $A \in C_{r}(\mathbb{R}^{n})$. Then for any scalars $\lambda_{1}, \lambda_{2} \geq 0$, it holds

\begin{equation}
(\lambda_{1}a + \lambda_{2}b) \cdot A = \lambda_{1}(a \cdot A) + \lambda_{2}(b \cdot A),
\end{equation}

where the arithmetic in (3.1) is defined in (2.1).

Proof. Let $\lambda_{1}a \cdot x + \lambda_{2}b \cdot y \in \lambda_{1}(a \cdot A) + \lambda_{2}(b \cdot B)$ with $x, y \in A$. It suffices to show that $\lambda_{1}a \cdot x + \lambda_{2}b \cdot y \in (\lambda_{1}a + \lambda_{2}b) \cdot A$. Define $z = (z_{1}, z_{2}, \ldots, z_{n})$ by

\begin{align*}
z_{i} &= (\lambda_{1}a_{i}x_{i} + \lambda_{2}b_{i}y_{i})/((\lambda_{1}a_{i} + \lambda_{2}b_{i}) \text{ if } (\lambda_{1}a_{i} + \lambda_{2}b_{i}) > 0) \\
&= x_{i} \quad \text{if } (\lambda_{1}a_{i} + \lambda_{2}b_{i}) = 0 \quad (i = 1, 2, \ldots, n)
\end{align*}

Then, clearly $(\lambda_{1}a + \lambda_{2}b) \cdot z = \lambda_{1}a \cdot x + \lambda_{2}b \cdot y$. Since $A \in C_{r}(\mathbb{R}^{n}), z \in A$, so that $\lambda_{1}a \cdot x + \lambda_{2}b \cdot y = (\lambda_{1}a + \lambda_{2}b) \cdot A$. Q.E.D.

Henceforth, we assume that K is a polyhedral convex cone with $K^{+} \subset \mathbb{R}^{n}$, i.e., there exist vectors $b^{i} \in \mathbb{R}_{+}^{n}(i = 1, 2, \ldots, m)$ such that

\begin{equation*}
K = \{x \in \mathbb{R}^{n} | b^{i} \cdot x \leq 0 \text{ for all } i = 1, 2, \ldots, m\}.
\end{equation*}

Then, it is well-known (c.f. [9]) that K^{+} is expressed as

\begin{equation*}
K^{+} = \{x \in \mathbb{R}^{n} | x = \sum_{i=1}^{m} \lambda_{i}b^{i}, \lambda_{i} \geq 0 (i = 1, 2, \ldots, m)\}.
\end{equation*}

The above dual cone K^{+} is denoted simply by

\begin{equation*}
K^{+} = \text{conv}\{b^{1}, b^{2}, \ldots, b^{m}\}.
\end{equation*}

The pseudo-order \preceq_{K} on $C_{r}(\mathbb{R}^{n})$ is characterized in the following.

Corollary 3.1. Let $K^{+} = \text{conv}\{b^{1}, b^{2}, \ldots, b^{m}\}$ with $b^{i} \in \mathbb{R}_{+}^{n}$. Then, for $A, B \in C_{r}(\mathbb{R}^{n})$, $A \preceq_{K} B$ if and only if $b^{i} \cdot A \preceq_{1} b^{i} \cdot B$ for all $i = 1, 2, \ldots, m$, where \preceq_{1} is a pseudo-order on $C_{r}(\mathbb{R})$.

Proof. We assume that $b^{i} \cdot A \preceq_{1} b^{i} \cdot B$ for all $i = 1, 2, \ldots, m$. For any $a \in K^{+}$, there exists $\lambda_{i} \geq 0$ with $a = \sum_{i=1}^{m} \lambda_{i}b^{i}$. From Lemma 3.1 we have:

\begin{equation*}
a \cdot A = \sum_{i=1}^{m} \lambda_{i}(b^{i} \cdot A) \preceq_{1} \sum_{i=1}^{m} \lambda_{i}(b^{i} \cdot B) = a \cdot B.
\end{equation*}

Thus, by Lemma 2.4, $A \preceq_{K} B$ follows. By applying Lemma 2.4 again, the 'only if' part of Corollary holds. Q.E.D.

Lemma 3.2. Let $a, b \in \mathbb{R}_{+}^{n}$ and $\tilde{s} \in \mathcal{F}_{r}(\mathbb{R}^{n})$. Then, for any $\lambda_{1}, \lambda_{2} \geq 0$, a

\begin{equation}
(\lambda_{1}a + \lambda_{2}b) \cdot \tilde{s} = \lambda_{1}(a \cdot \tilde{s}) + \lambda_{2}(b \cdot \tilde{s}),
\end{equation}

where the arithmetic in (3.2) is defined in (2.1).
where the arithmetic in (3.2) are given in (1.1), (1.2) and (2.2).

Proof. For any $\alpha \in [0,1]$, it follows from the definition and Lemma 3.1 that

$$ [(\lambda_1 a + \lambda_2 b) \cdot \tilde{s}]_\alpha = (\lambda_1 a + \lambda_2 b) \cdot \tilde{s}_\alpha = \lambda_1 (a \cdot \tilde{s}_\alpha) + \lambda_2 (b \cdot \tilde{s}_\alpha) $$

$$ = \lambda_1 (a \cdot \tilde{s})_\alpha + \lambda_2 (b \cdot \tilde{s})_\alpha = [\lambda_1 (a \cdot \tilde{s}) + \lambda_2 (b \cdot \tilde{s})]_\alpha. $$

The last equality follows from (1.3). The above shows that (3.3) holds. Q.E.D.

The main results in this section are given in the following.

Theorem 3.1. Let $K^+ = \text{conv}\{b^1, b^2, \ldots, b^m\}$ with $b^i \in \mathbb{R}^n$. Then, for $\tilde{s}, \tilde{r} \in \mathcal{F}_r(\mathbb{R}^n)$,

$$ \tilde{s} \preceq_K \tilde{r} \quad \text{if and only if} \quad b^i \cdot \tilde{s} \preceq_M b^i \cdot \tilde{r} \quad \text{for} \quad i = 1, 2, \ldots, m. $$

Proof. It suffices to prove the 'if' part of Theorem 3.1. For any $a \in K^+$, there exists $\lambda_i \geq 0$ with $a = \sum_{i=1}^{m} \lambda_i b^i$. Applying Lemma 3.2, we have

$$ a \cdot \tilde{s} = \sum_{i=1}^{m} \lambda_i (b^i \cdot \tilde{s}) \preceq_M \sum_{i=1}^{m} \lambda_i (b^i \cdot \tilde{r}) = a \cdot \tilde{r}, $$

From Theorem 2.1, $\tilde{s} \preceq_k \tilde{r}$ follows. Q.E.D.

Figure 1: $\hat{v} = \sup(\tilde{s}, \tilde{r})$

When $K = \mathbb{R}^n$, the pseudo-order \preceq_K on $\mathcal{F}_r(\mathbb{R}^n)$ will be simply written by \preceq_n. Obviously, \preceq_1 and \preceq_M are the same.
Congxin and Cong [1] described the structure of the fuzzy number lattice \((\mathcal{F}_r(\mathbb{R}), \prec_1)\).

When \(K = \mathbb{R}^n\), \(K^+ = \mathbb{R}^n\) and \(K^+ = \text{conv}\{e^1, e^2, \cdots, e^m\}\). So that, by Theorem 3.1, we see that for \(\tilde{s}, \tilde{r} \in \mathcal{F}_r(\mathbb{R}^n)\), \(\tilde{s} \prec_n \tilde{r}\) means \(e^i \tilde{s} \prec e^i \tilde{r}\) for all \(i = 1, 2, \cdots, n\). Therefore, by applying the same method as [1], we can describe the structure of the fuzzy set lattice \((\mathcal{F}_r(\mathbb{R}^n), \prec_n)\).

Figure 1 illustrates \(\sup(\tilde{s}, \tilde{r})\) for \(\tilde{s}, \tilde{r} \in \mathcal{F}_r(\mathbb{R}^2)\).

References

