STRONG CONVERGENCE THEOREM TO COMMON FIXED POINTS OF NONEXPANSIVE SEMIGROUPS $\{T(t): t \geq 0\}$ IN HILBERT SPACES

新潟大学大学院自然科学研究科 鈴木智成 (TOMONARI SUZUKI)

ABSTRACT. In this paper, we prove the following strong convergence theorem: Let C be a closed convex subset of a Hilbert space H. Let $\{T(t):t\geq 0\}$ be a strongly continuous semigroup of nonexpansive mappings on C such that $F(\mathcal{T})=\cap_{t\geq 0}F(T(t))\neq\emptyset$. Let $\{\alpha_n\}$ and $\{t_n\}$ be sequences of real numbers satisfying $0<\alpha_n<1$, $t_n>0$, $t_n\to 0$ and $\alpha_n/t_n\to 0$. Let $z\in C$ and let $\{u_n\}$ be a sequence of C defined by $u_n=(1-\alpha_n)T(t_n)u_n+\alpha_nz$. Then $\{u_n\}$ converges strongly to the element of $F(\mathcal{T})$ nearest to z in $F(\mathcal{T})$.

1. 序

C を Hilbert 空間 H の閉凸集合とする. C 上の写像 T が非拡大であるとは, $||Tx-Ty|| \le ||x-y|| \ (x,y \in C)$ を満たすことである. 1967年に F. E. Browder は次の定理を証明している. この定理は非拡大写像の不動点への強収束定理で, 非常にシンプルな定理である.

定理 1 (Browder [1]). C を Hilbert 空間 H の閉凸部分集合とし, T を C 上の非拡大写像で不動点集合 F(T) は空でないとする. P を F(T) の上への距離射影とする. $\{\alpha_n\}$ を $0<\alpha_n<1$ および $\alpha_n\to 0$ を満たす 実数列とする. z を C の任意の元とし, $\{u_n\}$ を $u_n=(1-\alpha_n)Tu_n+\alpha_nz$ によって一意に定義される C の点列とする. このとき, $\{u_n\}$ は Pz に 強収束する.

N. Shioji と W. Takahashi は定理 1 に関連した定理 (定理 2) を証明している. 定理 2 を記述する前に, 定理 2 で使われている記号および概念について述べる.

S を半群とする. S 上の実数値有界関数全体からなる Banach 空間を B(S) と表し、通常の上限ノルムを入れる. 恒等的に 1 の値をとる S 上の関数を特に混乱のない限り、1 で表す. $s \in S$ および $f \in B(S)$ に対して、B(S) 上の写像 ℓ_s を $(\ell_s f)(t) = f(st)$ ($t \in S$) と定義する. X は B(S) の線形部分空間で $1 \in X$ とする. $\mu \in X^*$ が X 上の mean であるとは、 $\|\mu\| = \mu(1) = 1$ が成り立つことである. 本論文では、 $\mu \in X^*$ および $f \in B(S)$ に対して、 $\mu(f)$ を $\mu_t(f(t))$ と書くことがある.

C を Hilbert 空間 H の閉凸部分集合とし、S を半群とする. 写像族 $\{T_t: t \in S\}$ が C 上の非拡大半群とは、すべての $t,s \in S$ に対して、 T_t は C 上の非拡大写像で、 $T_{ts} = T_t \circ T_s$ が成り立つことである. $\{T_t\}$ を、 $\{T_tx: t \in S\}$ が有界になる $x \in C$ が存在する C 上の非拡大半群とする. X を B(S) の線形部分空間で、1 を含み、すべての $x \in C$ と

TOMONARI SUZUKI

 $y \in H$ に対して関数 $t \mapsto \|T_t x - y\|^2$ は X の元とする. このとき, X 上の mean μ および $x \in C$ に対して, $T_{\mu}x$ を, すべての $y \in H$ に対して $\langle T_{\mu}x, y \rangle = \mu_t \langle T_t x, y \rangle$ を満たす唯一の C の元として定義する ([3] を参照). T_{μ} は C 上の非拡大写像になっていることに注意する.

さて, 定理 2 を記述する. この定理の適用範囲は広く, また mean を 使っているという特徴がある.

定理 2 (Shioji and Takahashi [2]). 次の事柄を仮定する: C は Hilbert 空間 H の閉凸部分集合である; S は半群である; $\{T_t: t \in S\}$ は C 上の非拡大半群で共通不動点集合 $F(S) = \bigcap_{t \in S} F(T_t)$ は空でない; X は B(S) の線形部分空間で, 1 を含み, すべての $s \in S$ に対して $\ell_s(X) \subset X$ が成り立ち, すべての $x \in C$ と $y \in H$ に対して関数 $t \mapsto \|T_t x - y\|^2$ は X に属する; $\{\mu_n\}$ はすべての $s \in S$ に対して $\|\mu_n - \ell_s^* \mu_n\| \to 0$ を満たす X 上の mean の列である; P は F(S) の上への距離射影である. $\{\alpha_n\}$ を $0 < \alpha_n < 1$ および $\alpha_n \to 0$ を満たす実数列とする. z を C の任意の元とし, $\{u_n\}$ を $u_n = (1 - \alpha_n)T_{\mu_n}u_n + \alpha_n z$ によって一意に定義される C の点列とする. このとき, $\{u_n\}$ は Pz に強収束する.

本論文では、定理 1 および定理 2 に関連して、非線形写像からなる 1 パラメータ強連続半群 $\{T_t: t \geq 0\}$ に関する強収束定理について証明する.

2. 結果

C を Hilbert 空間 H の閉凸部分集合とする. 写像族 $\{T(t): t \geq 0\}$ が C 上の非拡大写像からなる強連続半群とは, 以下の 4 条件を満たすことである:

- (i) T(0)x = x がすべての $x \in C$ に対して成立する;
- (ii) $||T(t)x T(t)y|| \le ||x y||$ がすべての $x, y \in C$ とすべての $t \ge 0$ に対して成立する;
- (iii) $T(t+s) = T(t) \circ T(s)$ がすべての $t,s \ge 0$ に対して成立する;
- (iv) 写像 $t \mapsto T(t)x$ がすべての $x \in C$ に対して連続である. 次の定理が本論文の主結果である.

定理 3. C を Hilbert 空間 H の閉凸部分集合とする. $\{T(t): t \geq 0\}$ を C 上の非拡大写像からなる強連続半群で共通不動点集合 $F(\mathcal{T}) = \bigcap_{t \geq 0} F(T(t))$ は空でないとする. P を $F(\mathcal{T})$ の上への距離射影とする. $\{\alpha_n\}$ および $\{t_n\}$ を $0 < \alpha_n < 1, t_n > 0, t_n \to 0$ および $\alpha_n/t_n \to 0$ を満たす実数列とする. z を C の任意の元とし, $\{u_n\}$ を $u_n = (1 - \alpha_n)T(t_n)u_n + \alpha_n z$ によって一意に定義される C の点列とする. このとき, $\{u_n\}$ は Pz に強収束する.

Proof. 任意の $n \in \mathbb{N}$ に対して,

$$||u_n - Pz|| = ||(1 - \alpha_n)T(t_n)u_n + \alpha_n z - Pz||$$

$$\leq (1 - \alpha_n)||T(t_n)u_n - Pz|| + \alpha_n||z - Pz||$$

$$\leq (1 - \alpha_n)||u_n - Pz|| + \alpha_n||z - Pz||,$$

より、 $\|u_n-Pz\|\leq \|z-Pz\|$ を得る. したがって、 $\{u_n\}$ が有界であることが分かる. $\{u_{n_i}\}$ を $\{u_n\}$ の任意の部分列とする. $\{u_n\}$ の有界性より、C のある元 x に弱収束する $\{u_{n_i}\}$ の部分列 $\{u_{n_{i_j}}\}$ が存在する. 以降 $x_j=u_{n_{i_j}},\,\beta_j=\alpha_{n_{i_j}},\,s_j=t_{n_{i_j}}$ と置く. さて、x が共通不動点であることを示そう. t>0 を任意に固定すると、 $\{\alpha_n\}$ および $\{t_n\}$ の条件式から

$$\limsup_{j \to \infty} (\|x_j - T(t)x\|^2 - \|x_j - x\|^2) \le 0$$

が示せる. この式と、

 $||T(t)x - x||^2 = ||x_j - T(t)x||^2 - ||x_j - x||^2 - 2\langle T(t)x - x, x - x_j \rangle$ より、 $||T(t)x - x||^2 \le 0$ を得る. t > 0 は任意であるので、 $x \in F(\mathcal{T})$ が言える. 次に、 $\{x_i\}$ が P_z へ強収束することを示そう.

$$\beta_{j} \|x_{j} - Pz\|^{2} + (1 - \beta_{j}) \langle (x_{j} - T(s_{j})x_{j}) - (Pz - T(s_{j})Pz), x_{j} - Pz \rangle$$

$$= \beta_{j} \langle z - Pz, x_{j} - Pz \rangle$$

および

$$\langle (x_j - T(s_j)x_j) - (Pz - T(s_j)Pz), x_j - Pz \rangle$$

 $\geq ||x_j - Pz||^2 - ||T(s_j)x_j - T(s_j)Pz|| \cdot ||x_j - Pz|| \geq 0$

より、 $||x_j - Pz||^2 \le \langle z - Pz, x_j - Pz \rangle$ を得る. 距離射影の性質から $\langle z - Pz, x - Pz \rangle \le 0$ が言えるが、これを用いて、

$$||x_{j} - Pz||^{2} \leq \langle z - Pz, x_{j} - Pz \rangle$$

$$= \langle z - Pz, x_{j} - x \rangle + \langle z - Pz, x - Pz \rangle$$

$$\leq \langle z - Pz, x_{j} - x \rangle$$

を得る. したがって, $\{x_j\}$ は Pz に強収束していることが示せた. $\{u_{n_i}\}$ は $\{u_n\}$ の任意の部分列であるから, $\{u_n\}$ 自身も Pz に強収束する. \square

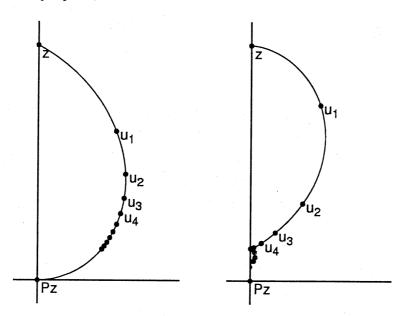
次に、定理2と定理3を比較する. 直接比較できないので、定理2から導かれる次の定理と比較する.

定理 4. C を Hilbert 空間 H の閉凸部分集合とする. $\{T(t): t \geq 0\}$ を C 上の非拡大写像からなる強連続半群で共通不動点集合 $F(\mathcal{T})=\bigcap_{t\geq 0}F(T(t))$ は空でないとする. P を $F(\mathcal{T})$ の上への距離射影とする. $\{\alpha_n\}$ および $\{t_n\}$ を $0<\alpha_n<1$, $\alpha_n\to 0$, $t_n>0$, および $t_n\to\infty$ を満たす実数列とする. $\{\mu_n\}$ を $C([0,\infty))$ 上の mean の列で, $(\mu_n)_t(f(t))=(1/t_n)\int_0^{t_n}f(t)dt$ と定義する. ここで, $C([0,\infty))$ は $[0,\infty)$ 上の有界連続関数全体からなる空間とする. z を C の任意の元とし, $\{u_n\}$ を $u_n=(1-\alpha_n)T_{\mu_n}u_n+\alpha_nz$ によって一意に定義される C の点列とする. このとき, $\{u_n\}$ は Pz に強収束する.

定理 3 と定理 4 の最も大きな相違点は、定理 3 では $t_n \to 0$ であるのに対して、定理 4 では $t_n \to \infty$ となっていることである. 具体的な場合について収束の違いを見てみよう. $C = H = \mathbf{R}^2$, $T(t)(x,y) = (\cos t \cdot x + \sin t \cdot y, -\sin t \cdot x + \cos t \cdot y)$, z = (0,1) とする. 定理 3 にお

TOMONARI SUZUKI

いて, $\alpha_n = 1/(n+1)$, $t_n = 1/\sqrt{n+1}$ とした場合の $\{u_n\}$ は, 下図左のような点列になる. 一方, 定理 4 において, $\alpha_n = 1/(n+1)$, $t_n = n$ とした場合の $\{u_n\}$ は, 下図右のような点列になる.



最後に, 定理 3 を Banach 空間に拡張した結果を証明抜きで述べる. ここに現れる概念については [4] 等を参照のこと.

定理 5. E を一様に Fréchet 微分可能なノルムを持つ Banach 空間、もしくは一様に Gâteaux 微分可能なノルムを持つ一様凸 Banach 空間とし、C を E の閉凸部分集合とする. $\{T(t):t\geq 0\}$ を C 上の非拡大写像からなる強連続半群で共通不動点集合 $F(\mathcal{T})=\bigcap_{t\geq 0}F(T(t))$ は空でないとする. P を $F(\mathcal{T})$ の上への sunny かつ非拡大なレトラクションとする. $\{\alpha_n\}$ および $\{t_n\}$ を $0<\alpha_n<1$, $t_n>0$, $t_n\to 0$ および $\alpha_n/t_n\to 0$ を満たす実数列とする. z を C の任意の元とし、 $\{u_n\}$ を $u_n=(1-\alpha_n)T(t_n)u_n+\alpha_nz$ によって一意に定義される C の点列とする. このとき、 $\{u_n\}$ は Pz に強収束する.

参考文献

- [1] F. E. Browder: "Convergence of approximates to fixed points of nonexpansive nonlinear mappings in Banach spaces", Arch. Rational Mech. Anal., 24 (1967), 82-90.
- [2] N. Shioji and W. Takahashi: "Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces", Nonlinear Anal., 34 (1998), 87-99.
- [3] W. Takahashi: "A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space", Proc. Amer. Math. Soc., 81 (1981) 253-256.
- [4] 高橋涉: "非線形関数解析学", 近代科学社 (1988).

DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCE, GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, NIIGATA UNIVERSITY, NIIGATA 950-2181, JAPAN E-mail address: tomonari@math.sc.niigata-u.ac.jp