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EXISTENCE OF SOLUTIONS FOR CAUCHY PROBLEMS AND PERIODIC
PROBLEMS WITH MULTIVALUED PSEUDO MONOTONE OPERATORS

NAOKI SHIOJI (fiiREXT - HEKER)

1. INTRODUCTION

Let V' be a reflexive Banach space which is densely and continuously imbedded in a Hilbert
space, let T > 0 and let {A(t) : t € [0,T]} be multivalued operators from V into its dual V'. We
study the existence of solutions for Cauchy problems and periodic problems to a class of a nonlinear
evolution equations of the form

u'(t) + A(t)u(t) 50  fort e [0, 7).

In the case when A(t) is single valued, Hirano [12], Ahmed and Xiang [1], Berkovits and Musto-
nen [3], and the author [15] studied the problems of this kind. Hirano and Ahmed and Xiang studied
the Cauchy problems in the case when A(t) is a monotone operator with nonmonotonic perturba-
tions. Berkovits and Mustonen generalized their results to the case that A(t) is pseudo monotone
and they also studied the periodic problems. The author also studied the periodic problems in the
case when A(t) is pseudo monotone. '

In this paper, we study the Cauchy problems and periodic problems in the case when A(t) is
a multivalued pseudo monotone operator. The conditions (A1)-(A4) in our theorems are more
general than those in [1, 3, 12, 15] even in the case when A(t) is single valued. To prove our results,
we employ the method employed in [10]. We use a topological property of a solution set for a
differential inclusion in Euclidean space [7], a topological fixed point theorem [9], Filippov’s type
implicit function theorem [16] and a minimax theorem [8]. : :

The next section is devoted to some preliminaries and notations. In section 3, we state our main
results and we prove them in section 4. In the final section, we study some applications.

2. PRELIMINARIES

Throughout this paper, all vector spaces are real, and we denote by N, R and R4, the set of
positive integers, the set of real numbers and the set of nonnegative real numbers, respectively.
Let X and Y be topological spaces. A multivalued mapping F : X — 2Y is said to be upper
semicontinuous if for every xop € X and open set V C Y with Fzy C V, there exists an open
neighborhood U of zg such that Fx C V for every z € U. Let E be a measure space. A
multivalued mapping G : E — 2Y is said to be measurable if for every closed set C' C Y, the set
{t € E: G(t)NC # 0} is measurable. A multivalued mapping H : E x X — 2Y is said to be
Carathéodory if for every z € X, H(-,z) : E — 2Y is measurable and for almost every ¢ € E,
H(t,-) : X — 2Y is upper semicontinuous. Let V be a reflexive Banach space. We denote by
V', the topological dual of V. The value of y € V' at z € V will be denoted by (y, z). Let V
be densely and continuously imbedded in a Hilbert space H. Since we identify H with its dual,
we have V.C H C V'. Let p, ¢ and T be positive constants such that 1/p + 1/¢ = 1. For
every u € LP(0,T;V) and v € L(0,T;V’'), (v,u) is defined by fg(v(t),u(t))dt. We denote by
Wp1 (0,T;V, H), the Banach space :

W(0,T;V, H) = {u € LP(0,T; V) : o' € LU0, T; V')}
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with the norm ||u|| + ||u’||+, where ' is the generalized derivative [2, 17] of w and || - || and || - ||« are
the norms of LP(0,7;V) and L%(0,T; V'), respectively. We know from [17] that WI}(O,T; V,H) is
a reflexive Banach space and that Wp1 (0,T;V, H) is continuously imbedded in C(0,T; H).

Let V be a reflexive Banach space and let A : V — 2"'. A is said to be monotone if (w—z, z—y) >

0 for every z,y € V, w € Az and z € Ay. A is said to be pseudo monotone if for every sequence
{zn} in V and {w,} in V' such that {z,} converges weakly to z € V, w, € Az, for every n € N

and lim(wp, z, — x) < 0, for every y € V, there exists wy € Az such that
(wyax - y) S lan (wmmn - y)
n—>o0

It is well known [4] that if A is monotone, for every € V, Az is a nonempty, closed convex subset
of V' and A is upper semicontinuous from every line segment in V' to the weak topology of V', then
A is pseudo monotone.

To prove our theorems in the next section, we use the following; see [7, Theorem and Lemma 5],
[9, Example 1 in Section III.2 and Corollary V.3.8], [16, p. 864, Theorem 4.1 and Theorem 7.4] and
[8, Theorem 2], respectively:

Proposition 1 (De Blasi and Myjak). Let T > 0 and let g : [0,7] x R® — 28" be a Carathéodory
mapping such that for almost every t € [0, 7] and for every y € R", g(t,y) is a nonempty, compact,
convex subset of R”, and there exists u € L'(0,T;R,) such that supyern |9(t,y)| < p(t) for almost
every t € [0,T]. For every y € R", let

Sy(y) = {z € C(0,T;R") : absolutely continuous, z(0) =y, z'(t) € g(t,z(t)) for a.e. t € [0,T]}.

Then for every y € R™, Sy(y) is the intersection of a decreasing sequence of nonempty, compact,
contractible subsets of C(0,T;R").

Proposition 2 (Gérniewicz). Let X be a convex subset of a normed linear space and let H : X —
2X be an upper semicontinuous mapping such that Uzc x Hz is contained in a compact subset of X
and for every x € X, Hx is a nonempty, acyclic, compact subset of X, where acyclic is in the sense
of Cech homology with rational coefficients. Then H has a fixed point, i.e., there is an element
of X such that z € Hx.

Proposition 3 (Wagner). Let 7 be a complete measure space, let V be a complete, separable
metric space and let Y be a separable metric space. Let F : T — 2V be a measurable mapping
such that for almost every ¢t € T, F(t) is nonempty, closed subset of V, let ¢ : T xV — Y
be a Carathéodory mapping and let A : 7 — Y be a measurable mapping such that for almost
every t € T, there exists v; € F(t) with h(¢) = g(¢,v:). Then there exists a measurable mapping
f:T — V such that f(t) € F(t) and h(t) = g(¢, f(t)) for almost every t € T.

Proposition 4 (Fan). Let U be a compact, convex subset of a Hausdorff topological vector space
and let V' be a convex subset of a vector space. Let f : U x V — R such that for every v € V,
f(-,v) is lower semicontinuous and convex, and for every u € U, f(u,-) is concave. Then

min sup f(u,v) = sup min f(u,v).
uel veV veV uelU

3. MAIN RESULTS
Now we state our main results.

Theorem 1. Let T, p and ¢ be positive constants such that 1/p +1/q = 1. Let (V| - ||) be a
separable, reflexive Banach space which is densely and continuously imbedded in a Hilbert space
(H,|-|) and let {A(t) : 0 <t < T} be a family of multivalued mappings such that
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(A1) for almost every t € [0,T], A(t) : V — 2V is pseudo monotone and A(t)z is a nonempty,
- closed, convex subset of V' for every z € V;
(A2) for every u € LP(0,T; V), t = A(t)u(t) : [0,T] = 2V is measurable;
(A3) there exist Cp,Cy € LI(O T;R;) and C; > 0 such that for almost every ¢ € [0, T] for every
z € V and for every y € A(t)z,

(3.1) : (y,2) + Cot)|z|* > Cillz||P — Ca(t);
(A4) there exist an increasing function C3 : Ry — R; and Cy : [0,7] x Ry — Ry such that
Cy(-,a) € LI(0,T;Ry) for every a € Ry, Cy(t,:) is increasing for almost every ¢ € [0, T], and
sup{llyll : y € A(t)z} < Cs(|z])l|zlP~! + Cult, |2])-
for almost every ¢ € [0, T] and for every z € V, where || - ||, is the norm of V.
Then for every ug € H, there exists u € Wp1 (0,T;V, H) such that

u(0) =wuo, u'(t)+ A(t)u(t) 20 for almost every t € [0, 7.

Theorem 2. Let T', p, ¢, V, H and {A(¢) : 0 <t < T} be as in Theorem 1. Assume p > 2 or
Co(t) = 0. Then there exists u € W,(0,T;V, H) such that

u(0) = u(T), u'(t)+ A( Ju(t) 20 for almost every ¢ € [0,T).

“Remairk 1. In both theorems, if V is compactly imbedded in H or Cy(t) = 0, 1t 1s sufﬁcxent to

assume the following (A5) and (A6) instead of (A3) and (A4):

(A5) there exist Co,Co € L'(0,T;Ry) and C; > 0 such that for almost every t € [0,7] and for
every z € V, there exists y € A(t)x which satisfies (3.1).

(A6) there exist an increasing function C3 : Ry — R4 and Cy : [0,7] x Ry — Ry such that
Cu(-,a) € LI(0,T;R,) for every a € Ry, Cy(t, ) is increasing for almost every ¢ € [0,7], and

sup{[lyll« : y € A(t)z satisfes (3.1) } < Cs(|z)l|2l/P~* + Cu(t, |2])

for almost every t € [0,T] and for every z € V.
For details, see Remark 2 in Section 4.

4. PROOFS OF THEOREMS

First, we give the proof of Theorem 1. We assume that T, p, g, V, H, {A(t)} and ug are as in
Theorem 1.

Lemma 1. Let ¢ € [0, T] such that A(t) is pseudo monotone and A(t)z is nonempty, closed, convex

subset of V' for every x € V. Let € V and let {z,} be a sequence in V which converges weakly

to z. Let y € V' and let {y,} be a sequence in V' such that it converges weakly to y, y, € A(t)z,

for every n € N and lim,, (yn, 2, — z) < 0. Then y € A(t)z. Especially, for almost every t € [0,T],
A(t) is upper semicontinuous from the strong topology of V' to the weak topology of V.

Proof. Since A(t) is pseudo monotone, for every z € V, there exists y, € A(t)z such that (y,,z—2z) <
lim,, (Y, Tn—z+z~2) = (y,2—2). So we have sup,cy min,¢ 4¢3 (w—y, z—2) < 0. By Proposition 4,
there exists w € A(t)r such that (w —y,z — 2z) <0 for all z € V, which implies w = y. Hence we
obtain y € A(t)z. ' O

We denote by V and V', the spaces LP(0,T;V) and L4(0,T; V'), respectively and the norms of
these spaces are also denoted by || - || and || - ||*, respectively. By W, we mean Wl(O T;V,H). For
u € Vand t € [0,T], we write Au(t) instead of A(t)u(t).

To prove the following, we use the method employed in [11, 12, 15].
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Lemma 2. Let {u,} be a sequence in W and let {wy } be a sequence in V' such that {u,} converges
weakly to u in W, w, € Au, for every n € N and lim,, (wy,, u, — u) < 0. Then for every v € V,
there exists w, € Au such that (w,,u — v) < lim,, (wp,un — v). Further, if {w,} converges weakly
to w in V', then w € Au. — : ' * : =

Proof. Since {u,} converges weakly to u in W, it also converges weakly to u in C(0, T’; H So {un}
is bounded in C(0,7; H). By (A3) and (A4), there exist K; > 0, K5 > 0 and K3 € L! (0 T;R,)
such that

(4.1) C (walt) un(®) — v(t) > Kallun(®)]P - K2I1v(t)||” - K3(t)

for almost every ¢ € [0, 7], for every n € N and for every v € V. We will show that
(4.2)  lim (wn(t), un(t) —u(t)) >0 for a.e. t€[0,T).
n—00 :

Suppose not. Then the set ‘
{t €[0,T7]: lgrolo(wn(t), un(t) — u(t)) <0,
(wn(t), un(t) — u(t)) > Kiflun(t)||? — KQHU(t)Hp — K3(t) for alln € N}

has a positive measure. Let ¢ be an element of the set. Since {un(t)} is bounded in V from (4.1),
{un(t)} converges weakly to u(t) in V. By (A1), we have lim,(wn(t), un(t) — u(t)) = 0, which
contradicts that ¢ is an element of the above set. Hence we have (4.2). By (4.1) and Fatou’s
lemma, we have

T ,
0< / lim (wn(t), un(t) — u(t)) dt < Lim (wp,un, — u) < lm (wy, up — u) < 0.
7 0 n—oo n—00 n~+00

Hence we obtain limy, (wp,un, — u) = 0. Next we will show that there exists a subsequence {ni} of
{n} such that

(4.3) ~ lim (wn, (t), un, (t) —u(t)) =0 for a.e. t € [0,T).

1—»00 .

Put hp(t) = (wn(t), un(t) —u(t)) for t € [0,T]. We know that lim, h,(t) > 0 for almost every
t € [0,T] and hmnf0 t)dt = 0. Set h,(t) = —min{h,(t),0} for ¢t € [0, T] Since h, (t) <
Ko|lu(®)|)® + K3(t ) by Lebesgue s dominated convergence theorem, we get lim,, fo o (t)dt =0. So

we obtain lim, fo |hn(t)] dt = 0. Hence we can choose a subsequence {hy,} of {h,} which satisfies
(4.3).

Let v € V. By the preceding, there exists a subsequence {n;} of {n} such that lim, (W, , Un; —v) =
lim,, (wy, up, — v) and lim; (wn, (t), un; (t) — u(t)) = 0 for almost every ¢ € [0,T]. Since {un, (t)} is
bounded in V' by (4.1), {ug, (t)} converges weakly to u(t) in V' for almost every ¢ € [0, T]. We know
Lim; (wp, (t), un, (t) —v(t)) is measurable and from Lemma, 1, for almost every ¢ € [0, 7], there exists
ye € A(t)u(t) with lim;(wn, (t), un, (t) — v(t)) = (ys,u(t) — v(t)). By Proposition 3, there exists
wy € V' such that w,(t) € A(t)u(t) and Lim; (wn, (t), un; (t) — v(t)) = (wy(t), u(t) — v(t)) for almost
every t € [0,T]. Hence by (4.1) and Fatou’s lemma, we have

T
(W, 1 — ) = / 5im (wn, (£), i, (£) — 0(£)) dt < Hm (tn,, un, — v) = Lm (wny up — v).
0 j—oo Jj—oo n—»00
Now, assume that {w,} converges weakly to w in V'. Then for every v € V, there exists w, € Au
such that (wy,u —v) < limy(wn, un — v+ u — v) = (w,u — v), which implies sup, ., minge 4y (Y —
w,u—v) <0. By Proposition 4, there exists y € Au such that (y —w,u —v) <0 for allv € V. So
we have y = w, and hence w € .Au a
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Let {e1, e, -} be a subset of V' such that the subspace spanned by {ej, e, ---} is dense in V

and .
N _ )1 ifi=y,
(eire5) = { 0 ifi#j,
i.e., {e;} is a complete orthonormal basis of H with {ez} C V. For every n € N, we denote by Fy,,
the subspace of V' spanned by {e;,--- ,ep}.
We set ug = >_" ; (uo, €;)e; for every n € Nand K = (Juol? + 2[0 Cy(s) ds) exp(2 fo Co(s)ds).

Lemma 3. For every n € N, there exist an absolutely continuous function uy, : [0,7] — F,, and
wn, € V' such that u, € LU0, T; F,), wn(t) € A(t)un(t) for almost every t € [0,T], |un(t)] < VK
for every t € [0,T] and

(4.4) up(0) = ug, (un(t) + wy(t),v) =0 for ae. ¢ € [0,T] and for every v € F,.

Proof. Let n € N. Let M > 0 with M|-| < ||-||. Since F,, is finite dimensional, there exists L,>0
such that ||v|| < Ly|v| for all v € Fy,. Define zp € R™ and f : [0,7] x R® — 28" by

(ul, 1) (A(t) (2:; xe) ’ el)

Lo = ) f(t’x) =- , (tz)€ [0, T] x R™.

(ug,en) (A(t) (g miei) : en)

By (A2) and Lemma 1, f is a Carathéodory mapping. By (A4), we have

: AG) (; i

el
n n
S e )| Lo
1=1 1=1

(4.5) <L, (cg(

E Ti€;

p—1 n
+ Cy <t,
=1

<L (Co () 22 P + Cale o) )

)

for almost every ¢ € [0,T] and for every z € R". By (A3), we have

st = - (a0 (zxze,),j%ej)
Zm

< _MPGUSP + Colt) e + Ot

for almost every ¢ € [0, 7] and for every z € R™. We show an a priori estimate for an absolutely
continuous function z : [O,T} — R™ which satisfies z(0) = zo and 2'(t) € f(t,z(t)) for t € [0, 7).
Since from ( 6), (|z(t)]? )/2 < Co(t)|a(t)|* + Ca(t) for almost every ¢ € [0,T], we have |z(t)|? <

|zo|? + 2 fo Ca(s)ds +2 fo Co(s)|z(s)|? ds for every t € [0, T)]. So by Gronwall’s 1nequahty, we get

lz(t))? < <|x0|2 + 2/ Cs(s) ds) exp(Q/ Co(s) ds) for every t € [0, 7.

By the standard fixed point argument, there exists an absolutely continuous function z : [0,T] > R"
such that z'(t) € f(t,x(t)) for almost every ¢ € [0,T] and z(0) = zo. Let uy, : [0,T] = F, be the

(4.6)

< -Cy +CO +C2
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absolutely continuous function defined by un(t) = > i, zi(t)e; for every ¢ € [0, T)]. It is easy to see
that un(0) = u®, |us(t)| < VK for every t € [0,T] and u}, € LI(0,T; F,). Since the mapping

(U;L(t)a 61)
t— : :[0,T] - R*
(un(t), €n)

is measurable, by Proposition 3, there exists a measurable mapping w, € V' such that wy(t) €
A(t)un(t) and (ul,(t) + wn(t),e;) = 0 for almost every ¢ € [0, 7] and for every j =1,... ,n. O

Lemma 4. {up} is bounded in W.
Proof. Let n € N. From (4.4) and (A3), we have

/oT lun ()IIP dt < 231_1 (K /oT Cole) di + /oT Gyt lﬁ%ﬁ) |

Since u!, € LI(0,T; Fy,), there exists v, € LP(0,T; F,,) such that (ul,,v,) = |lvn||2 = ||ul||?. So, by
(4.4) and (A4), we get

r :
Il < VRl + ([ 1ute VBDIar)
0
Hence {u,} is bounded in W. O

Since {uy,} and {w,} are bounded in W and V', respectively, we may assume that {u,} converges
weakly to u in W and {w,} converges weakly to w in V'.

Lemma 5. v/ +w = 0 and u(0) = uo.
Proof. First, we will show '+ w = 0. Let ¢ € C§°(0,T) and let n € N. By (4.4), we have for every
m>n,

T
0 = (um(T), »(T)en) — (um(0), 9(0)en) = /0 ((u;n(t), p(t)en) + ((p’(t)en, “m(t))) dt

T
= /0 ((—wm(t), p(B)en) + (¢ (t)en, um (1)) dt = (—wm, pen) + (F'en, um).

So we get 0 = (—pw + Y'u,e,) for all n € N and ¢ € C§°(0,T). Hence we obtain u' + w = 0.
Since {up} converges weakly to u in W and W is continuously imbedded in C(0,T; H), {un(0)}
converges weakly to u(0) in H. So we obtain u(0) = uo. O

Proof of Theorem 1. By Lemma 3 and Lemma 5, we have (wn, u,) = 1/2|u?|? — 1/2|u,(T)|? and
(w,u) = 1/2|uo|? — 1/2|u(T)|?. So we get

— 1
lim (wp, up — u) = = ( lim [u?|? = |ug|? + |[u(T)|? — Lim |u.(T)|?) < 0.
T (w0 — ) = 5 (s [~ uof? + [T = Jim fun(D)P) <

By Lemma 2, we have w € Au. Hence we obtain v € W and w € Au such that 4(0) = uo and
u+w=0. O

Next, we give the proof of Theorem 2. Till the end of this section, we assume p > 2 or Cy(t) = 0.
We fix r > 0 which satisfies

T T
—C1 MPrPT + / Ca(s)ds + ((r* + a)b + a)b/ Co(s)ds < 0,
0

vvherea-?f0 Cao(s dsandb—exp(ZfO Co(s ).Wesetp=\/(r2+abandR V(p? +a)b
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Lemma 6. For every n € N, there exist an absolutely continuous function u,, : [0,T] — F, and
wn, € V' such that u), € LI(0,T; F), wn(t) € A(t)un(t) for almost every t € [0,7], |un(t)] < R for
‘every t € [0,T] and

un(0) = un(T), (ul(t) + wn(t)‘,v) =0 forae. t E [0,7] and for every v € F,.

Proof. Let n. € N. Let M, L, and f be as in the proof of Lemma 3. Let z : [0,T7] — R™ be
an absolutely continuous function which satisfies z'(t) € f(¢,z(t)) for almost every t € [0,7] and
|z(0)| < p. We will show |z(T)| < p. By (4.6), it is easy to see that if there exists to € [0, 7] with
|z(to)| < r then |z(T)| < p. So we may assume that |z(¢)| > r for every ¢ € [0, T]. Since |z(t)| < R
for every t € [0, T] from (4.6), we get

T T
—;—|w(T)|2 _ %|:E(0)|2 < —CLMPrPT + / C(s) ds + R? / Cols) ds < 0
0 0

from (4.6). So we obtain |z(T)| < p.
Let g: [0,T] x R® — 28" be a Carathéodory mapping defined by
f(&y) if ly| < R,

9(ty) = :

f(t,Ry/lyl) iflyl>R
We remark that Sy(y) = Sy(y) for y € R™ with |y| < p, where Sy and S, are as in Proposition 1.
From Proposition 1 and the continuity property of Cech homology, Sq(y) is acyclic in the sense
of Cech homology with rational coefficients for every y € R*. We set X = {z € C(0,T;R") :
|z(T)| < p}. For every x € X, put Hx = Sg(z(T)) = Sf(z(T)). Then H : X — 2% is an upper
semicontinuous mapping such that Uzcx H(z) is contained in a compact subset of X and Hz is
acyclic and compact for every z € X. Hence, by Proposition 2, there exists a fixed point of H,
i.e., there exists an absolutely continuous function z : [0, 7] — R™ such that z'(t) € f(t,z(t)) for
almost every t € [0,T], (0) = z(T) and |z(t)| < R for every t € [0,T]. Let u, : [0,T] — F, be the
absolutely continuous function defined by u,(t) = Y"1 ; z;(t)e; for every t € [0,T]. By the similar

for (t,y) € [0,T] x R™.

argument as in the proof of Lemma 3, we finish the proof. O
Lemma 7. {uy} is bounded in W.
Proof. Let n € N. From Lemma 6 and (A3), we have

T 1 21 2

0= [ (wn(t), un(®) d + Shun(T)P? = Slun(0)
0
T : T T
> C / lun (t)||P dt — R2/ Co(t) dt —/ Ca(t) dt.
0 0 0

Hence by the same argument as in the proof of Lemma 4, {u,} is bounded in W. O

Since {un} and {wy} are bounded in W and V', respectively, we may assume that {u,} converges
weakly to v in W and {w,} converges weakly to w in V'.
By the same lines as those in the proof of Lemma 5, we obtain the following:

Lemma 8. v 4+ w =0 and u(0) = u(T).

Proof of Theorem 2. By Lemma 6 and Lemma 8, we have (wp,u,) = 0 for every n € N and
(w,u) = 0. So we get lim,(wp,un, —u) = 0. By Lemma 2, we have w € Au. Hence we obtain
u € W and w € Au such that u(0) = u(T) and v’ +w = 0. O
Remark 2. We give the proof of Remark 1. We set

A(t)z = {y € A(t)z : y satisfies (3.1)} for (¢t,z) € [0,T] x V.
Since it is easy to see that {A(t)} satisfies (A2), (A3) and (A4), it is sufficient to show the following:
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Lemma 9. A(t) is pseudo monotone for almost every ¢ € [0, T7.

Proof. Let t € [0,T] such that A(t) is pseudo monotone and A(t)z is nonempty, closed, convex
subset of V' for every z € V. Let z € V and let {z,} be a sequence in V which converges weakly to
zinV. Let {y,} be a sequence in V' such that y, € A(t)z, for every n € N and lim,, (yn, zn—2z) < 0.
Fix z € V. Then there exists a subsequence {n;} of {n} such that {y,,} converges weakly to y
in V' and lim,, (yn, Tn — 2) = limi(yn;, Zn; — 2). Since (y,z — 2) = lim,, (yn, Tr, — z), it is sufficient
to show that y € A(t)z. From Lemma 1, we have y € A(t)z. Since {yn,} converges weakly to y,
Yn; € A(t)z,, and V is compactly imbedded in H or Co(t) = 0, we obtain y € A(t)z from (3.1).
This completes the proof. O

5. APPLICATION

Throughout this section, T > 0, p > 2 with 1/p+ 1/¢ =1, Q is an bounded domain in RN with
smooth boundary and @ = (0,7") x , m is a positive natural number. For real valued function u
on 2, we mean 7(u) and {(u) as follows:

n(u) ={D%:|a|<m-1} € RM ((u) ={D% : |a| =m} € RNz,

Let {Aq : |a| = m} be functions from Q x R x RM2 into R, let {A, : |a| < m — 1} be multivalued
functions Q x RM x RM2 into 2R, and let h be a function from Q into R.
We consider the following nonlinear differential inclusion

(2t,0) + 3 (~1)91D* A, t, 2, m(w), ()

ot o
(5.1) \ + Y (-DDw,(t,z) = h(t,z) on Q,
laj<m~1

(wa(t, ) € Aalt, z,n(u),C(w)) on @ for ja| <m—1

with Dirichlet boundary condition
(5.2) D*u=0 on [0,T] x 89 for |o] <m — 1.

Theorem 3. Assume the following:

(i) for every a with |a| = m, Aq(-,-,n,() is measurable for every (1,{) € RM x RM and
Aq(t,z,-,+) is continuous for almost every (¢, ) € Q;

(ii) for every a with |a| < m —1, A,(t,z,7n,() is nonempty, closed, convex subset of R for every
(t,z,m¢) € Q@ x RM x RN A,(-,-,n,¢) is measurable for every (n,¢) € RM x RM2 and
Aq(t,z,-,-) is upper semicontinuous for almost every (t,z) € Q;

(iii) there exist c3 > 0 and c4(t,z) € LI(Q;R,) such that

sup |Aa (ta ,n, C)I <c3 (ICIp_l + |,’7|p—1) + C4(t, CC)
for every |a| < m and (¢,z,7,¢) € Q x RM x RNz;
(iv) for every (t,z,n) € Q x RM and ¢, ¢’ € RV? with ¢ # (',
Z (Aa(t,xvna C) - Aa(t,x,mﬁl)) (ga - Cz,x) > 0;
laf=m

(v) there exist ¢; > 0, ¢g € L'(0,T;R4) and ¢, € LY(Q; Ry) such that
3" Aalt, 20,0 + co®lmol2 > er[CPP — ealt, )

|a|=m

for every (¢,z,7,¢) € Q x RM x RM2, where 9 = {ng : 18| = 0};
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Then for every h € L(0,T; W~19(Q)) and up € L?(Q), there exists u € W, (0, T; Wol’p(ﬂ),LZ(Q))
which satisfies (5.1) and (5.2) with u(0) = ug, and if p > 2 or ¢y(t) € L*®(0,T;R,), then for every
h € LI(0, T; W~14(Q2)), there exists u € W, (0, T; Wy (), L2(€)) which satisfies (5.1) and (5.2)
with u(0) = u(T).

Proof. For every t € [0,T], we define an operator A(t) : Wy"F(Q) — 2 ™D by w € A(t)u
if for almost every z €  and |a| < m, wa(z) € Aa(t,z,n(u),((u)) and for every v € Wy™P(Q),

v) = [q > laj<m Wa(z)D*v dz. First, we will show that A(t) is pseudo monotone for almost every
t € [0,T]. We use the method employed in [5, 14]. Fix ¢ € [0,T]. Let {(u”, w™)} be a sequence in
WP () x W~™4(Q) such that {u"} converges weakly to u, w™ € Au™ and lim,, (w", u" — u) < 0.
Fix v € Wy™P(Q). Taking a subsequence, if necessary, we may assume that lim, (w",u™ — v) =
limy, (w", u™ — v), {D*u"} converges strongly and almost everywhere to D%y for |a| < m — 1 and
{wg} converges weakly to wq in LI(Q) for |a| < m. We show wqo(z) € Ag(t, =, n(u),(u)) for almost
every z € Q and for every |a] < m — 1. Fix a with |a] < m — 1. We may assume that there exists
wy € co{wp, wptt, .-} and w?(z) converges to wo(z) almost everywhere. Fix x € Q. Let (3, v) be
an open interval with A, (¢, z,n(u),((u)) C (8,7). From the upper semicontinuity of A4(t,z, -, -), we
have wq(z) € (8,7). Since (8,7) is an arbitrary open interval which contains A, (¢, z, 7(u), ¢ (¢)) and
Aq(t,z,n(u),((u)) is closed and convex, we have wy(z) € Ay(t, z,n(u),((u)) almost everywhere.
Set

) = Xiaj=m Aalt, z,n(u), ((u™)) (D™ ~ D) + 374 <pyr wh(2) (D*u™ ~ D%u);
) = Xjaj=m(Aa(t, z,n(u"),{(u")) — Aa(t, z, n(u"), (()))(D*u"™ — D*u);
) = Yjaj=m Aa (t z, n(u"), C(u))(D“u" — D%u);

)

It is easy to see q, = p, — T, — s, and mn J gn <0. From ¢, > 0, gn(z) — 0 almost everywhere.
By [13, Lemma 6], D*u"(z) — D“u(z) almost everywhere for |a| = m, and hence p,(z) — 0
almost everywhere From the uniform integlability of {p, }, we have lim, f Pn = 0. So we obtain
lim, [p} =0 and

lim (", 4™ — v) = lim (/Qpn(w) dz + (w",u-u)) — (w,u—v).

n—oo n—o0

Hence A(t) is pseudo monotone, which implies (Al). By Sobolev’s imbedding theorem, we have
(A3). Hence by our theorems, we obtain the conclusion. |

As a direct consequence, we have the following, which improves [6, Theorem 4.1] and [15, Theo-
rem 2.

Corollary. Let b;,a : R — R be bounded and continuous functions and let g : Q x Rx R™ — 2R be
Carathéodory mapping such that there exist o, 3 > 0 which satisfy sup|g(t,z,n,¢)| < a(jp[P~! +
[¢[P~1) + B for every (t,x ,1,() € Q@ x R x R™. Then

o LA P29
R (o ) RO ILCT

with Dirichlet boundary condition has a T-periodic, weak solution u € W, (0,T; W, P(Q), L2(R)),
where Du(z) = (6“ . 6“)

Oz, ? OTn

o
ox;

a(z)|u(z)P~?u(z) + g(t, z, u(z), Du(z)) 3 0
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