Nonlinear Ship Motion in Waves
波浪中の船体運動にみられる非線形現象

東大・工・計数工学 村重 淳 (Sunao Murashige)
帝京科学大・電子・情報 小室 元政 (Motomasa Komuro)
東大・工・計数工学 合原 一幸 (Kazuyuki Aihara)

Abstract

Water flooding into ships led to some tragic capsizing accidents. We experimentally found nonlinear motion, including chaotic one, of a flooded ship in waves. The experimental results suggested that coupling of roll motion and flooded water dominates this nonlinear phenomenon. We derive a mathematical model for this coupled motion and study bifurcation of periodic solutions. The results show that the nonlinearly coupled system can produce complicated bifurcation phenomena and that chaotic solutions are generated after periodic solutions become unstable with the Neimark-Sacker bifurcation.

1 Introduction

The passenger ferry Estonia capsized due to water flooding onto the vehicle deck in the Baltic sea in September, 1994, with heavy loss of lives. The ferry Estonia met the existing safety rule which is based on a static stability analysis. Why did such a safe ship capsize?

We carried out some experiments to examine dynamic stability of a flooded ship in waves[1]. The experimental results showed that a flooded ship could exhibit nonlinear roll motion in regular waves, and that coupling of roll motion and flooded water dominates this nonlinear response. In addition, we experimentally investigated variation of roll motion of a flooded ship with the wave height using a box-shaped model. The results demonstrated complicated bifurcation phenomena including chaotic motion.

Nonlinear dynamical approaches have been applied to a mathematical model for nonlinear ship motion[2-5]. We derive a mathematical model of the 1st order ODE form for the coupled motion of roll and flooded water. In order to understand mechanism of nonlinear response of a flooded ship in waves, we examine bifurcation of solutions of this model.
2 Experiments

Figure 1 shows a general view of a box-shaped model (the length $L=0.92\text{m}$, the breadth $B=0.45\text{m}$, the draft $d=0.11\text{m}$, the freeboard $f_r=0.02\text{m}$, the displacement $W=45.54\text{kg}$, the natural period of roll motion $T_{nr}=1.54\text{sec}$) used in experiments[1]. We measured roll, sway and heave motion in waves of constant height and period using potentiometers.

![Fig.1 Experiments using a box-shaped model](image)

![Fig.2 Measured roll motion of the box-shaped model](image)

(a) Time series

(b) Reconstructed attractor

Fig.2 Measured roll motion of the box-shaped model
(Wave height $H=18.2\text{cm}$, wave freq. $f=0.7\text{Hz}$, amount of water inside the ship $w=5\text{kg}$)

Figure 2 shows an example of measured roll angle ϕ under the conditions of the wave frequency $f=0.7\text{Hz}$, the wave height $H=18.2\text{cm}$, and the amount of water inside the ship $w=5\text{kg}$. The attractor in fig.2(b) is reconstructed by using delay coordinates $(\phi(t), \phi(t + \tau))$ with the delay time $\tau=T/4$ (T: wave period).
Figure 3 displays the stroboscopic plots of \((\phi(t), \phi(t + \tau))\) on Poincaré sections with \(\vartheta = 0, 30, 60, \ldots, 330\) deg. where \(\vartheta\) denotes the phase of the incident waves. We can clearly see stretching, folding, and compressing process. In addition, we calculated Liapunov exponents of this data, and found that the maximum one is positive. These results indicate that the measured roll motion in fig.2 is chaotic. We also found complicated bifurcation phenomena with changing wave heights.

3 Mathematical Model and Bifurcation Analyses

3.1 Modelling of the Coupled Motion of Roll and Flooded Water

![Diagram of a flooded box-shaped ship](image)

Fig.4 Illustration of two-dimensional motion of a flooded box-shaped ship in regular waves

(\(\phi\); roll angle of a ship, \(\chi\); slope of the surface of flooded water, \(b_s\); breadth of a ship, \(b_w\); breadth of a vehicle deck, \(d_s\); draft, \(f_c\); freeboard, \(d_w\); depth of flooded water, \(G_s\); center of gravity of a ship, \(G_w\); center of gravity of flooded water, \(B_s\); center of buoyancy of a ship)
From observations of the experiments, it was found that the nonlinear phenomena were dominated by coupled motion of roll and flooded water in waves. Then we derived a mathematical model for the coupled motion in regular waves, as shown in fig. 4, assuming (1) coupling of roll motion and flooded water is dominant, and sway and heave modes can be neglected, (2) the surface of flooded water is flat with the slope \(\chi \), (3) the motion of flooded water can be approximated by that of a material particle located at the center of gravity \(G_w \), (4) the forcing roll moment varies sinusoidally with the same angular frequency as the incident waves \(\Omega \), and (5) the damping moments on the ship and flooded water vary linearly with \(\phi \) and \(\dot{\chi} \) (\(=d/dt \)), respectively. Take the coordinates, as shown in fig. 4, of which the \(x \)- and the \(y \)-axis are defined to the horizontal and the vertically upward directions, respectively, and the origin is set at the center of gravity of the ship \(G_s \). On the above assumptions, the kinetic energy \(K \), the potential energy \(P \), and the rate of energy dissipation \(D \) can be expressed as

\[
\begin{align*}
K_s &= \frac{1}{2} M \kappa^2 \dot{\phi}^2 \ , \quad K_w = \frac{1}{2} m \left(x\dot{G}_w^2 + y\dot{G}_w^2 \right) \ , \\
P_s &= -(M + m)g y_{B_s} \ , \quad P_w = mg y_{G_w} \ , \\
P_t(\dot{\varphi}, t) &= -\phi \{ A_0 + A_1 \sin(\Omega t + \psi) \} \ , \\
D &= \frac{1}{2} \nu_s \dot{\phi}^2 + \frac{1}{2} \nu_w \dot{\chi}^2 ,
\end{align*}
\]

where the subscripts \(s, w, \) and \(e \) denote the ship, the flooded water, and the forcing roll moment, \(M \) and \(m \) the masses of the ship and of the flooded water, \(\kappa \) the radius of gyration, \(g \) the gravitational acceleration, \(x_{G_w} = (x_{G_w}, y_{G_w}) \) the location of the center of gravity of the flooded water \(G_w \), \(x_{B_s} = (x_{B_s}, y_{B_s}) \) the location of the center of buoyancy of the ship \(B_s \), \(A_0 + A_1 \sin(\Omega t + \psi) \) the forcing roll moment, and \(\nu \) the damping coefficient, respectively. We can obtain model equations for the coupled motion by substituting eq. (1) into Lagrange's equations of motion

\[
\begin{align*}
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) - \frac{\partial L}{\partial \phi} + \frac{\partial D}{\partial \dot{\phi}} &= 0 \ , \\
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\chi}} \right) - \frac{\partial L}{\partial \chi} + \frac{\partial D}{\partial \dot{\chi}} &= 0 ,
\end{align*}
\]

where the Lagrangian \(L = K - P \), \(K = K_s + K_w \), and \(P = P_s + P_w + P_e \), respectively. On the above assumptions, \(x_{B_s} \) and \(x_{G_w} \) correspond to the center of the cross-section of the ship under the still water surface and that of flooded water, respectively. Thus the necessary coordinates in eq. (1) can be geometrically determined. In addition, we can express the model equations of the first order form \(d\mathbf{x}/dt = \mathbf{F}(t, \mathbf{x}, \mathbf{\sigma}) \) where \(\mathbf{x} = (\phi, \dot{\phi}, \chi, \dot{\chi}) \) and \(\mathbf{\sigma} \) denotes a set of parameters.
3.2 Bifurcation analyses

The mathematical model produces complicated bifurcation phenomena. Then we obtained some 2-parameter bifurcation diagrams in the (Ω, A₁) plane using the Newton method[6]. Figure 5 shows bifurcation curves of the ‘period 1’ and ‘period 2’ solutions when the ratio of the amount of flooded water to the total weight of the ship w/W=0.19 and the geometrical conditions of the ship are set to almost the same as a ferry model used in the experiments[1]. We can see that the ‘period 1’ and ‘period 2’ solutions coexist in some regions. Figure 6 shows the phase portraits of them when Ω=0.9 and A₁=0.02. This coexistence was also found in the experiments[1].

![Bifurcation diagram](image)

Fig.5 Bifurcation diagram, Case 1

(Geometrical conditions of the ship are close to the same as the ferry model[1]. Ω and A₁ are represented in the real ship scale. Gᴺ: saddle-node (solid line), Iᴺ: period doubling (dashed line), and Hᴺ: Neimark-Sacker (dash-dotted line). N: ‘period N’.)

Figure 7 shows bifurcation curves of the ‘period 1’, ‘period 2’ and ‘period 3’ solutions when the ratio of the amount of flooded water to the total weight of the ship w/W=0.15 and the geometrical conditions of the ship are set to almost the same as the box-shaped model used in the experiments[1]. Figure 8 shows variation of the stroboscopic plots of the roll angle ϕ at φ(= Ωt + ϕ₀)=0 and variation of the Liapunov exponents, and an example of the phase portrait of the chaotic solution, when Ω is fixed to 0.45 and A₁ is increased. In fig.7, chaotic solutions
were found in the closed curves of the Neimark-Sacker bifurcation of the 'period 1' and 'period 2'.

Fig.6 Coexistence of 'period 1' and 'period 2'
(Case 1. \(\Omega=0.9, A_1=0.02 \) in fig.5)

Fig.7 Bifurcation diagram, Case 2
(Geometrical conditions of the ship are close to the box-shaped model[1]. \(\Omega \) and \(A_1 \) are represented in the experimental scale. \(G^N \): saddle-node (solid line), \(I^N \): period doubling (dashed line), and \(H^N \): Neimark-Sacker (dash-dotted line). \(N \): 'period N'.)
(a) Variation of stroboscopic plots of the roll angle $\phi(t_0 + mT)$ (T: wave period, $m=1,2,\cdots,100$)

(b) Variation of the Liapunov exponents

(c) Phase portrait of the chaotic solution at $A_1=0.51875$

Fig.8 Variation of the stroboscopic plots of the roll angle ϕ, the Liapunov exponents λ, and the phase portrait of the chaotic solution (Case 2. $\Omega=4.5$ in fig.7)

4 Conclusions

Some experimental works have demonstrated that a flooded ship can exhibit nonlinear roll motion, including chaotic one, in waves. Observations of the experiments suggested that nonlinearly coupled motion of roll and flooded water dominates these complicated phenomena. Then we derived the mathematical model for the coupled motion and investigated bifurcation of periodic solutions. The results showed that chaotic solutions were found in the closed curves of the Neimark-Sacker bifurcation. In order to understand mechanism of nonlinear response found in experiments, we need further study on bifurcation using this model.
References

