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GEOMETRIC TOPOLOGY OF BANACH-MAZUR COMPACTA

by
DUSAN REPOVS

ABSTRACT. This is a survey on geometric topological properties of Banach-Mazur
compacta Q(n). We begin by an introduction of this interesting class of spaces which
has recently witnessed an intensive new development. Next, we list the main new results
in this area, concerning local homotopical and general position properties of Q(n). In
the last part we present the key ideas of the proofs. Also included are some unsolved
problems and related conjectures.

1. Introduction

Banach-Mazur compacta lie in the intersection of two mathematical disciplines, namely
geometry of Banach spaces [21] [25] [26] [31] and infinite-dimensional topology [16] [19]
[24] [34]. Historically, first studies of these spaces concentrated on their metric properties,
e.g. their diameters, radii at various centers, distances between particular points, etc. [31].
On the other hand, their topological structure was not well understood, except for the fact
that they are contractible spaces. Notably the Polish school set forth some of the most
challenging questions, e.g. are Q(n) absolute retracts (Q-manifolds) [19][34]7 Recently,
we have seen an upsurge of interest in this area and as a result some of these problems
have been successfully solved (and as usually, several new appeared). This presented an
opportunity for this survey.

Identify the set of all n-dimensional Banach spaces BAN(n) with the set of all norms
in R™. Define the Banach-Mazur distance p : BAN(n) x BAN(n) — Ry for arbitrary
pairs of Banach spaces X = (R™,]| |lx), Y = (R"]| |lv) € BAN(n) as follows:

p(X,Y) =inf{||T||-|T7"| | T: X — Y is an isomorphism}.

Then for every triple X,Y,Z € BAN(n), the following properties hold:

(1) p(X,Z) < p(X,Y) - p(Y, Z);

(2) p(X,Y) = p(Y, X);

(3) p(X,Y) > 1; and

(4) p(X,Y) = 1 if and only if X and Y are isometric, X = Y, ie. there is an
isomorphism T : X — Y which preserves the norm: ||z||x = ||T(z)||y, for every z € X.

Clearly d = Inp is a pseudo-metric (cf.[17]) on BAN(n), hence the equivalence
d(z,y) > 0 <= z # y need not be true. Let us verify the properties (1)-(4):

Ad(1) Let X = (R%,|| llx), Y =(R™] |lv) and Z = (R",]| ||z) € BAN(n). Then
for any pair of linear operators X T, ¥ -4 7 one has the inequality ||SoT|| < ||S||-||T],
since, by definition,

1S = sup [|S(y)llz and H7W==“5F51HTT$Hhm

lylly <1
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Hence, for isomorphisms S and T', we clearly get
p(X,Z) =inf{||S o T||- (S o T)7 I} < inf{lIS||- (1S~ - NI - N7} =

— inf{S] - 1S} - ind {70 - 1) = (X, Y) - (Y, 2).

Ad(2) This is obvious - replace T by T1.
Ad(3) For any isomorphism 7' : X — Y we have the inequality

L= |ldx|| = [T o T~ < T - IT7'II,
thus we get the inequality
p(X,Y) = inf{||T||- |77} > 1.

Ad(4) This is also obvious - recall that ||T|| - |T7!|| = 1 if and only if |T(z)|ly =
1T llzllx, for every z € X.

Define now an equivalence relation on BAN(n) as follows: X ~ Y if and only if
p(X,Y) =1 (equivalently, In p(X,Y) = 0) and introduce a metric into the quotient space

Q(n) = BAN(n) [ ~ = {all isometry classes of n—dim Banach spaces}

by d([X],[Y]) = Inp(X,Y).

It is easy to check that the function d : Q(n) X Q(n) — Ry is well-defined, i.e.
independent of the choice of representatives X and Y. Function d is indeed a metric. Let
us check only the Triangle inequality: Given any [X],[Y],[Z] € Q(n), one calculates

d([X]a {Z]) = lnp(X,Z) < ln(p(X,Y) : p(Y, Z)) =

= lnp(X,Y) + In p(Y, Z) = d([X], [¥]) + d([], [2).

The resulting metric space (Q(n), d) turns out to be compact [22]. It is called the Banach-
Mazur compactum and is usually written simply as Q(r). =

2. Representing ()(n) as the orbit space

We shall present a different way of introducing @(n), namely as a decomposition
(orbit) space of C(n), where C(n) is the space of all compact convex bodies V' in R",
symmetric with respect to the origin 0 (see Figure 1).

We shall measure the distance between arbitrary subsets A, B C R™ by the Hausdorff
metric pg(A, B) = max,capep{sup d(a, B),supd(A,b)}, where d : R* x R* = Ry is a
. fixed Euclidean metric [17] and we shall define linear combinations -7y A; A;, for any
Ay, Ay, ..., A, € C(n), using the Minkowski operation [33], as follows: LA\ A; = {ZXia;|a; €
A}

Then (C(n),pn) is a locally compact, convex infinite-dimensional space. Moreover,
there exists an action GL(n) x C(n) — C(n), of the general linear group, defined by
(T,V) = T(V), for any T : R* — R™ € GL(n) and V € C(n), which agrees with the
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convex structure on C(n). Hence C(n) can be viewed as a disjoint union of the orbits
G(z) = {g-2|g € GL(n)).

We shall establish the existence of a homeomorphism C (n) /GL(n) = Q(n). Given an
arbitrary body V € C(n), define the Minkowsk: functzonal pv : R® = Ry by py(z) =
inf{} | t-z € V} (see Figure 2) [30].

, This yields a norm on R", py : R® — R, given by ||z|| = pv(z), for every z € R".
Define M : C(n) - BAN(n) by M(V) = (R",py). Notice that the inverse map is defined
by sending (IR™,|| ||) to the unit ball B™ with respect to || ||. Then M is a continuous

surjective map, in fact a bijection.
V
/tw

‘Figure 2

Clearly (see (4) above)), for any two n-dimensional Banach spaces X and Y, X and Y
are isometric, X & Y if and only if there exists T € GL(n) such that V = T(W), where
X = (R",pv) and Y = (R", pw) (see Figure 3).

Observe that M(V) ~ M(W) <= V = T(W). Therefore M induces a continuous

bijection, hence a homeomorphism

M : C(n)/GL(n) — BAN(n)/~ = Q(n).
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For an illustration, think of V and W as points on the same GL(n)-orbit. Then
along this orbit, containing V' and W, one can move from V to W via an appropriate
linear operator T : R® — R"™ such that (V) = W, so we clearly have an isometry
T:(R™ | llv) = (R™ ]| |lw) (see Figure 4).

S

Figure 4

3. The Lowner ellipsoid

The benefit of the alternative presentation of @(n) is that it becomes possible to study
Banach-Mazur compacta via convez bodies [15][21][23], i.e. instead of Banach spaces we
study spaces of convex bodies, where a significant tool has existed since 1930’s — the
Léwner ellipsoid [22)].

For any V € C(n) there exists (a unique) ellipsoid Ey C IR™ such that

(1) V C Ly (there is also a version where Jy C V);

(2) Ev has the minimal (resp. maximal) volume; and

(3) Ev is centrally symmetric.

Therefore we have a correspondence £ : C(n) — £ = {ellipsoids}, given by V'~ Ey
such that:
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 (4) L is continuous in the Hausdorff metric pg on C(n).
(5) L is GL(n)-invariant, i.e. if T: V — W then T(Ev) = Er(v).

VO _____ 5 Ey

iR

WC s Ew

So L preserves the action of GL(n). Let £ be the orbit of a special convex body - the
unit ball B”. Hence, £ : C(n) = GL(n) - B™ is a retraction onto the elliptic orbit. Let
E(n) = L7'(B"). Then every V € E(n) embeds in Ey = B". Thus

L(n) = {all convex bodies V whose Lowner ellipsoids coincide with B"}

and hence E(n) preserves the action of the subgroup O(n) C GL(n) and (GL(n)—orbits)N
(E(n) = O(n) — orbits). Therefore C(n)/GL(n) = E(n)/O(n) = @Q(n) (see Figure 5).

Figure 5

Question (3.1) Is L : C(n) — £ a Lipschitz map?

4. Main questions concerning Q(n)

Question (4.1) Evaluation of the diameter of Q(n): A classical result [22] asserts that
diam Q(n) < Inn, for every n. An asymptotic estimate due to Gluskin [20] is that for some
constant ¢ > 0, clnn < diam Q(n) < Inn. For more on this and related problems see [31].

Question (4.2) Contractibility of Q(n). Solved by Milman in the 1960’s - he proved
that Q(n) ~ *.
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Question (4.3) Is Q(n) a retract of the Hilbert cube? The answer is affirmative,
since Q(n) is AE: for n = 2 this is due to Fabel [18], for any n > 3 due independently, to
Antonyan [11] and Ageev-Bogatyi-Fabel [6] (for an alternative proof see [7]).

Question (4.4) Is Q(n) homeomorphic to the Hilbert cube? The answer is negative
for (at least) n = 2, since Q(2) ¥ I°°, as shown by Ageev-Bogatyi [4][5].

Question (4.5) Is Q(n) \ {€}, where £ is the Euclidean point, a Hilbert cube mani-
fold? The answer is affirmative for (at least) n = 2 as shown by Ageev-Repovs [9].

Question (4’ 6) Is Q(n) a topologically homogeneous space? The answer is negatlve
for (at least) n = 2, as shown by Ageev-Repovs [9]. -

5. Outlines of the proofs
Theorem (5.1) Q(n) ~ *

Proof. Recall that £ : C(n) — C(n) is a continuous map, it preserves the GL(n)
- action and is a retraction onto the set of all ellipsoids. We shall invoke now the following:

Millman trick (5.2) For any convex body V € C(n) and any t € [0,1] define
HV,t) = t-V + (1 —1t)- By (i.e. Minkowski linear combination): Then the map
H : C(n) x[0,1] — C(n) has the following properties: (1) H is continuous; (2) Ho = L;
(3) Hy = Id; (4) H preserves the GL(n) action; and (5) H;|e = Id, for every t € [0,1]. m

Then H induces a map on the orbit space
f: C(n)/GL(n) x [0,1] —s C(n)/GL(n) = Q(n)

such that )
H([V],t) = [H(V,t)], for every V € C(n) and t € [0,1]

Clearly, H is continuous and has the following properties: (1) Hy is constant; (2) H,
is identity; and (3) Ht|[g] is identity, for every t. Hence H is a contraction of Q( ) to a
point. m

Theorem (5.3) Q(n) is an AR.

Proof. Consider the following commutative diagram:

Q(n) = C(n)/GL(n) = E(n)/O(n) < C(n)/O(n)

where

r(O(n)-V)=GL(n)-V
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Therefore Q(n) is a retract of C(n)/O(n). So in order to prove that Q(n) is indeed an
AR it suffices to verify the following:

Assertion (5.4) C(n)/O(n) is an AR.

Proof. Recall the following facts:

(1) O(n) is a compact Lie group; and

(2) C(n) is a space with a convex structure (deﬁned via the Mmkowskx operation) and
this convex structure preserves the action of the group GL(n).

Murayama [27] proved that C(n) is an O(n)-AR and Antonyan [10] proved that X € G—
AR, for any compact Lie group G implies X/G € AR. These two results together yield
that C(n)/O(n) € AR, as asserted. m

The key here is that the group O(n) is compact, because [10] and [27] treated only the
compact case. Ageev-Repovs [8] (see also [7]) proved a more general fact, namely that
(1) C(n) is GL(n)-AR; and
(2) C(n)/GL(n) € AR
and they also gave an alternative proof of Theorem (5.3).

Theorem (5.5) Q(2) # I*.

Proof. The argument consists of seven steps (every assertion is reduced to the next

one). Let Q'(2) = Q(2) \ {€} and C'(2) = C(2) \ £.
Assertion (5.6) Q'(2) # *
Assertion (5.7) H*(Q'(2); Q) # 0.

Assertion (5.8) Q'(2) = C'(2)/GL(2) is the orbit space of C'(2)/GL*(2), which is the
FEilenberg-MacLane compler K(Q,2), with respect to the action of Z; = GL(2)/GL*(2).

Assertion (5.9) The orbit space of arbitrary involution on the FEilenberg-MacLane
compler K(Q,2) has nontrivial cohomology, H*(K(Q,2)/Z2; Q) # 0.

Assertion (5.10) C'(2)/GL*(2) = K(Q,2).
Assertion (5.11) C'(2)/S0(2) = K(Q,2).
* Assertion (5.12) C/(2)/50(2) = U2, Fy, F C C'(2), Fr = K(Z,2), Fr C
F, <= l|k, and the homomorphism Ily( F}) — HZ(F}) of the homotopy groups coincides

with multiplication on Z by l|k.

Suppose now that to the contrary, Q(2) were homeomorphic to I*°. Then one would
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have (invoking Assertion (5.6)) the following contradiction
* 22 Q(2) \ {[€]} =1\ {point} ¥ 1= x 0,]) ~* m

Remark (5.13) This result has also been announced by Antonyan [12].

Recall that the Hilbert cube I® = [ [0, 1] (originally defined as {@)| X2, 22 <
o0 and |z;] < %, for every i}) has the following two properties: (1) I® € AR; and
(2) I possesses the Disjoint m-disks property, for every m, i.e. for every ¢ > 0 and
fi : D™ — I®°, ¢ € 1,2, there exist fi + D™ — 1 such that d(f;, f!) < e and
Imf] N Imf} = 0.

Indeed, since obviously for every ¢ > 0 there exist fiiI® = 1°, ¢ € {1,2}, such
that d(f;,id) < ¢ and Imf; N Imf, = §: just map once into

N

(ITl0,1)) x {0} x {0} x {0} x ...

1

and the second time to v
(IT00,1]) x {1} x {1} x {1} x ...

where N is chosen big enough, N = N(e).

Toruriczyk [32] proved that the properties (1) and (2) actually detect I*° among all
compacta. ’ ' :

Remark (5.14) Note that C(n) has both properties locally, hence C(n) is an 1°°-
manifold. That C(n) is AR follows by the Dugundji theorem (16], whereas DD™P is
checked in a straightforward fashion.

X is called an I®°-manifold if for every z € X there exists a closed neighborhood
F(z) € X such that F (z) = I°. Clearly, every I*°-manifold possesses the following
properties: (i) X € ANR; (ii) X is locally compact; and (iii) X € DD™P, for every m.

Toruniczyk [32] proved that properties (i) - (iii) are in fact characteristic for I°°-
manifolds. Now, it follows from Theorem (5.3) that Q(n) € AR, hence Q(n)\{£} € ANR.
So, in order to prove that Q(n) \ {€} is an I*-manifold it suffices to verify that it has
DD™P, for every m. We are now ready to prove: '

Theorem (5.15) Q(2)\ {€} is a Hilbert cube mantfold.

Proof. Let Q"(2) = @(2) \ {€}. Recall the map £ : C(2) = & = GL(2) - B, given
by L(V) = Ev (Léwner ellipsoid). Define L(2) = L71(B?) € C(2), that is L(2) = {V €
C(2)|Ev =B?}. Then the following properties hold:

(a) L(2) is compact and preserves the O(2)-action: for every A € O(2) and every
V € L(2), A(V) € L(2); and

() L(2)/0(2) = C(2)/GL(2) = Q(2), hence Q'(2) = (L(2)/0(2)) \ {B}.

So it suffices to show that this is an I*°-manifold.
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~ (c) Given V.C W C B?, where V € L(2) (i.e. Ev = B?) it follows that also W € L(2),
i.e. Ew = B? (see Figure 6).

Bn

Figure 6

Assertion (5.16) For every § > 0, there exist O(2)-equivariant maps fi, fo : L(2) =
L(2) such that d(f;,1d) < 6, i € {1,2}, fi(L(2)\{B?}) C (L(2)\{B?} and Imf; NImf, =
B2. ’

Let us show that this assertion implies that @'(2) € DD™P (and so by Torunczyk
Characterization theorem we will prove Theorem (5.15)).

The maps f; induce maps fi: L(2)/0(2) — L(2)/0(2) such that for every i:

(1) d(fi,1dg(z)) < §; | )

(2) fi((L(2) \ {B*})/0(2)) C Q'(2), i.e. £:(Q'(2)) C Q'(2); and

(3) Imfi N Imfy = €.

So define f; = filQ'(2) : Q'(2) = Q'(2) and conclude that Imf; N Imf, = 0. m

To construct fi, let us consider for every ¢ > 0, the following map T, : L(2) —
L(2), given by T(V) = Conv(V.), where V. = VU {z € B2\{0} | there exists y €
V with ||z]| = ||ly|| and the nonoriented angle z0y between the rays [0z) and [0y) is less
than or equal to €}.

It is clear that V. preserves the action of O(2) : (¢- V). = g - V., for every g € O(2),
V € L.(2). The compactness of V implies that V; is compact; the inequality ||z—y|| < 20y,
for every ||z|| = ||y||, implies that

(4) V C V. C N(V;e), where N(V;e) is a closed e-neighborhood of V in B2

" Besides,

(5) V. is continuously dependent on V and e: if &5 — ¢ > 0 and V; € L(2) — V, then
(Vk)sk - V..

Applying the Dowker theorem [29] for the lower semicontinuous function ¢ : L.(2) —
R*, g(V) = sup{t > 0 | B2\N(V;t) # 0}, we get a continuous function v : L(2) — R*
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with 0 < v(V) < §-g(V), V € L(2) and y(B?) = 0. The desired continuous O(2)-map
fi: Le(2) = L.(2) is defined by setting fi(V) = Conv(Vy(v)). By (4), f1 and Idp,(s) are
d-closed.

A so-called contact map « : L(2) — exp(S?) is defined by a(V) = V N S'. The
discontinuouty properties of « is discussed in [3]. The most significant property of « is
that .

(6) a(Conv(A)) = Conv(A)N ST = AN S?, for every subset A C B2

Therefore:

(7) A(V)N S = a(f1(V)) = Vovy N S* contains an nonempty open subset of S, for
every V € L.(2).

A mapping f, will be constructed in such manner that property (7) does not sat-
isfy: f2(V) N S does not contain an open subset of S for every V € L.(2). Therefore
Imfi; NImf, = 0. To construct f,, we first need a special mapping F'.

Assertion (5.17) For every ¢ > 0, there exists an O(2)-mapping F : L(2) — C(2)
such that:
(]) d(F, IdL(z)) <€y and
© (2) If V # B? then F(V) = Conv(Y%, \;D;), where D; is a di-dimensional disk,
d; < 2, with the center at the origin (F(B?) in fact coincides with B*) and Y724 Ai = 1,
A > 0.

In connection with this theorem we formulate a geometric conjecture, which is trivially
true in dimension 2. Once this conjecture is verified, our Theorem (5.15) will immediately
generalize to all n > 2, and the proof will be essentially the same as above, modulo the
replacement everywhere of n = 2 by n > 2.

Conjecture (5.18) The body 7, X\; D; in Assertion(5.17)(2) differs essentially from
the ball, i.e. its boundary does not contain any open subset of the sphere.

It is well-known (cf. [1][2]) that there exists an O(2)-retraction R : C(2) — L(2),
which takes Cg(2) exactly into Lg(2). But we need the following more precise result
which follows by geometric considerations:

Assertion (5.19) There exists a O(2)-retraction R : C(2) — L(2), such that V and
R(V') are affinely equivalent, for every V € C(2).

Since Lg(2) is compact, R|f2) is uniformly continuous for every V. By Assertion (5.16)
there is a function F': L(2) — C(2), sufficiently close to Idp ), such that dist(Id, Ro F') <
J. .

~ Since the boundary F(V),V # B?, does not contain an open subset of the sphere,
Ro F(V), which is affine by equivalent F/(V'), does not also contain an open subset of the
sphere. The map f, = Ro F' is thus as desired. m
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Corollary (5.20) Q(2) is nonhomogeneous.

Proof It follows from the proof of Theorem (5.5) that Q(?) \{€} is noncontractible.
On the other hand, for every z € Q(2) \ {€}, Q(2) \ {z} is contractible. Therefore there
is no homeomorphism h:(Q(2),8) — (Q(2),z),forany z # €. m

Conjecture (5.21) Q(n > 3) % .
Conjecture (5.22) Q’(n > 3) % *.

Conjecture (5.23) Q'(2) = K(Q,Q). ‘

6. Direct limits of Q(n)

We conclude by stating a recent interesting related result of Banakh, Kawamura and
Sakai [14], concerning the topology of the direct limit of Q(n)’s (as n — 0o) defined below.
Let 1 < p < oo. For each n-dimensional Banach space £ = (E,|| . ||), we define a norm
Il . llp on E x R as follows: ‘

| B (||$”p+ |t|P)1/P if p<oo

Theorem (6.1) (1) The correspondence (E,|| . ||) = (E xR, || . ||,) defines a topolog-
ical embedding of Q(n) into Q(n + 1), and hence we obtain a tower of the Banach-Mazur
compacta: Q(1) C Q(2) C Q(3) C
(2) Let Q, be the direct limit of thzs tou)er Then Q@ is homeomorphzc to Q% = lim_, Q",
where Q" denotes the n-fold product of I so that Q" is zdentzﬁed with the subspace
Qn % 0 C Qn+1
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