A SOLUTION TO A PROBLEM OF TEODOR PRZYMUSIŃSKI

VALENTIN GUTEV

A subset A of a space X is C^* -embedded in X if every bounded real-valued continuous function on A is continuously extendable to the whole of X. If this holds for all real-valued continuous functions on A, then A is C-embedded in X.

The present note provides detailed suggestions to the solution of the following problem. For a *non-discrete metric* space M and a subset A of a space X, does the C^* -embedding of $A \times M$ in $X \times M$ imply that it is also C-embedded in $X \times M$, i.e.

$$A \times M \stackrel{C^*}{\hookrightarrow} X \times M \implies A \times M \stackrel{C}{\hookrightarrow} X \times M$$
?

The problem was stated as Problem 3 of [T. Przymusiński, Notes on extendability of continuous functions from products with a metric factor, unpublished note, May 1983], later on as Problem 4.14 of [T. Hoshina, Extensions of mappings II, Topics in General Topology (K. Morita and J. Nagata, eds.), North-Holland, Amsterdam, 1989, pp. 41–80] and Problem 3.1 of [T. Hoshina, Extensions of mappings, Recent Progress in General Topology (M. Hušek and J. van Mill, eds.), North-Holland, Amsterdam, 1992, pp. 405–416].

THE SOLUTION

To state the main result we call in use also the following imbedding-like properties. Let λ be an infinite cardinal number.

 $\underline{P^{\lambda}\text{-}embedding}$: A subset A of a space X is $P^{\lambda}\text{-}embedded$ in X, or briefly $A \overset{P^{\lambda}}{\hookrightarrow} X$, if every continuous $f: A \to Y$ in a Banach space Y of $w(Y) \leq \lambda$ is continuously extendable to the whole of X.

 $\underline{U^{\omega}\text{-}embedding}$: A subset A of a space X is $U^{\omega}\text{-}embedded$ in X, or briefly $A \stackrel{U^{\omega}}{\hookrightarrow} X$, if for every continuous $f: A \to \mathbb{R}$ there exists a continuous $g: X \to \mathbb{R}$ with $f(x) \leq g(x)$ whenever $x \in A$.

It should be mentioned that A is C-embedded in X if and only if it is P^{ω} -embedded in X, while A is P^{ω} -embedded in X if and only if it is both U^{ω} - and C^* -embedded in X. That is, always

$$C = P^{\omega} = U^{\omega} + C^*.$$

The following recent result was obtained together with Haruto Ohta.

Theorem. For a P^{λ} -embedded subset A of a space X and a metric space M, the following conditions are equivalent

- (a) $A \times M \stackrel{P^{\lambda}}{\hookrightarrow} X \times M$
- (b) $A \times M \stackrel{C^*}{\hookrightarrow} X \times M$
- (c) $A \times M \stackrel{U^{\omega}}{\hookrightarrow} X \times M$

Note that $A \times M \stackrel{C^*}{\hookrightarrow} X \times M$ implies $A \stackrel{C}{\hookrightarrow} X$ provided M is non-discrete because, in this case, M contains an infinite compact subset. Hence, the above result provides a complete positive solution to the problem of interest. For the proper understanding of this theorem, a word should be said also about the last condition (c). The statement that it is equivalent to the previous ones should be compared with Rudin-Starbird's result that, for a non-discrete metric space M, the normality of $X \times M$ implies the countable paracompactness of $X \times M$. Namely, the U^{ω} -embedding has a quite nice and useful reading just in terms of Ishikawa's characterization of countable paracompactness.

ON THE WAY TO THE PROOF

Special cases of (a) \Leftrightarrow (b): $X \times M$ an M-independent product and $\lambda = \omega$ (Przymusiński, 1983); $M = \mathbb{P}$ the space of irrational numbers and $\lambda = \omega$ (Ohta, 1993); $M - \sigma$ -locally compact (Yamazaki, 1997); M^2 homeomorphic to M (Hoshina and Yamazaki, 199?).

FIRST STEP: A reduction to "nice" metric factors

For a space Y, let $\mathcal{P}(Y)$ be the set of all closed subsets of Y. Let A, X and M be as in our theorem. To M we associate the family of all solutions, or the Przymusiński family for M, by

$$\mathfrak{P} = \{ S \subset M : A \times S \stackrel{P^{\lambda}}{\hookrightarrow} X \times S \}.$$

The following important fact will play a central role in this part of the proof.

Fact 1 (Michael).
$$S \in \mathfrak{P} \implies \mathcal{P}(S) \subset \mathfrak{P}$$
.

It will be useful to illustrate the idea first on a partial case. For the purpose, let $M^{(K,0)} = M$, and, for every ordinal $\alpha > 0$, let

$$M^{(\mathcal{K},\alpha)} = X \setminus \bigcup \{K \subset M \text{ compact} : K \subset M^{(\mathcal{K},\beta)} \text{ is open for some } \beta < \alpha \}.$$

Take an ordinal γ with $M^{(\mathcal{K},\gamma)} = M^{(\mathcal{K},\gamma+1)}$. Then,

- 1. $M^{(\mathcal{K},\gamma)} \in \mathcal{P}(M)$ is nowhere locally compact;
- 2. $M \setminus M^{(\mathcal{K},\gamma)}$ is σ -locally compact.

Now, suppose that M is a Polish space with $\dim(M) = 0$. Then, relaying on the known partial solution and Fact 1, we get the following series of implications.

$$M^{(\mathcal{K},\gamma)}=\emptyset \quad \Longrightarrow \quad M \text{ is σ-locally compact} \quad \Longrightarrow \quad M\in\mathfrak{P}.$$

On the other hand,

$$\begin{split} M^{(\mathcal{K},\gamma)} \neq \emptyset &\implies M^{(\mathcal{K},\gamma)} = \mathbb{P} \\ & \downarrow \downarrow \\ M^{(\mathcal{K},\gamma)} \in \mathfrak{P} \\ & \downarrow \downarrow \\ M \in \mathcal{P}(\mathbb{P}) = \mathcal{P}\left(M^{(\mathcal{K},\gamma)}\right) \subset \mathfrak{P}. \end{split}$$

That is, always $M \in \mathfrak{P}$.

Let $\mathcal{K} = \{S \in \mathcal{P}(M) : S \text{ is compact}\}$. Then, by the known results, $\mathcal{K} \subset \mathfrak{P}$. On the other hand, $M^{(\mathcal{K},\gamma)}$ is a resulting set by a \mathcal{K} -scattered procedure and, hence, a procedure that is scattered also with respect to a part of the members of \mathfrak{P} . This arguments suggest that, for a better result, we need to call in use all members of \mathfrak{P} , i.e. to arrange a \mathfrak{P} -scattered procedure on M.

Turning to this case, we change our definition as follows. Let $S \subset M$, and let $S^{(\mathfrak{P},0)} = S$. Next, for any ordinal $\alpha > 0$, we consider the set

$$S^{(\mathfrak{P},\alpha)} = S \setminus \bigcup \{ U \subset S : U \text{ is open and } \operatorname{cl}_S(U) \cap S^{(\mathfrak{P},\beta)} \in \mathfrak{P} \text{ for some } \beta < \alpha \}.$$

Suppose that $M \notin \mathfrak{P}$, and let $S \in \mathcal{P}(M) \backslash \mathfrak{P}$ be such that

$$w(S) = \min\{w(F) : F \in \mathcal{P}(M) \backslash \mathfrak{P}\}.$$

Then, as before, take an ordinal γ with $S^{(\mathfrak{P},\gamma)} = S^{(\mathfrak{P},\gamma+1)}$. As a result, we get that

- 1. $S^{(\mathfrak{P},\gamma)} \in \mathcal{P}(S)$ is weight-homogeneous, that is, w(U) = w(S) for every non-empty open $U \subset S$;
- 2. $S \setminus S^{(\mathfrak{P},\gamma)}$ has a σ -discrete closed cover $\Sigma \subset \mathfrak{P}$.

On the other hand, for the members of \mathfrak{P} , we have that

Fact 2.
$$\mathcal{D} \subset \mathfrak{P}$$
 discrete in $\bigcup \mathcal{D} \implies \bigcup \mathcal{D} \in \mathfrak{P}$.

In view of our next arguments, let us make the following

Assumption.
$$S^{(\mathfrak{P},\gamma)} \in \mathfrak{P}$$
.

As a result, we now get that

Conclusion 3. There exists a countable cover \mathcal{F} of S with $\mathcal{F} \subset \mathcal{P}(S) \cap \mathfrak{P}$.

Conclusion 4.
$$A \times S \stackrel{\text{well}}{\hookrightarrow} X \times S$$
.

Here, $A \times S \stackrel{\text{well}}{\longleftrightarrow} X \times S$ if $A \times S$ is completely separated from any zero-set of $X \times S$ which doesn't meet $A \times S$. To involve Conclusion 4, we also need the following weak embedding properties:

<u>C₁-embedding</u>: A subset B of Y is C_1 -embedded in Y, or briefly $B \stackrel{C_1}{\hookrightarrow} Y$, if $F \stackrel{\text{well}}{\hookrightarrow} Y$ for every zero-set F of B. That is, for any zero-set F of B and any zero-set E of E0, with E1 or E2 of E3, with E3 or E4 of E5 and E6 or E7.

<u>CU-embedding</u>: A subset B of Y is CU-embedded in Y, or briefly $B \stackrel{CU}{\hookrightarrow} Y$, if for any zero-set F of B and any zero-set Z of Y, with $Z \cap F = \emptyset$, there exists a zero-set Z_F of Y such that $F \subset Z_F$ and $Z_F \cap Z \cap B = \emptyset$.

The relations between our weak-embedding properties could be now summarized into the following diagram.

$$C^* \qquad U^{\omega}$$

$$C_1 = CU + \text{well}$$

Then, by Conclusion 4, we have

Conclusion 6.
$$A \times S \stackrel{C_1}{\hookrightarrow} X \times S$$
.

According to Conclusion 3, this implies

Final Conclusion. $S \in \mathfrak{P}$.

The so obtained contradiction provides the following result which accomplishes the first step of the proof of our theorem.

Theorem A. $M \in \mathfrak{P}$ provided $S \in \mathfrak{P}$ for any weight-homogeneous and nowhere locally compact $S \in \mathcal{P}(M)$.

SECOND STEP: Separating the factors

NOTATIONS: For sets D and R, let R^D denote all maps from D to R, and 2^R — all subsets of R. For cardinals κ and μ , let $\kappa^{<\mu} = \bigcup \{\kappa^{\delta} : \delta < \mu\}$. For reasons of convenience, we regard κ^0 as the singleton $\{\emptyset\}$. To every $\sigma \in \kappa^{\delta}$ and $\alpha < \kappa$ we associate another map $\sigma \hat{\ } \alpha \in \kappa^{\delta+1}$ defined by $\sigma \hat{\ } \alpha | \delta = \sigma$ and $\sigma \hat{\ } \alpha(\delta) = \alpha$. Also, to every $\mathcal{H}: T \to \left(2^R\right)^D$ we associate another map $\langle \mathcal{H}, D \rangle : T \to 2^R$ defined by

$$\langle \mathcal{H}, D \rangle (t) = \bigcup \mathcal{H}[t](D) \quad \forall \ t \in T.$$

Finally, for a space Y, we shall use coz(Y) to denote the collection of all *cozero-sets* of Y and zero(Y) for that of all *zero-sets* of Y.

CONCEPTS:

<u>Monotone decreasing map</u>: $\mathcal{H}: \kappa^{<\omega} \to (2^R)^D$ if $\mathcal{H}[\sigma \hat{\alpha}](D)$ refines $\mathcal{H}[\sigma](D)$ for every $\sigma \in \kappa^{<\omega}$ and $\alpha < \kappa$.

<u>Sieve</u>: $S: \kappa^{<\omega} \to \cos(Y)$ if $S(\emptyset) = Y$ and $S(\sigma) = \bigcup \{S(\sigma \hat{\alpha}) : \alpha < \kappa\}$ for every $\sigma \in \kappa^{<\omega}$.

Strong Sieve: $S: \kappa^{<\omega} \to \cos(Y)$ if S is a sieve such that $\emptyset \notin S(\kappa^{<\omega})$, each family $S(\kappa^n)$, $n < \omega$, is a locally finite in Y and, whenever $y \in \bigcap \{S(t|n) : n < \omega\}$ for some $t \in \kappa^{\omega}$, the collection S(t|n), $n < \omega$, stands for a local base at y in Y.

 $\underline{\mathcal{S}\text{-free map}}: \quad \mathcal{G}: \kappa^{<\omega} \to (2^Y)^{\kappa}, \text{ where } \mathcal{S} \text{ is a map } \mathcal{S}: \kappa^{<\omega} \to \text{coz}(M), \text{ if for every } t \in \kappa^{\omega} \text{ we have that } \bigcap \left\{ \text{cl}_Y \left(\langle \mathcal{G}, \kappa \rangle (t|n) \right) \times \mathcal{S}(t|n) : n < \omega \right\} = \emptyset.$

Expansion: $\mathcal{H}: \kappa^{<\omega} \to (2^X)^{\kappa}$ of $\mathcal{G}: \kappa^{<\omega} \to (2^Y)^{\kappa}$, where $Y \subset X$, if $\mathcal{G}[\sigma](\alpha) = \mathcal{H}[\sigma](\alpha) \cap Y$ whenever $\sigma \in \kappa^{<\omega}$ and $\alpha < \kappa$.

The second step of the proof of our theorem reads now as follows.

Theorem B. Under the conditions of the main theorem, let, in addition, M be weight homogeneous and nowhere locally compact. Also, let $w(M) = \kappa$. Then, the following conditions are equivalent.

- (a) $A \times M \stackrel{C^*}{\hookrightarrow} X \times M$
- (b) Whenever $S: \kappa^{<\omega} \to coz(M)$ is a strong sieve, every monotone decreasing and S-free map $\mathcal{G}: \kappa^{<\omega} \to coz(A)^{\kappa}$ has a monotone decreasing and S-free expansion $\mathcal{G}: \kappa^{<\omega} \to coz(X)^{\kappa}$.
- (c) $A \times M \stackrel{P^{\lambda}}{\hookrightarrow} X \times M$

Here is a brief scheme of (a) \Longrightarrow (b). Suppose that $\mathcal{G}: \kappa^{<\omega} \to \operatorname{coz}(A)^{\kappa}$ and $\mathcal{S}: \kappa^{<\omega} \to \operatorname{coz}(M)$ are as in (b). Then, the statement that \mathcal{G} is an \mathcal{S} -free map becomes equivalent to the statement that the family $\{\langle \mathcal{G}, \kappa \rangle (\sigma) \times \mathcal{S}(\sigma) : \sigma \in \kappa^{<\omega} \}$ is locally finite in $A \times M$. The last becomes "almost" equivalent to the existence of $F^0_{(\mathcal{G},\mathcal{S})}, F^1_{(\mathcal{G},\mathcal{S})} \in \operatorname{zero}(A \times M)$ such that $F^0_{(\mathcal{G},\mathcal{S})} \cap F^1_{(\mathcal{G},\mathcal{S})} = \emptyset$. However, by (a), $A \times M \overset{C^*}{\hookrightarrow} X \times M$. Hence, there are $Z^0_{(\mathcal{H},\mathcal{S})}, Z^1_{(\mathcal{H},\mathcal{S})} \in \operatorname{zero}(X \times M)$ such that

$$F_{(\mathcal{G},\mathcal{S})}^i \subset Z_{(\mathcal{H},\mathcal{S})}^i, i < 2, \text{ and } Z_{(\mathcal{H},\mathcal{S})}^0 \cap Z_{(\mathcal{H},\mathcal{S})}^1 = \emptyset.$$

Relying on the "almost" equivalence mentioned above, these two zero-sets of $X \times M$ yield a monotone decreasing and S-free expansion $\mathcal{H}: \kappa^{<\omega} \to \operatorname{coz}(X)^{\kappa}$ of \mathcal{G} .

Here is also a brief scheme of $(b) \Longrightarrow (c)$. This implication is based on the following chain of arguments.

Fact 1. There exists a strong sieve $S: \kappa^{<\omega} \to \cos(M)$ on M such that

$$S_n(z) = \bigcup \{S(\sigma) : \sigma \in \kappa^n \& z \in \mathrm{cl}_M(S(\sigma))\}, \ n < \omega,$$

constitute a local base at z for every $z \in M$.

A CONCEPT MORE: Let $\mathbb{I} = [0, 1]$.

Sieve partition of unity: $\xi : \kappa^{<\omega} \to C(M, \mathbb{I})$, or a function version of strong sieve, if $\xi[\emptyset]$ is the constant function on M with the value of 1, and $\xi[\sigma] = \sum \{\xi[\sigma \hat{\alpha}] : \alpha < \kappa\}$ for every $\sigma \in \kappa^{<\omega}$.

Fact 2. For every strong sieve $S: \kappa^{<\omega} \to \text{coz}(M)$ there exists a sieve-partition of unity $\xi: \kappa^{<\omega} \to C(M, \mathbb{I})$ such that $\text{supp}(\xi[\sigma]) \subset S(\sigma)$ for every $\sigma \in \kappa^{<\omega}$.

Let $(Y, \|.\|)$ be a Banach space, and let $f: A \times M \to Y$ be a continuous map. The statement of (c) becomes now equivalent to the existence of a continuous map $g: X \times M \to Y$ with $g|A \times M = f$. Towards this end, for every space T we shall associate a map Δ_T

$$T \longrightarrow \Delta_T : C(T \times M, Y) \to C(T, Y)^{\kappa < \omega}$$

that defines into the following manner. Let $S: \kappa^{<\omega} \to \cos(M)$ be a strong sieve on M as in Fact 1. Take a dense $D \subset M$ with $|D| = \kappa$, and then define a map $\theta: \kappa^{<\omega} \to M$ by $\theta(\alpha) \in D \cap S(\alpha)$ for every $\alpha \in \kappa^{<\omega}$. Finally, our Δ_T is defined by $\Delta_T(h)[\sigma](x) = h(x, \theta(\sigma))$ whenever $h \in C(T \times M, Y)$, $\sigma \in \kappa^{<\omega}$ and $x \in T$.

The correspondence Δ_T is "nice" invertible on the image of $C(T \times M, Y)$ under Δ_T . That is, one could restore in full $h \in C(T \times M, Y)$ relying only on $\Delta_T(h)$. Namely, let $\xi : \kappa^{<\omega} \to C(M, \mathbb{I})$ be a sieve partition of unity on M as in Fact 2 applied to \mathcal{S} . Then,

$$(*) h = \lim_{n \to \infty} \sum \{ \xi[\sigma] \cdot \Delta_T(h)[\sigma] : \sigma \in \kappa^n \}.$$

The idea of (b) \Rightarrow (c) could be now stated in the following abstract setting. To the map f we associate the corresponding one $\Phi = \Delta_A(f) : \kappa^{<\omega} \to C(A,Y)$. In this way, the correspondence Δ_T transforms our extension problem to an extension problem for Φ . Namely, it is now sufficient to find $\Gamma : \kappa^{<\omega} \to C(X,Y)$ subject to the following

Extension Condition:

(EC)
$$\Gamma[\sigma] | A = \Phi[\sigma], \text{ for every } \sigma \in \kappa^{<\omega};$$

Continuity Condition:

(CC)
$$\Gamma \in \Delta_X(C(X \times M, Y)).$$

If one could deal with this last problem, then merely $g = \Delta_X^{\leftarrow}(\Gamma) \in C(X \times M, Y)$ will be the required extension of f. Turning to this, let us observe that

$$A \stackrel{P^{\lambda}}{\hookrightarrow} X \implies$$
 "many" solutions of (EC)
???????? \implies at least one solution of (CC)

To discover the nature of (CC) we call in use (*) and thus we get the following its more concrete setting:

$$(\mathbf{CC})^* \lim_{n \to \infty} \sum \{ \xi[\sigma] \cdot \Gamma[\sigma] : \sigma \in \kappa^n \} \in C(X \times M, Y).$$

We are now ready for the final realization of this implication. Namely, the hidden property "??????" becomes the controlled extending of monotone decreasing \mathcal{S} -free maps. That is, just these maps will take care about the control on (CC). Briefly, to the map Φ we associate a sequence $\{\mathcal{F}_{\ell} : \ell < \omega\}$ of monotone decreasing and \mathcal{S} -free maps $\mathcal{F}_{\ell} : \kappa^{<\omega} \to \cos(A)^{\kappa}$. According to (b), each \mathcal{F}_{ℓ} admits a monotone decreasing and \mathcal{S} -free expansion $\mathcal{G}_{\ell} : \kappa^{<\omega} \to \cos(X)^{\kappa}$.

The fact that $\Phi = \Delta_A(f)$ could be now stated as

$$\ell < \omega, \quad m \le n < \omega \quad \& \quad \sigma \in \kappa^n$$

$$\downarrow \downarrow$$

$$\|\Phi[\sigma](x) - \Phi[\sigma|m](x)\| \le \frac{1}{2\ell+1} \quad \forall x \in A \backslash \langle \mathcal{F}_\ell, \kappa \rangle(\sigma|m)$$

Relying on this, we finally construct Γ just satisfying the same condition, i.e. such that

$$(\mathbf{CC})^{**} \qquad \qquad \ell \leq m \leq n < \omega \quad \& \quad \sigma \in \kappa^n$$

$$\qquad \qquad \qquad \qquad \downarrow$$

$$\|\Gamma[\sigma](x) - \Gamma[\sigma|m](x)\| \leq \frac{1}{2^{\ell+1}} \quad \forall x \in X \setminus \langle \mathcal{G}_{\ell}, \kappa \rangle(\sigma|m)$$