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A SOLUTION TO A PROBLEM OF
TEODOR PRZYMUSINSKI

VALENTIN GUTEV

A subset A of a space X is C*-embedded in X if every bounded real-valued continuous
function on A is continuously extendable to the whole of X. If this holds for all
real-valued continuous functions on A, then A is C-embedded in X.

The present note provides detailed suggestions to the solution of the following
problem. For a non-discrete metric space M and a subset A of a space X, does the

C*-embedding of A x M in X x M imply that it is also C-embedded in X x M, i.e.

AxMEXxM = AxMSXxM T .

The problem was stated as Problem 3 of [T. Przymusiniski, Notes on extendability
of continuous functions from products with a metric factor, unpublished note, May
1983], later on as Problem 4.14 of [T. Hoshina, Ertensions of mappings II, Topics
in General Topology (K. Morita and J. Nagata, eds.), North-Holland, Amsterdam,
1989, pp. 41-80] and Problem 3.1 of [T. Hoshina, Eztensions of mappings, Recent
Progress in General Topology (M. Husek and J. van Mill, eds.), North-Holland,
Amsterdam, 1992, pp. 405-416]. '

THE SOLUTION

To state the main result we call in use also the following imbedding-like properties.
Let A be an infinite cardinal number.

P*-embedding: A subset A of a space X is P*-embedded in X, or briefly A il X,
if every continuous f : A — Y in a Banach space Y of w(Y) < A is continuously
extendable to the whole of X.

U“-embedding: A subset A of a space X is U¥-embedded in X, or briefly A & X,

if for every continuous f : A — R there exists a continuous ¢ : X — R with
f(z) € g(z) whenever z € A.
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It should be rﬂentioned that A is C-embedded in X if and only if it is P¥-
embedded in X, while A is P“-embedded in X if and only if it is both U“- and
C*-embedded in X. That is, always

C=P"=U"+C"
The following recent result was obtained together with Haruto Ohta.

Theorem. For a P*-embedded subset A of a space X and a metric space M, the
following conditions are equivalent

() AxME X xM
(b) AxMS X xM
(c) AxME xxMm

Note that A x M <& X x M implies A S ox provided M is non-discrete
because, in this case, M contains an infinite compact subset. Hence, the above
result provides a complete positive solution to the problem of interest. For the
proper understanding of this theorem, a word should be said also about the last
condition (c). The statement that it is equivalent to the previous ones should be
compared with Rudin-Starbird’s result that, for a non-discrete metric space M, the
normality of X x M implies the countable paracompactness of X x M. Namely,
the U“-embedding has a quite nice and useful reading just in terms of Ishikawa’s
characterization of countable paracompactness. '

ON THE WAY TO THE PROOF

Special cases of (a) & (b): X x M an M-independent product and A = w (Przy-
musinski, 1983); M = P the space of irrational numbers and A = w (Ohta, 1993);
M - o-locally compact (Yamazaki, 1997); M? homeomorphic to M (Hoshina and
Yamazaki, 1997).

FIRST STEP: A reduction to “nice” metric factors

For a space Y, let P(Y') be the set of all closed subsets of Y. Let A, X and M be as
in our theorem. To M we associate the family of all solutions, or the Przymusinski

family for M, by
A
P={SCM:AxS X xS}
The following important fact will play a central role in this part of the proof.

Fact 1 (Michael). Se P = P(5)CP.
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It will be useful to illustrate the idea first on a partial case. For the purpose, let
M®0) = M and, for every ordinal a > 0, let

MK — X\U{K C M compact: K C MED g open for some 3 < a}.

Take an ordinal v with MK = M&+1) | Then,
1. M € P(M) is nowhere locally compact;
2. M\M®X") is g-locally compact.

Now, suppose that M is a Polish space with dim(M) = 0. Then, relaying on the
known partial solution and Fact 1, we get the following series of implications.

MEY =@ = M is o-locally compact = M €.

On the other hand,
MK £0 = ME) =P

Y
MEN e
Y
MePP®) =P (M) cp.
That is, always M € ‘B.

Let K = {S € P(M): S is compact}. Then, by the known results, £ C . On
the other hand, MK is a resulting set by a K-scattered procedure and, hence, a
procedure that is scattered also with respect to a part of the members of 3. This
arguments suggest that, for a better result, we need to call in use all members of 3,
i.e. to arrange a 3-scattered procedure on M.

Turning to this case, we change our definition as follows. Let S C M, and let
S(PO) = §. Next, for any ordinal o > 0, we consider the set

§®e) = $\J{U C §: U is open and cls(U) N SH#) € P for some § < af.
Suppose that M ¢ B, and let S € P(M)\'B be such that
w(S) = min{w(F) : I € P(M)\'B}.
Then, as before, take an ordinal v with S = SBI+1) As a result, we get that

1. S®" e P(S) is weight-homogeneous, that is, w(U) = w(S) for every non-
empty open U C 5

2. S\S®) has a o-discrete closed cover ¥ C B.
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On the other hand, for the members of B, we have that
Fact 2. D C P discrete in UD == UD €.

In view of our next arguments, let us make the following
Assumption. SEM e p.

As a result, we now get that

Conclusion 3. There exists a countable cover F of S with F C P(S)N‘PB.

well

Conclusion 4. A xS < X x S.

Here, AXx S M X xSif AxSis completely separated from any zero-set of X x .S
which doesn’t meet A x S. To involve Conclusion 4, we also need the following weak
embedding properties:

Cy-embedding: A subset B of Y is C}-embedded in Y, or briefly B & Y, it F ly
for every zero-set I' of B. That is, for any zero-set F' of B and any zero-set Z of Y,
with Z N F = §, there exists a zero-set Zr of Y such that F C Zp and Zp N Z = .

CU-embedding: A subset B of Y is CU-embedded in Y, or briefly B & Y, if for
any zero-set F' of B and any zero-set Z of Y, with Z N F = {§, there exists a zero-set
Zr of Y such that F C Zp and ZrNZN B = {.

The relations between our weak-embedding properties could be now summarized
into the following diagram.

Observation 5. c* U~
NS
Cy=CU + well

Then, by Conclusion 4, we have
Conclusion 6. Ax 55 X x S.

According to Conclusion 3, this implies
Final Conclusion. S € .

The so obtained contradiction provides the following result which accomplishes
the first step of the proof of our theorem.

Theorem A. M € ‘B provided S € B for any weight-homogeneous and nowhere
locally compact S € P(M).



SECOND STEP: Separating the factors

NoOTATIONS: For sets D and R, let RP denote all maps from D to R, and 2% —
all subsets of R. For cardinals « and p, let £<* = U{K,6 :6 < pu}. For reasons of
convenience, we regard «° as the singleton {#}. To every o € «° and o < k we
associate another map o’a € k%! defined by ¢’a|6§ = o and 0"a(8) = a. Also, to

D
every H: T — (QR) we associate another map (H, D) : T — 28 defined by

(H,D)(t) = H[)(D) VteT.

Finally, for a space Y, we shall use coz(Y') to denote the collection of all cozero-sets
of Y and zero(Y) for that of all zero-sets of Y.

CONCEPTS:

Monotone decreasing map: H : k<% — (2F)P if H[o"a|(D) refines H[o](D) for every
o€k and a< k. ‘

Sieve: S 1 k< — coz(Y) if S(0) =Y and S(0) = | J{S(c'a) : a < &} for every
o€ R, :

Strong Sieve: S : <% — coz(Y) if S is a sieve such that § ¢ S(x<¥), each family

S(k™), n < w, is a locally finite in Y and, whenever y € [ |{S(t|n) : n < w} for some
t € k¥, the collection S(¢|n), n < w, stands for a local base at y in Y.

S-free map: G : k<¥ — (2¥)*, where S is a map S : £<¥ — coz(M), if for every
t € k¥ we have that N {cly ((G, k)(t|n)) X S(t|n) : n < w} = 0.

Ezpansion: H : k<“ — (2X)* of G : k¥ — (2Y)* where Y C X, if G[o](a) =
H[o](«) NY whenever ¢ € K< and o < .

The second step of the proof of our theorem reads now as follows.

Theorem B. Under the conditions of the main theorem, let, in addition, M be
weight homogeneous and nowhere locally compact. Also, let w(M) = . Then, the
following conditions are equivalent.

) AxMS X x M
(b) Whenever S : k<“ — coz(M) is a strong sieve, every monotone decreasing

and S-free map G : k<¥ — coz(A)* has a monotone decreasing and S-free

expansion G : k<% — coz(X)".

() AxM & X x M
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Here is a brief scheme of (a) == (b). Suppose that G : k<“ — coz(A)" and
S : k¥ — coz(M) are as in (b). Then, the statement that G is an S-free map
becomes equivalent to the statement that the family {(G, k)(c) x S(o) : 0 € k<¥}
is locally finite in A x M. The last becomes “almost” equivalent to the existence
of ng),F(gs) € zero(A x M) such that ng N Fgs = 0. However, by (a),

AxME X x M. Hence, there are Z(HS Z(H ) € zero(X x M) such that

F(ig,‘s) C Z(i'H,S), 1 < 2, a.nd Z?’H,S) n Z%’H,S) == @

Relying on the “almost” equivalence mentioned above, these two zero-sets of X x M
yield a monotone decreasing and S-free expansion H : k<“ — coz(X)* of G.

Here is also a brief scheme of (b) => (c). This implication is based on the
following chain of arguments.
Fact 1. There exists a strong sieve S : k<“ — coz(M) on M such that
z) = J{8(0) 10 € ™ & z € cly(S(0))}, n < w,
constitute a local base at z for every z € M.

A CONCEPT MORE: Let I =[0,1].

Sieve partition of unity: € : k<“ — C(M, 1), or a function version of strong sieve, if
¢[0] is the constant function on M with the value of 1, and €[o] = Y {¢é[oc"a] : @ < £}
for every o € k<¥.

Fact 2. For every strong sieve S : k<“ — coz(M) there exists a sieve-partition of
unity € : k<“ — C(M,I) such that supp(é[o]) C S(o) for every o € £<¥.

Let (Y,]|.||) be a Banach space, and let f : A x M — Y be a continuous map.
The statement of (c) becomes now equivalent to the existence of a continuous map
g: X xM—Y with g|A x M = f. Towards this end, for every space T" we shall
associate a map Ar

T —  Ar:C(TxMY)—C(T,Y)™"

that defines into the following manner. Let S : k<¥ — coz(M) be a strong sieve
on M as in Fact 1. Take a dense D C M with |D| = &, and then define a map
§: k< = M by 0(a) € DN S(a) for every a € k<“. Finally, our A7 is defined by
Ar(h)[o)(z) = h(z,8(0)) whenever h € C(T x M,Y),c € k<“ and z € T..

The correspondence Ar is “nice” invertible on the imdge of C(T x M,Y) under Ar.
That is, one could restore in full A € C(T' x M,Y) relying only on Ar(h). Namely,
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et £ : £<¥ — C(M,I) be a sieve partition of unity on M as in Fact 2 applied to S.
Then,

() b= lim S{Elo]- Ar(k)lo]: o € 67},

The idea of (b) = (c) could be now stated in the following abstract setting. To
the map f we associate the corresponding one ® = Ay(f) : k<“ — C(A,Y). In
this way, the correspondence Ar transforms our extension problem to an extension
problem for ®. Namely, it is now sufficient to find T' : k<“ — C(X,Y) subject to
the following

Extension Condition:

(EC) I[o]|A = ®[g], for every o € K<V

Continuity Condition:

(CC) T € Ax(C(X x M,Y)).

If one could deal with this last problem, then merely ¢ = A5 (I') € C(X x M,Y)
will be the required extension of f. Turning to this, let us observe that

A
AL X = “many” solutions of (EC)

77777777 = at least one solution of (CC)

To discover the nature of (CC) we call in use () and thus we get the following
its more concrete setting:

(CO)” Jim Y {¢lo] T[o]: 0 € 6™} € C(X x M,Y).

We are now ready for the final realization of this implication. Namely, the hidden

maps. That is, just these maps will take care about the control on (CC). Briefly,
to the map ® we associate a sequence {F; : { < w} of monotone decreasing and
S-free maps Fy : k<% — coz(A)*. According to (b), each F; admits a monotone
decreasing and S-free expansion Gy : £<“ — coz(X)".

The fact that ® = A4(f) could be now stated as
l<w, m<n<w & o€k

4

[9fo)(x) ~ Blotml(@)] < 5V € A\(FnR)(olm)
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Relying on this, we finally construct I' just satisfying the same condition, i.e. such
that

(co)™ <m<n<w & ocex"

4

IPlo)(z) ~ Tlolml()]| < 5 Yo € X\(G1, ) (olm)



