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STABLE SHAPE AND
BROWN’S REPRESENTATION THEOREM

TAKAHISA MIYATA (& B & &)

This paper is based on a part of my joint paper [10] with Jack Se-
gal. Brown’s representation theorem is well-known in algebraic topology,
where CW-complexes are the main objects which people look at. Just
one example that I know as an application of Brown’s theorem to gen-
eral toplogical spaces is due to Demers [2]. He used the theorem to study
topological spaces that have the shape of CW-complexes. In this paper
we inroduce one interesting way of applying Brown'’s theorem in studying
stable shape theory |

Stable shape theory was first investigated by Lima [5], and various
properties for compacta were obtained by Dold and Puppe [3], Henn
[4], Nowak (12, 13] and Mrozik [11]. Miyata and Segal [9] then defined
stable shape theory for arbitrary topological spaces, using CW-spectra,
and proved the Whitehead theorem, and more recently they proved the
Hurewicz theorem in this category in [10].

Throughout the paper we assume that all spaces have base points, maps
are pointed maps and homotopy maps preserve base points. A space
means a topological space with a base point.

1. CW-SPECTRA

Let CW . denote the category of CW-spectra and maps of CW-
spectra. For each space X, the suspension spectrum E(X) of X is the
spectrum defined by

S*"X n>0
* n<0

‘Here S : Top — Top is the functor defined by SX = S' A X for
each space X and Sf = 1g1 A f for each map f : X — Y between
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spaces where Top denotes the category of spaces and maps, and let
Sk = So08%1for k>2and S'=3S. For eachmap f: X — Y between
CW-complexes, E(f) : E(X) — E(Y) is the map of CW-spectra defined
by (E(f))n = S*f : S"X — S*Y. Let HCW . denote the homotopy
‘category of CW g, i.e., the objects of HCW . are all CW-spectra and
the morphisms are the homotopy classes of maps between CW-spectra.

For any abelian group G, let H(G) denote an Eilenberg-MacLane spec-
trum i.e.,

_ | H{G,m) form >1
H(G)”‘—{ for m<0

where H(G,m) is an Eilenberg-MacLane complex of type (G,m). Let

: 5% — H(Z) be a map representing 1 € Z = [S°, H(Z)] = mo(H(Z)).
Then L mduces a natural transformation of homology theories T.(¢) :
xS — H(Z). = H( ;Z), where H( ;Z) denotes the reduced singular
homology theory with coefficients in Z. We write A5 for T,(t) and call
it the stable Hurewicz homomorphism. A space X is said to be stably
n-connected if 5 (X ) =0 for ¢ < n.

Theorem 1 (Stable Hurewicz theorem). If ¢ CW-complex X is (n—
1)-stably connected, then the stable Hurewicz homomorphism hS 72 (X) —

Hq(X : Z) is an tsomorphism for ¢ < n and an epimorphism for g=n+l.

Theorem 2 (Whitehead theorem). Letn € ZU{oo}, let f: E — F
be a map of CW-spectra, which is an n-equivalence, and suppose dim £/ <
n—1and dim F < n. Then f is a homotopy equivalence of CW-spectra.

The reader is referred to Switzer [15] and Margolis [8] for details about
CW-spectra.

2. STABLE SHAPE

In this section we recall the construction of generalized stable shape.
The reader is referred to Miyata and Segal [10] for more details.
Let HCW denote the homotopy category of spaces having the homo-
topy type of CW-complexes and maps. Let p = (pa: A € A) : X —
= (X, pax, A) be an HCW-expansion of a space X in the sense of
Mardesié¢ and Segal [10], and let E(X) = (E(X4), E(pax), A) be the in-
verse system in HCW . induced by the inverse system X in HCW. A
morphism e : E(X) — E = (E,, €gor, A) in pro-HCW . is said to be a
generalized expansion of X in HCW,I,,,zc provided the followmg universal
property is satisfied:
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(U): If f: E(X) — F is a morphism in pro-HCW,,,, then
there exists a unique morphism g : £ — F in pro-HCW
such that f = ge.

One should note here that the definition of a generalized expansion does
not depend on the choice of the HCW-expansion p. Also note that
for any two generalized expansions e : E(X) — F and €' : E(X) —
E’ in HCW,, there exists a unique isomorphism ¢ : E — E’ in
pro-HCW .. (which we call the natural isomorphism) such that ie =
e’. It is easy to see that the identity induced morphism E(X) — E(X)
is a generalized expansion of X in HCW ..

Theorem 3. A morphism in pro- HCWspec, e: E(X)—> E=(E, e, A,
where p= (py) : X — X = (X5, pan, A) is an HCW -ezpansion of any
space X, 1s a generalized expansion in HCW .. if and only if e is an
zsomomhzsm 1 pro-HCW ..

Theorem 4. Let e : E(X) — E = (E,, €, A) be a morphism in
pro-HCW .. which is represented by a morphism (e,, ) of inverse sys-
tems where p= (py) : X —= X = (X, pax, A) is an HCW -expansion of
any space X. Then e is a generalized expansion in HCW . zf and only
if the following two conditions are satisfied:
(GE1): Every morphism h : E(X,) — F in HCW . admits
a € A and a morphism g, : E; — F in HCW,p. such that
RE(pax) = Ga€aE(Dp(a)n) for some X > A p(a).
(GE2): If ga, hq : E, — F are morphisms in HCW,,.. such that
9a€aE(Pp(a)s) = ha€aE(Dya)r) for some A > (a), then there
exists a’ > a such that g,e.0' = hoaqr.

spec

We use generalized expansions to define the generalized stable shape
category Sh,,, for spaces as follows: Let ob Sh,y. be the set of all spaces
and CW-spectra. For any X,Y € obSh,p., let £xy) denote the set
of all morphisms g : E — F in proHCW,,,. where E is either a
rudimentary system (X) (if X is a CW-spectrum) or the inverse system
of CW-spectra such that e : E(X) — FE = (E,, e.a, A) is a generalized
expansion of X in HCW,,. (if X is a space), and similarly for F. We
define an equivalence relation ~ on £ xy) as follows: for g : E — F and
g :E'— F'in €xy), g ~ g’ if and only if g = g't in pro-HCW .
where ¢ : E — E’ and j : F — F’ are the natural isomorphisms. We
define a morphism from X to Y as each equivalence class of & x,y), and
hence the set of morphisms from X to Y, Shy,.(X,Y) = Exy)/ ~. We
write Shypec(X) = Shypec(Y) provided X is equivalent to Y in Sh,p..
The stable shape category for compacta defined by Dold and Puppe (3]



~and Henn [4] can be embedded in Sh,p.. Let Sh denote the pointed
shape category for spaces in the sense of Marde$i¢ and Segal [10]. We
write Sh(X) = Sh(Y) provided X is equivalent to Y in Sh. Then there
exists a functor = : Sh — Sh,p. and we have

Theorem 5. For any spaces X and Y, if Sh(S*X) = Sh(S*Y) for some
k > 0 then Shypec(X) = Shapec(Y). Conversely, for any compact Haus-
dotff spaces X and Y with finite shape dimension (see Mardesié and
Segal (10, 11, §1]), if Shspec(X) = Shpec(Y), then Sh(S*X) = Sh(S*Y)
for some k > 0. '

Example. There exists a finite polyhedron P with = (P, # 0 but
whose suspension SP is contractible. Indeed, let P be the homolog-
ical 3-sphere with an open 3-simplex removed from its triangulation.
Then Sh(P) # Sh(x) but Shypec(P) = Shgpec(*). There is also a non-
polyhedral ‘example. Let X be the 1-dimensional acyclic continuum
(“figure eight”-like continuum) described by Case and Chamberlin [1].
Then X is non-movable, so that Sh(X) # Sh(x), but its suspension
SX is of trivial shape i.e., Sh(SX) = Sh(x) (see Mardesi¢ [6]), so that

Shspee(X) = Shapec(*)'

3. WHITEHEAD AND HUREWICZ THEOREMS
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In order to state Whitehead theorems in Shgp., We need notions of A

dimension in this category. For k,n € Z with & < n and for every
space X, we say the stable shape dimension k < sd .. X < n if whenever
e: E(X) = E = (Eq, €4, A) is a generalized expansion in HCW .,
then every a € A admits a’ > a such that e,y factors in HCW .,
through a CW-spectrum F such that i) dim F' < n and ii) whenever e # *
isacell of F,dime > k. For k,n € Z, we say the stable shape dimension
k < sdgpecX < 0o (respectively, —oo < sdypecX < m) if whenever e :
E(X) — E = (E,, €aa', A) is a generalized expansion in HCW,,,, then
~ every a € A admits a’ > a such that e,, factors in HCW,,. through
a CW-spectrum F' such that whenever e 76 *x is a cell of I, dime > k&
(respectively, dim F' < n).

For —0co < kK £ n < o0, it is obvious that k < sdgpecX < m implies
k < sdgpecX <n+1and k—1<sdgpeX <n,and that k < sdgpecX < n
implies k£ < sd,pecX < 00 and —o0 < sd pe. X < n.

Those notions are invariant in Shgp,., and characterizations of stable
shape dimension are discussed in [10].

Theorem 6. For evefy space X of st < 00, 0 < sdypec X < sdX.
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Example. Let X be the 1-dimensional acyclic continuum of Case and
Chamberlin [1]. Then sdX = 1, but 0 < sd,pecX < 0 85 Shype(X) =
Shgpec(*). :

There also exists a compactum X such that

sdX = 0o and — 00 < sdpecX < n for some n € Z

The reader should see {14, p. 46] where a movable continuum X with
infinite sd such that the suspension of X has trivial shape is given. More
specifically, X = [[, P; where P, is the complement of an open ball in
the Poincaré manifold. ‘

Now we wish to Cech-extend the definition of 7, on HCW . over
Shpe.. For each space X, the n-th stable pro-homotopy group pro-n5(X)
is defined as the inverse system 7, (E(X)) = (7n(E,), Tn(€ear), A), where
e: E(X) - E = (E,, €4, A) is a generalized HCWsmc expansion of
E(X). This is well-defined up to an isomorphism in pro-groups. Then the
n-th stable shape group #5(X) is defined as the limit group lim pro-n,,(E).

For each morphism G : X — Y in Sh,., we define the morphism in
pro-groups pro-ns (G) : pro-nS(X) — pro-n3(Y) as pro-m.(g) : mn(E) —
7o(F), where e : E(X) — E and f : E(Y) — F are HCW,,.-
expansions of X and Y, respectively, and g : E — F' is a representative
of G. This is well-defined up to an isomorphism in pro-groups. It is a
routine to check pro-w3 is a functor from Shpe. to pro-Gp and that #5
is a functor from Shy,.. to Gp.

A morphism G : X — Y in Sh,p,. is said to be an n- equzvalence if the
induced morphism in pro-groups pro-my 3(G) : pro-m3 (X) — pro-ng (Y) is
an isomorphism for £k =0,... ,n — 1 and an epimorphism for k = n.

‘Now we are ready to state the Whitehead theorems in Shp..

Theorem 7. Let G : X — Y be a morphism in Shgpe., which is an n-
equivalence. Suppose that —00 < sdgpecX <N —1 and k < sdgpe.Y < n
(k,n € Z). Then G is an isomorphism in Shpe..

Remark. The infinite-dimensionality of the above theorems cannot be
omitted. Recall the example in Mardesi¢ and Segal (7, Example 1, p.153].

Forn € Z, aspace X is said to be stable shdpe n-connected if pro-ﬂf (X) =
0 for g < n.

Theorem 8. If a space X is stable shape (n — 1)-connected for n > 1,
then the stable Hurewicz homomorphism pro- h : pro- 7r5 (X) — pro-H, (X Z)
1 an somorphism for ¢ < n and an epzmorphzsm for g=n+1.
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4. BROWN’S REPRESENTATION THEOREM

Let HCWfpec denote the full subcategory of HCW ... whose objects
are all finite CW-spectra. For each CW-spectrum FE, let E, and F*
denote the homology and cohomology theories associated with E, re-
spectively. We now recall the following version of Brown'’s representation
theorem (see Switzer [15, Theorems 14.35 and 14.36] and Margolis [8,
Section 4.3]). |

Theorem 9. ) Let h, be a homology theory on HCW;fpec. Then there
exist a CW-spectrum E and a natural equivalence 74 : E, — h,.

it) Let h, be a homology theory on HCW .. with the following property:
(D): For any CW-spectrum G, the inclusion maps i : G4 — G
of finite subspectra G, into G induce the isomorphism.:

T = colim tq, : cogmhq(G’a) — hy(G) for each q € Z

Then there exist a CW-spectrum E and a natural equivalence  : E, —
h. which extends the natural equivalence 75 on HCW{Wc of (3).

ii1) Let h, and b be homology theories on HCWfpec, and let £ and E'
be the CW-spectra corresponding to h, and h', respectively. Then each
natural transformation T : hg — hy admits a map f : E — E' such that
the following diagram commutes for each finite CW-spectrum G':

ho(G) =L RNG)

T(G)I L'(G)

(5%, EnG] 29, 159 E' A G

where T} is the natural transformation induced by f. Moreover, such an
f is unique up to weak homotopy.

iv) The CW-spectra E in (i) and (ii) are unique up to homotopy.
5. AN APPLICATION OF BROWN’S REPRESENTATION THEOREM IN
STABLE SHAPE

Lemma 10. For any X, Y € obSh,pee, Shypec(X,Y) has the structure
of an abelian group.

Let ¥ also denote the suspension functor on Shy,.., and as before, let
Tl =S oXfand Tl = 1. :
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Lemma 11. Let X,Y € obSh,,... Then there is a natural bijection:
T : Shypee(X,Y) — Shypec (XX, ZY)

Let Ab denote the category of abelian groups and homomorphisms.
For each ¢ € Z and for each space Z, we define the covariant functor
Z,: HCW,,. — Ab as follows:

Z — Shspec(zqz, - ) for q > 0
T Shspec(Za 9. ) for qg < 0

and also define the natural equivalence 04 : Zy — Zg41 0% as follows: for
each CW-spectrum G,

0.(G) : Z4(G) 'f:_—’ Z¢+1(EG) forq >0
! Z(G) — Z441(EG) forg< 0

Lemma 12. For each Z € obShypee, Z, = (24,04 : g € Z) forms a
homology theory on HCW .. '

Lemma 13. For each compact Hausdor[f space Z, the homology theory
Z, has the property D.

Lemma 14. For any Z, Z' € ob Shypec, Z. is naturally equivalent to Z,
on HCW .. if and only if Shypec(Z) = Shopec(Z').

Theorem 15. Let Comp,,,. denote the full subcategory of Shpe. whose
objects are all compact Hausdorff spaces, and let WCW g denote the
category of CW-spectra and weak homotopy equivalence classes.

1) There ezists a contravariant functor I : Shgpee — WOW gpec.

it) The restriction II|Comp,,,, : Comp,,,. = WCW . is a full em-
bedding.

Proof: (outline) For each Z € ob Sh,p., Z. forms a homology theory on
HCW/ . Thus there exist a unique (up to homotopy) £ € ob HCW .

spec’

and a natural equivalence 74 : E, — Z, on HCW/ . Let II(Z) be the

spec’
CW-spectrum E. For each ¢ € Shyp(Z,Z’), there exists an induced
natural transformation ¢* : Shypec(Z’, =) — Shypec(Z, -) on HCW{WC.
Then Brown's theorem implies that there exists a unique (up to weak

homotopy) map f : £/ — E such that the following diagram commutes
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on HCW/

spec®

Shspec(Z,7 —) —f‘_') Shspec(Z, —)

.,I | L

(SO, E'A -] —2o [SYEA _]
Let II(¢p) be the map f. Then II : Shypee = WCW,,. forms a con-

travariant functor.

Suppose now that Z, Z’ € ob Comp,,,, are such that I1(Z) = I1(Z’) in
WCW,,... Then there is a natural equivalence Z, — Z, on HCW 4.,
S0 Shypec(Z) = Shopec(Z'). Let f : E' — E be a map where £ =
II(Z) and E' = II(Z'). Then, since Z, and Z, are homology theories
on HCW,,.. with property (D), this induces a natural transformation
T : Shypec(Z', =) = Shgpec(Z, - ) on HCW‘,,pec such that the following
diagram commutes on HCW p:

Shypec(Z', =) —— Shypec(Z, -)

(SO EA -] — [SSEA _]

So, there is a unique ¢ € Shy,e.(Z, Z') such that ¢* = T : Shype(Z', -) —
Shupec(Z, - ) on HCW .. If f, f' : E' — E are weakly homotopic to
each other, then T; = Tys. This shows that there is a contravariant func-
tor II' from the range of II onto Comp,_,. which defines the inverse of

n. 0
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