Pseudo Dirichlet sets and a new cardinal invariant

Shizuo Kamo (Sakai) (加茂 静 夫)

Abstract

Z. Bukovská [5] proved that $\mathbf{p} \leq \operatorname{non}(\mathcal{PD})$, where \mathcal{PD} denotes the set of all pseudo-Dirichlet sets. In this paper, we shall show that \mathbf{p} can be replaced by \mathbf{h} in this inequality. It is known that $\mathbf{p} < \mathbf{h}$ is consistent (see [1]). So, the equality $\mathbf{p} = \operatorname{non}(\mathcal{PD})$ can not be proved. This is a partial answer of problem 2 in [6]. Next, we shall introduce a certain cardinal invariant \mathbf{f} and show that $\operatorname{add}(\mathcal{N}) \leq \mathbf{f} \leq \operatorname{non}(\mathcal{PD})$. Also, we shall construct two generic models such that one satisfies the inequality $\mathbf{b} < \mathbf{f}$ and another satisfies the inequality $\mathbf{f} < \operatorname{non}(\mathcal{PD})$.

1 Introduction

Throughout this paper, we shall use the standard terminologies for forcing of set theory and cardinal invariants on ω (see [3]). For each $a \in \mathbf{R}$, we denote by ||a|| the distance of a and the set of integers \mathbf{Z} . Let A be a subset of the unit interval [0,1]. A is called a *pseudo Dirichlet set*, if there exists an $X \in [\omega]^{\omega}$ such that

$$\forall a \in A \ \forall^{\infty} \ n \in X \ (\ ||na|| < \frac{1}{|X \cap n| + 1} \).$$

We denote the set of all pseudo Dirichlet sets by \mathcal{PD} . Z. Bukovská [5] showed that $\mathbf{p} \leq \mathrm{non}(\mathcal{PD})$. Let \mathbf{h} be the least cardinal κ such that the boolean algebra $\mathcal{P}(\omega)/\mathrm{fin}$ does not satisfy the κ -distributive law.

Theorem 1.1 $h \leq non(\mathcal{PD})$.

Proof For each $a \in [0,1)$, let $||a||^*$ denote the unique real number r such that $0 \le r < 1$ and $a = r \pmod{\mathbf{Z}}$. To show this theorem, let $A \subset [0,1]$ and $|A| < \mathbf{h}$.

For each $a \in A$, take a maximal almost disjoint set $W_a \subset [\omega]^{\omega}$ such that

$$\forall\,n\in X\;\forall\,m\in X\;\backslash\;n\;(\;|||na||^*-||ma||^*|<\frac{1}{|X\cap n|+1}\;),\,\text{for all }X\in W_a.$$

Since $|A| < \mathbf{h}$, there exists a maximal almost disjoint set W such that W is an refinement of all W_a 's. Take a $Y \in W$. Choose some $Y' = \{y_i \mid i < \omega\}_{<} \in [Y]^{\omega}$ such that

$$|Y \cap [y_i, y_{i+1})| \ge i$$
 and $y_{i+1} - y_i < y_{i+2} - y_{i+1}$, for all $i < \omega$.

Let $Z = \{ y_{i+1} - y_i \mid i < \omega \}$. We complete the proof by showing that

$$\forall^{\infty} n \in \mathbb{Z} (||na|| < \frac{1}{|\mathbb{Z} \cap n| + 1}), \text{ for all } a \in A.$$

Let $a \in A$. Since W is a refinement of W_a , there exists an $X \in W_a$ such that $Y \subset^* X$. Take an $i < \omega$ such that $Y \setminus y_i \subset X$. Then, for any $j \in [i+1,\omega)$, it holds that

$$||(y_{j+1} - y_j)a|| \le |||y_{j+1}a||^* - ||y_ja||^*| \le \frac{1}{|X \cap y_j| + 1} < \frac{1}{j+1}.$$

2 Combinatorial principle wIn₂

T. Bartoszynski [2] introduced the notion of slalom and, using this, investigated systematically the relations between combinatorics and cardinal invariants which are associated by the null ideal \mathcal{N} and the meager ideal \mathcal{M} . The following statement In₂ and the theorem are some of them.

Definition 2.1 For
$$h \in {}^{\omega}\omega$$
 and $F \subset {}^{\omega}\omega$, define the statement $\operatorname{In}_2(F,h)$ by
$$\operatorname{In}_2(F,h) \equiv \exists \ \varphi \in \prod_{n < \omega} [\omega]^{\leq h(n)} \ \ \forall \ f \in F \ \forall^{\infty} \ n < \omega \ (\ f(n) \in \varphi(n) \).$$

The statement $\operatorname{In}_2(F, \operatorname{id}_{\omega})$ is denoted by $\operatorname{In}_2(F)$, where $\operatorname{id}_{\omega}$ is the identity function on ω .

Theorem 2.1 (Bartoszynski [2]) $\operatorname{add}(\mathcal{N}) = \min\{|F| \mid F \subset {}^{\omega}\omega \text{ and not } \operatorname{In}_2(F)\}.$

In this section, we shall introduce the statement wIn_2 which is some variant of In_2 . And we shall study relations between wIn_2 and $non(\mathcal{PD})$.

Definition 2.2 For $H, h \in {}^{\omega}\omega$ and $F \subset \prod_{n < \omega} H(n)$, define the statement $wIn_2(F, h, H)$

by

$$\mathrm{wIn}_2(F,h,H) \equiv \exists \, \varphi \in \prod_{n < \omega} [H(n)]^{\leq h(n)} \ \, \forall \, f \in F \, \, \forall^\infty \, n < \omega \, \left(\, \, f(n) \in \varphi(n) \, \, \right).$$

 $wIn_2(F, H)$ denotes the statement $wIn_2(F, id_{\omega}, H)$. Let

$$\mathbf{f} = \min\{ |F| \mid \exists H \in {}^{\omega}\omega \ (F \subset \prod_{n < \omega} H(n) \text{ and not } \mathrm{wIn}_2(F, H)) \}.$$

The following lemma can be easily proved by the result of Bartorszynski.

Lemma 2.2
$$add(\mathcal{N}) = min\{b, f\}.$$

The main result of this section is the following theorem.

Theorem 2.3 $\mathbf{f} \leq \text{non}(\mathcal{PD})$.

To show this theorem, we need some notations and lemmas.

A sequence $\langle I_n \mid n < \omega \rangle$ is called an *interval partition* of ω , if there exists an increasing function $f \in {}^{\omega}\omega$ such that f(0) = 0 and, for all $n < \omega$, $I_n = \{k < \omega \mid f(n) \le k < f(n+1)\}$.

The next lemma can be deduced from [6, Proposition 1]. But, for a convenience for the reader, we give a proof.

Lemma 2.4 Let $n < \omega$ and 0 < m, $k < \omega$. Then, there exists some $p < \omega$ such that

$$\forall a_0, \dots, a_{m-1} \in [0,1] \exists s < \omega \ (n \le s < p \text{ and } \forall i < m \ (\|sa_i\| < \frac{1}{k})).$$

Proof By induction on $1 \le m < \omega$.

Case 1. m=1.

We claim that p = nk + 1 satisfies the condition. To show this, let $a \in [0,1]$. Define the mapping $\sigma: X = \{nj \mid j = 1, \dots, k\} \rightarrow k$ by, for each j < k,

$$\sigma(nj) =$$
 "the unique i such that $\frac{i}{k} \leq ||nja||^* < \frac{i+1}{k}$ ".

If there exists some nj such that $\sigma(nj) = 0$ or k-1, then s = nj is a required one.

Otherwise, there exist $i < j \le k$ such that $\sigma(ni) = \sigma(nj)$ and s = n(j-i) is a required one.

Case 2. m = m' + 1.

By induction hypothesis, there exist $0 = p_0 < p_1 < \cdots < p_k$ such that

$$\forall a_0, \dots, a_{m'-1} \in [0,1] \exists s < \omega \ (p_j + n \le s < p_{j+1} \text{ and } \forall i < m' \ (\|sa_i\| < \frac{1}{2k})),$$
 for $j < k$.

We show that $p = p_k$ satisfies the condition. So, let $a_0, \dots, a_{m'} \in [0, 1]$. By the choise of p_j (for j < k), there exist $s_0, \dots, s_{k-1} < \omega$ such that

$$p_j + n \le s_j < p_{j+1}$$
 and $\forall i < m' (||s_j a_i|| < \frac{1}{2k})), \text{ for } j < k.$

Then, it holds that

$$||s_j a_{m'}|| < \frac{1}{k}$$
, for some $j < k$

or

$$||s_j a_{m'} - s_{j'} a_{m'}|| < \frac{1}{k}$$
, for some $j < j' < k$.

In either cases, similar to case 1, we can take a required element s.

Corollary 2.5 There is an interval partition $\langle I_n \mid n < \omega \rangle$ which satisfies

(*)
$$\begin{cases} For \ any \ n < \omega \ and \ a_0, \cdots, a_{n-1} \in [0,1), \ there \ exists \ some \ k \in I_n \ such \ that \\ ||ka_i|| < 2^{-n}, \ for \ all \ i < n. \end{cases}$$

Proof of Thorem 2.3 Take an interval partition $\langle I_n \mid n < \omega \rangle$ which satisfies (*) in the previous corollary. Define $H \in {}^{\omega}\omega$ by

$$H(n) = 2^n \sum_{k \le n} |I_k|$$
, for all $n < \omega$.

To show the theorem, let $A \subset [0,1]$ and $|A| < \mathbf{f}$. For each $a \in A$, define $f_a \in \prod_{n < \omega} H(n)$

by

$$\frac{f_a(n)}{H(n)} \leq a < \frac{f_a(n)+1}{H(n)} \text{ , for all } n < \omega.$$

Since $|A| < \mathbf{f}$, there exists a $\varphi \in \prod_{n < \omega} [H(n)]^n$ such that

$$\forall a \in A \ \forall^{\infty} \ n < \omega \ (f_a(n) \in \varphi(n)).$$

For each $n < \omega$, take $s_n \in I_n$ such that

$$||s_n \frac{j}{H(n)}|| < 2^{-n}$$
, for all $j \in \varphi(n)$.

We complete the proof by showing that

$$\forall a \in A \ \forall^{\infty} \ n < \omega \ (\ ||s_n a|| < 2^{-n+1} \).$$

So, let $a \in A$. Take an $m < \omega$ such that

$$\forall n \geq m \ (f_a(n) \in \varphi(n)).$$

Then, for any $n \geq m$, since $\frac{f_a(n)}{H(n)} \leq a < \frac{f_a(n)+1}{H(n)}$, it holds that

$$s_n \frac{f_a(n)}{H(n)} \le s_n a < s_n \frac{f_a(n) + 1}{H(n)}.$$

So,

$$||s_n a|| \le ||s_n \frac{f_a(n)}{H(n)}|| + \frac{s_n}{H(n)} < 2^{-n+1}.$$

Note that what we really proved is $\min\{|F| \mid \text{not wIn}_2(F, H)\} \leq \text{non}(\mathcal{PD})$, where H is a function defined in the proof of Theorem 2.3.

3 The cardinal invariant f

In the previous section, we introduced the cardinal invariant \mathbf{f} and showed the equality $\mathrm{add}(\mathcal{N}) = \min\{\mathbf{b}, \mathbf{f}\}$. Both of $\mathrm{add}(\mathcal{N})$ and \mathbf{b} appear in the Cihoń's diagram. It seems to be an interesting problem to check the relations between \mathbf{f} and other cardinals in the diagram. Since it is known that $\mathcal{PD} \subset \mathcal{N} \cap \mathcal{M}$, it holds that $\mathbf{f} \leq \min\{\mathrm{non}(\mathcal{N}), \mathrm{non}(\mathcal{M})\}$. So, \mathbf{f} seems to be not so large. If the inequality $\mathbf{f} \leq \mathbf{b}$ always holds, then \mathbf{f} is equal to $\mathrm{add}(\mathcal{N})$ and \mathbf{f} does not become a new cardinal invariant. In this section, we shall show that there exists a generic model which satisfies the inequality $\mathbf{b} < \mathbf{f}$.

Definition 3.1 For each $H \in {}^{\omega}\omega$, define the forcing notion Q(H) by

$$Q(H) = \big\{\, p \in \prod_{n < \omega} [H(n)]^{\leq n} \mid \exists \, k < \omega \,\, \forall \,\, n < \omega \,\, (\,\, |p(n)| \leq k \,\,) \,\big\},$$

$$q \le p$$
 iff $\forall n < \omega (p(n) \subset q(n))$.

Define $\tau_H: Q(H) \to \omega$ by

$$\tau_H(p) = \min\{ k < \omega \mid \forall n < \omega \mid |p(n)| \le k \}.$$

Using the density argument, the following lemma can be proved easily.

$$\textbf{Lemma 3.1} \qquad \textit{Let $H \in {}^\omega\omega$ and \mathcal{G} be V-generic on $Q(H)$. In $V[\mathcal{G}]$, define $\varphi \in \prod_{n < \omega} \mathcal{P}(H(n))$}$$

by

$$\varphi(n) = \{ | \{ p(n) \mid p \in \mathcal{G} \}.$$

Then, it holds that

(1) $|\varphi(n)| \leq n$, for all $n < \omega$,

(2)
$$\forall g \in (\prod_{n < \omega} H(n))^V \ \forall^{\infty} \ n < \omega \ (g(n) \in \varphi(n)).$$

Lemma 3.2 Q(H) satisfies the ω_1 -chain condition.

Proof Let $W \subset Q(H)$ and $|W| = \omega_1$. Replace W by a certain subset of W, if necessary, we can assume that, for some $k < \omega$,

$$\tau_H(p) = k$$
 and $p \upharpoonright 2k = p' \upharpoonright 2k$, for all $p, p' \in W$.

Then, every elements of W are mutually compatible.

Lemma 3.3 Every unbounded family of functions in ${}^{\omega}\omega \cap V$ is still unbounded in $V^{Q(H)}$.

Bartszinski and Judah [3, Theorem 6.4.13] proved that any finite support iteration by forcing notions which preserved the unboundedness in ω does not add a dominating function. So, starting a ground model which satisfies CH, by choosing appropriate H's, we can construct an ω_2 -stage finite support iteration P such that V^P satisfies $\mathbf{b} = \omega_1$ and $\mathbf{f} = \omega_2$.

In order to prove Lemma 3.3, we need a result of Brendle and Judah [4]. Let P be a forcing notion which satisfies the ω_1 -chain condition and $\tau: P \to \omega$ be a homomorphism. Following Brendle and Judah [4], we say that (P, τ) is nice, if it

satisfies

$$\left\{ \begin{array}{l} \text{For any predence set } \{\,p_i \mid i < \omega \,\} \subset P, \, \text{it holds that} \\ \forall \, m < \omega \,\, \exists \, n < \omega \,\, \forall \, q \in P \,\, (\,\, \text{if} \,\, \tau(q) \leq m, \, \text{then} \,\, \exists \, i < n \,\, (\,\, q \uparrow p_i \,\,) \,\,). \end{array} \right.$$

Theorem 3.4 (Brendle and Judah [4]) Let (P, τ) be a nice forcing notion. Then, every unbounded family of functions in ${}^{\omega}\omega \cap V$ is still unbounded in $V^{Q(H)}$.

Proof of Lemma 3.3 It suffices to show that $(Q(H), \tau_H)$ is nice. So, let $\{p_i \mid i < \omega\}$ be a predence subset of Q(H) and $m < \omega$. To get a contradiction, assume that, for each $n < \omega$, there exists a condition $q_n \in Q(H)$ such that

$$\tau_H(q_n) \leq m \text{ and } \forall i < n (q_n \perp p_i).$$

Since $\{q_n \upharpoonright k \mid n < \omega\}$ is a finite set for every $k < \omega$, we can choose $X_k \in [\omega]^{\omega}$ by induction on $k < \omega$ such that

$$X_{k+1} \subset X_k$$
 and $\forall n, n' \in X_k$ ($q_n \upharpoonright (k+1) = q_{n'} \upharpoonright (k+1)$).

Define $r \in Q(H)$ by

$$r(k) = q_n(k)$$
, for some/all $n \in X_k$.

Note that $\tau_H(r) \leq m$. Since $\{p_i \mid i < \omega\}$ is predence, there exists $i < \omega$ such that r is compatible with p_i . Let $k = \tau_H(p_i) + m$. Take $n \in X_k$ such that i < n. Since i < n, it holds that p_i and q_n are incompatible. Since $\tau_H(p_i) + \tau_H(q_n) \leq k$, it holds that $\exists j < k \ (|p_i(j) \cup q_n(j)| > j)$. By this and the fact that $r \restriction k = q_n \restriction k$, r is incompatible with p_i . This is a contradiction.

4 Consistency of f < non(PD)

Concerning about the cardinal invariant associated by In₂, T. Bartoszynski [2] pointed out implicitly that, if two functions h_0 , $h_1 \in {}^{\omega}\omega$ satisfies that

$$\lim_{n < \omega} h_i(n) = \infty, \text{ for } i = 0, 1,$$

then $\min\{|F| \mid \text{ not } \operatorname{In}_2(F, h_0)\} = \min\{|F| \mid \text{ not } \operatorname{In}_2(F, h_1)\}.$

In this section, we shall show that, for any $H \in {}^{\omega}\omega$, \mathbf{f} may not be equal to $\min\{|F| \mid \text{not wIn}_2(F,H)\}$. Using this, we shall prove the consistency of \mathbf{f}

non(\mathcal{PD}). Henceforce, $H\in {}^\omega\omega$ is an arbitrary, but fixed function on ω . For each $k<\omega$, let

$$T_k (= T_k^H) = \{ q \in Q(H) \mid \tau_H(q) \le k \}.$$

Define H_0 , $H_1: \omega \times \omega \to \omega$ by

$$H_0(k,m) = \min \left\{ \left. l < \omega \right| \quad \begin{array}{l} \forall \, \delta : l \to [\omega_2]^{\leq k} \, \exists \, S \in [\, l \,]^m \exists \, v \in [\omega_2]^{\leq k} \\ \forall \, i, \, j \in S \, (\, \text{if} \, i \neq j, \, \text{then} \, \, \delta(i) \cap \delta(j) = v \,) \end{array} \right\},$$

$$H_1(k,m) = \min \left\{ \left. l < \omega \, \right| \begin{array}{c} \forall \, \delta : l \to T_k \, \exists \, S \in [\, l \,]^m \, \exists \, q \in Q(H) \\ \forall \, i \in S \, (\, q \leq \delta(i) \,) \end{array} \right\}.$$

Note that H_0 is a recursive function. And, H_1 is an H-recursive function, since it holds that

$$\exists \, q' \, \in \, Q(H) \, \, \forall \, q \, \in \, S \, \left(\, \, q' \, \leq \, q \, \, \right) \quad \text{iff} \quad \forall \, i < mk \, \left(\, \, |\bigcup_{q \in S} q(i)| \leq i \, \, \right) \, , \, \text{for any}$$

 $S \in [T_k]^m$.

Define H_2 , $H^*: \omega \to \omega$ by

$$H_2(k) = \underbrace{H_1(k, H_1(k, H_1(\cdots, H_1(k, k+1)\cdots)))}_{k \text{ times}},$$

$$H^*(k) = H_0(k, H_2(k)).$$

Define an ω_2 -stage finite support iteration P_{α} (for $\alpha \leq \omega_2$) associated with \dot{Q}_{α} (for $\alpha < \omega_2$) by

$$\Vdash_{\alpha} \dot{Q}_{\alpha} = Q(H)$$
, for all $\alpha < \omega_2$.

Let $P(H) = P_{\omega_2}$. It holds that

$$V^{P(H)} \models \forall F \subset \prod_{n < \omega} H(n) \text{ (if } |F| \leq \omega_1, \text{ then } \operatorname{wIn}_2(F, H) \text{)}.$$

The purpose of this section is to show

Theorem 4.1
$$V^{P(H)} \models not \operatorname{wIn}_2((\prod_{n < \omega} H^*(n))^V, H^*).$$

Corollary 4.2 Suppose that $V \models \text{CH}$. Let $H \in {}^{\omega}\omega$ be the function which is defined in the proof of Theorem 2.3. Then, it holds that

$$V^{P(H)} \models \mathbf{f} = \omega_1 \text{ and } \operatorname{non}(\mathcal{PD}) = \omega_2.$$

To show Theorem 4.1, we need some definitions and lemmas. Let

$$D = \{ p \in P(H) \mid \forall \alpha \in \operatorname{supp}(p) \ (\ p \upharpoonright \alpha \text{ decides } \tau_H(p(\alpha)) \) \}.$$

The following lemma can be proved easily.

Lemma 4.3 D is dense in P(H).

Define $\rho: D \to \omega$ by

$$\rho(p) = \min \left\{ \begin{array}{c|c} |\mathrm{supp}(p)| \leq k \\ \mathrm{and} \\ \forall \, \alpha \in \mathrm{supp}(p) \; (\; p \upharpoonright \alpha \Vdash_{\alpha} \tau_{H}(p(\alpha)) \leq k \;) \end{array} \right\}$$

For each 各 $k < \omega$, let

$$D_k = \{ p \in D \mid \rho(p) \le k \}.$$

Lemma 4.4 Let $k < \omega$ and $\delta : H^*(k) \to D_k$. Then, there exist $p^+ \in P(H)$ and P(H)-name \dot{S} which satisfy (1), (2).

- (1) $\Vdash \dot{S} \subset H^*(k)$ and $|\dot{S}| \ge k + 1$.
- (2) $\forall i < H^*(k) \ \forall p' \leq p^+ \ (if \ p' \Vdash i \in \dot{S}, then \ p' \leq \delta(i)).$

Proof Let $k < \omega$. Define l_m (for $m \le k$) by

$$\begin{cases} l_0 &= k+1 \\ l_{m+1} &= H_1(k, l_m) \end{cases}.$$

Note that $H^*(k) = H_0(k, l_k)$. Assume that $\delta : H^*(k) \to D_k$. Since $\langle \operatorname{supp}(\delta(i)) | i < H^*(k) \rangle : H^*(k) \to [\omega_2]^{\leq k}$, by the choise of H_0 , there exist $S_0 \in [H^*(k)]^{l_k}$ and $v \in [\omega_2]^{\leq k}$ such that

$$\forall i, j \in S_0 \text{ (if } i \neq j, \text{ then } \operatorname{supp}(\delta(i)) \cap \operatorname{supp}(\delta(j)) = v \text{)}.$$

Define $p \in P(H)$ by

$$\operatorname{supp}(p) = \bigcup \{\operatorname{supp}(\delta(i)) \mid i \in S_0\} \setminus v,$$

$$p(\alpha) = \delta(i)(\alpha)$$
, if $\alpha \in \text{supp}(\delta(i))$ and $i \in S_0$.

Let n=|v| and $v=\{\alpha_1,\cdots,\alpha_n\}_{<}$. Note that $n\leq k$. By induction on $1\leq m\leq n$, choose P_{α_m} -names \dot{S}_m , \dot{q}_m such that

- (3) $\Vdash_{\alpha_m} \dot{S}_m \in [\dot{S}_{m-1}]^{l_{k-m}} \text{ and } \dot{q}_m \in \dot{Q}_{\alpha_m},$
- (4) $p \upharpoonright \alpha_m \cup \langle \dot{q}_j \mid 1 \leq j < m \rangle \Vdash_{\alpha_m} \dot{q}_m \leq \delta(i)(\alpha_m)$, for all $i \in \dot{S}_m$.

We must show that these can be chosen. Assume that $m \leq n$ and \dot{S}_j , \dot{q}_j were chosen, for j < m. Since H_1 is abusolute and $H_1(k, l_{k-m}) = l_{k-m+1}$, it holds that

 $p \upharpoonright \alpha_m \cup \langle \, \dot{q}_j \mid 1 \leq j < m \, \rangle \Vdash_{\alpha_m} \exists \, q \in Q(H) \, \exists \, S \in [\dot{S}_{m-1}]^{l_{k-m}} \, \forall \, i \in S \, (\, q \leq \delta(i)(\alpha_m) \,).$

Using this, it can be possible to choose \dot{S}_m , and \dot{q}_m .

Let $p^+ = p \cup \langle \dot{q}_m \mid 1 \leq m \leq n \rangle$, $\dot{S} = \dot{S}_n$. It is clear that this p^+ and \dot{S} satisfy

(1) in the lemma. In order to show that these satisfy (2), assume that

 $i < H^*(k)$ and $p' \le p^+$ and $p' \Vdash i \in \dot{S}$.

Since $\Vdash_P \dot{S} = \dot{S}_n \subset \dot{S}_{n-1} \subset \cdots \subset S_0, i \in S_0$. For each $m = 1, \dots, n$, since \dot{S}_m is a

 P_{α_m} -name, it holds that $p' \upharpoonright \alpha_m \Vdash_{\alpha_m} i \in \dot{S}_m$. By this, since $p' \leq p^+$, we have that

 $p' \upharpoonright \alpha_m \Vdash_{\alpha_m} \dot{q}_m \le \delta(i)(\alpha_m)$, for all $m = 1, \dots, n$.

So, $p' \leq \delta(i)$.

Lemma 4.5 Let $k < \omega$. Assume that a P(H)-name \dot{a} satisfies $\Vdash \dot{a} \in [H^*(k)]^{\leq k}$.

Then, there exists some $j < H^*(k)$ such that

 $\forall p \in D_k (not p \Vdash j \in \dot{a}).$

Proof Suppose not. Take $\delta: H^*(k) \to D_k$ such that

 $\delta(j) \Vdash j \in \dot{a}$, for all $j < H^*(k)$.

By the previous lemma, there exist $p^+ \in P(H)$ and P(H)-name \dot{S} such that

 $\Vdash \dot{S} \subset H^*(k) \text{ and } |\dot{S}| \ge k+1,$

 $\forall i < H^*(k) \, \forall p' \leq p^+ \, (\text{ if } p' \Vdash i \in \dot{S}, \text{ then } p' \leq \delta(i)).$

Then, it holds that $p^+ \Vdash \dot{S} \subset \dot{a}$. This contradicts that $p^+ \Vdash |\dot{S}| \ge k+1$ and $|\dot{a}| \le k$.

Proof of Theorem 4.1 Assume that $\Vdash_{P(H)} \dot{\varphi} \in \prod_{k < \omega} [H^*(k)]^k$. Using the previous

lemma, for each $k < \omega$, take a $j_k < H^*(k)$ such that

 $\forall p \in D_k \ (\text{ not } p \Vdash j_k \in \dot{\varphi}(k) \).$

We claim that $\Vdash \exists^{\infty} k < \omega$ ($j_k \not\in \dot{\varphi}(k)$). Suppose not. Then, there exist $p \in D$ and $n < \omega$ such that

$$p \Vdash \forall k > n \ (j_k \in \dot{\varphi}(k)).$$

Take k > n such that $p \in D_k$. Then, it holds that $p \Vdash j_k \in \dot{\varphi}(k)$. But, this contradicts the choise of j_k .

Added in proof:

After the completion of this paper, Dr. Kada [7] have proved that $d < non(\mathcal{PD})$ is consistent with ZFC.

References

- B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math., 110 (1980) pp. 11-24.
- [2] T. Bartoszyński, Combinatorial aspects of measure and category, Fund. Math., 127 (1987) pp. 225-239.
- [3] T. Bartoszyński and H. Judah, Set Theory, A K peters, Wellesley, Massachusetts, 1995
- [4] J. Brendle and H. Judah, Perfect sets of random reals, Israel J. of Math., 83 (1993) pp. 153-176.
- [5] Z. Bukovská, Thin sets in trigonometrical series and quasinormal convergence,Math. Slovaca, 40 (1990) pp. 53-62.
- [6] Z. Bukovská and L. Bukovský, Adding small sets to an N-set, Proc. AMS., 123 (1995) pp. 3867-3873.
- [7] M. Kada, Slalom, prediction, and permitted trigonometric thin sets, manuscript

Department of Mathematics

University of Osaka Prefecture

Gakuen-chou, Sakai, Japan

email:kamo@center.osakafu-u.ac.jp