<table>
<thead>
<tr>
<th>Title</th>
<th>Pseudo Dirichlet sets and a new cardinal invariant (General and Geometric Topology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kamo, Shizuo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1999), 1074: 1-11</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62614</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Pseudo Dirichlet sets and a new cardinal invariant

Shizuo Kamo (Sakai) (加茂靜夫)

Abstract

Z. Bukovská [5] proved that \(p \leq \text{non}(\mathcal{P}D) \), where \(\mathcal{P}D \) denotes the set of all pseudo-Dirichlet sets. In this paper, we shall show that \(p \) can be replaced by \(h \) in this inequality. It is known that \(p < h \) is consistent (see [1]). So, the equality \(p = \text{non}(\mathcal{P}D) \) cannot be proved. This is a partial answer of problem 2 in [6].

Next, we shall introduce a certain cardinal invariant \(f \) and show that \(\text{add}(\mathcal{N}) \leq f \leq \text{non}(\mathcal{P}D) \). Also, we shall construct two generic models such that one satisfies the inequality \(b < f \) and another satisfies the inequality \(f < \text{non}(\mathcal{P}D) \).

1 Introduction

Throughout this paper, we shall use the standard terminologies for forcing of set theory and cardinal invariants on \(\omega \) (see [3]). For each \(a \in \mathbb{R} \), we denote by \(||a|| \) the distance of \(a \) and the set of integers \(\mathbb{Z} \). Let \(A \) be a subset of the unit interval \([0,1] \).

\(A \) is called a pseudo Dirichlet set, if there exists an \(X \in [\omega]^{\omega} \) such that

\[
\forall a \in A \forall \infty n \in X \left(||na|| < \frac{1}{|X \cap n| + 1} \right).
\]

We denote the set of all pseudo Dirichlet sets by \(\mathcal{P}D \). Z. Bukovská [5] showed that \(p \leq \text{non}(\mathcal{P}D) \). Let \(h \) be the least cardinal \(\kappa \) such that the boolean algebra \(\mathcal{P}(\omega)/\text{fin} \) does not satisfy the \(\kappa \)-distributive law.

Theorem 1.1 \(h \leq \text{non}(\mathcal{P}D) \).

Proof For each \(a \in [0,1) \), let \(||a||^* \) denote the unique real number \(r \) such that \(0 \leq r < 1 \) and \(a = r \) (mod \(\mathbb{Z} \)). To show this theorem, let \(A \subset [0,1] \) and \(|A| < h \).
For each $a \in A$, take a maximal almost disjoint set $W_a \subset [\omega]^{\omega}$ such that
\[\forall n \in X \forall m \in X \setminus n \left(\| na \|^* - \| ma \|^* < \frac{1}{|X \cap n| + 1} \right), \text{ for all } X \in W_a. \]

Since $|A| < h$, there exists a maximal almost disjoint set W such that W is a refinement of all W_a's. Take a $Y \in W$. Choose some $Y' = \{ y_i \mid i < \omega \} \subset [Y]^{\omega}$ such that
\[|Y \cap [y_i, y_{i+1})| \geq i \text{ and } y_{i+1} - y_i < y_{i+2} - y_{i+1}, \text{ for all } i < \omega. \]

Let $Z = \{ y_{i+1} - y_i \mid i < \omega \}$. We complete the proof by showing that
\[\forall \infty n \in Z \left(\| na \|^* < \frac{1}{|Z \cap n| + 1} \right), \text{ for all } a \in A. \]

Let $a \in A$. Since W is a refinement of W_a, there exists an $X \in W_a$ such that $Y \subset X$. Take an $i < \omega$ such that $Y \setminus y_i \subset X$. Then, for any $j \in [i + 1, \omega)$, it holds that
\[\|(y_{j+1} - y_j)a\|^* \leq \| y_{j+1}a \|^* - \| y_ja \|^* < \frac{1}{|X \cap y_j| + 1} < \frac{1}{j + 1}. \]

\[\square \]

2 **Combinatorial principle w\text{In}_2**

T. Bartoszynski [2] introduced the notion of slalom and, using this, investigated systematically the relations between combinatorics and cardinal invariants which are associated by the null ideal \mathcal{N} and the meager ideal \mathcal{M}. The following statement In_2 and the theorem are some of them.

Definition 2.1 For $h \in \omega^\omega$ and $F \subset \omega^\omega$, define the statement $\text{In}_2(F, h)$ by
\[\text{In}_2(F, h) \equiv \exists \varphi \in \prod_{n < \omega} [\omega]^{h(n)} \forall f \in F \forall n < \omega \left(f(n) \in \varphi(n) \right). \]

The statement $\text{In}_2(F, \text{id}_\omega)$ is denoted by $\text{In}_2(F)$, where id_ω is the identity function on ω.

Theorem 2.1 (Bartoszynski [2]) $\text{add}(\mathcal{N}) = \min\{ |F| \mid F \subset \omega^\omega \text{ and not } \text{In}_2(F) \}.$

In this section, we shall introduce the statement wIn_2 which is some variant of In_2. And we shall study relations between wIn_2 and non($\mathcal{P}\mathcal{D}$).
Definition 2.2 For \(H, h \in \omega\omega \) and \(F \subset \prod_{n<\omega}H(n) \), define the statement \(\text{wIn}_2(F, h, H) \) by

\[
\text{wIn}_2(F, h, H) \equiv \exists \varphi \in \prod_{n<\omega}H(n) \leq h(n) \forall f \in F \forall^\infty n<\omega (f(n) \in \varphi(n)).
\]

\(\text{wIn}_2(F, H) \) denotes the statement \(\text{wIn}_2(F, \text{id}_\omega, H) \). Let

\[
f = \min \{ |F| \mid \exists H \in \omega\omega (F \subset \prod_{n<\omega}H(n) \text{ and not } \text{wIn}_2(F, H)) \}.
\]

The following lemma can be easily proved by the result of Bartorszynski.

Lemma 2.2 \(\text{add}(\mathcal{N}) = \min \{ b, f \} \). \(\square \)

The main result of this section is the following theorem.

Theorem 2.3 \(f \leq \text{non}(\mathcal{P}\mathcal{D}) \).

To show this theorem, we need some notations and lemmas.

A sequence \(\langle I_n \mid n < \omega \rangle \) is called an interval partition of \(\omega \), if there exists an increasing function \(f \in \omega\omega \) such that \(f(0) = 0 \) and, for all \(n < \omega \), \(I_n = \{ k < \omega \mid f(n) \leq k < f(n+1) \} \).

The next lemma can be deduced from [6, Proposition 1]. But, for a convenience for the reader, we give a proof.

Lemma 2.4 Let \(n < \omega \) and \(0 < m, k < \omega \). Then, there exists some \(p < \omega \) such that

\[
\forall a_0, \cdots, a_{m-1} \in [0,1] \exists \ s < \omega \ (n \leq s < p \text{ and } \forall i < m \ (\|sa_i\| < \frac{1}{k})).
\]

Proof By induction on \(1 \leq m < \omega \).

Case 1. \(m = 1 \).

We claim that \(p = nk + 1 \) satisfies the condition. To show this, let \(a \in [0,1] \).

Define the mapping \(\sigma : X = \{ nj \mid j = 1, \cdots, k \} \rightarrow k \) by, for each \(j < k \),

\[
\sigma(nj) = \text{"the unique } i \text{ such that } \frac{i}{k} \leq \|ja\| < \frac{i+1}{k} \text{"}.
\]

If there exists some \(nj \) such that \(\sigma(nj) = 0 \) or \(k - 1 \), then \(s = nj \) is a required one.
Otherwise, there exist \(i < j \leq k \) such that \(\sigma(ni) = \sigma(nj) \) and \(s = n(j - i) \) is a required one.

Case 2. \(m = m' + 1. \)

By induction hypothesis, there exist \(0 = p_0 < p_1 < \cdots < p_k \) such that

\[
\forall a_0, \ldots, a_{m'-1} \in [0, 1], \exists s < \omega (p_j + n \leq s < p_{j+1} \text{ and } \forall i < m' (\|s_{a_i}\| < \frac{1}{2k})),
\]

for \(j < k. \)

We show that \(p = p_k \) satisfies the condition. So, let \(a_0, \ldots, a_{m'} \in [0, 1]. \) By the choice of \(p_j \) (for \(j < k \)), there exist \(s_0, \ldots, s_{k-1} < \omega \) such that

\[
p_j + n \leq s_j < p_{j+1} \text{ and } \forall i < m' (\|s_{a_i}\| < \frac{1}{2k})), \text{ for } j < k.
\]

Then, it holds that

\[
\|s_{j}a_{m'}\| < \frac{1}{k}, \text{ for some } j < k
\]

or

\[
\|s_{j}a_{m'} - s_{j'}a_{m'}\| < \frac{1}{k}, \text{ for some } j < j' < k.
\]

In either cases, similar to case 1, we can take a required element \(s. \)

\[\square\]

Corollary 2.5 There is an interval partition \(\langle I_n | n < \omega \rangle \) which satisfies

\[
(\ast) \left\{ \begin{array}{l}
\text{For any } n < \omega \text{ and } a_0, \ldots, a_{n-1} \in [0, 1], \text{ there exists some } k \in I_n \text{ such that } \\
\|ka_i\| < 2^{-n}, \text{ for all } i < n.
\end{array} \right.
\]

\[\square\]

Proof of Theorem 2.3 Take an interval partition \(\langle I_n | n < \omega \rangle \) which satisfies \((\ast) \) in the previous corollary. Define \(H \in \omega \omega \) by

\[
H(n) = 2^n \sum_{k \leq n} |I_k|, \text{ for all } n < \omega.
\]

To show the theorem, let \(A \subseteq [0, 1] \) and \(|A| < f. \) For each \(a \in A, \) define \(f_a \in \prod_{n<\omega} H(n) \)

by

\[
\frac{f_a(n)}{H(n)} \leq a < \frac{f_a(n) + 1}{H(n)}, \text{ for all } n < \omega.
\]

Since \(|A| < f, \) there exists a \(\varphi \in \prod_{n<\omega} [H(n)]^n \) such that
\[\forall a \in A \forall n < \omega \ (f_a(n) \in \varphi(n)). \]

For each \(n < \omega \), take \(s_n \in I_n \) such that
\[\| s_n \frac{j}{H(n)} \| < 2^{-n}, \text{ for all } j \in \varphi(n). \]

We complete the proof by showing that
\[\forall a \in A \forall n < \omega \ (\| s_n a \| < 2^{-n+1}). \]

So, let \(a \in A \). Take an \(m < \omega \) such that
\[\forall n \geq m \ (f_a(n) \in \varphi(n)). \]

Then, for any \(n \geq m \), since
\[\frac{f_a(n)}{H(n)} \leq a < \frac{f_a(n) + 1}{H(n)}, \]

it holds that
\[s_n \frac{f_a(n)}{H(n)} \leq s_n a < s_n \frac{f_a(n) + 1}{H(n)}. \]

So,
\[\| s_n a \| \leq \| s_n \frac{f_a(n)}{H(n)} \| + \frac{s_n}{H(n)} < 2^{-n+1}. \]

Note that what we really proved is \(\min\{ |F| \ | \not\in \text{wIn}_2(F, H) \} \leq \text{non}(\mathcal{P}D) \), where \(H \) is a function defined in the proof of Theorem 2.3.

3 The cardinal invariant \(f \)

In the previous section, we introduced the cardinal invariant \(f \) and showed the equality \(\text{add}(\mathcal{N}) = \min\{ b, f \} \). Both of \(\text{add}(\mathcal{N}) \) and \(b \) appear in the Cichoń's diagram. It seems to be an interesting problem to check the relations between \(f \) and other cardinals in the diagram. Since it is known that \(\mathcal{P}D \subset \mathcal{N} \cap \mathcal{M} \), it holds that \(f \leq \min\{ \text{non}(\mathcal{N}), \text{non}(\mathcal{M}) \} \). So, \(f \) seems to be not so large. If the inequality \(f \leq b \) always holds, then \(f \) is equal to \(\text{add}(\mathcal{N}) \) and \(f \) does not become a new cardinal invariant. In this section, we shall show that there exists a generic model which satisfies the inequality \(b < f \).

Definition 3.1 For each \(H \in \omega^{\omega} \), define the forcing notion \(Q(H) \) by
\[Q(H) = \{ p \in \prod_{n < \omega} [H(n)]^{\mathbb{N}} \ | \exists k < \omega \ \forall n < \omega \ (|p(n)| \leq k) \}. \]
\[q \leq p \iff \forall n < \omega \left(p(n) \subset q(n) \right)\]

Define \(\tau_H : Q(H) \rightarrow \omega\) by
\[
\tau_H(p) = \min \{ k < \omega | \forall n < \omega (|p(n)| \leq k) \}.
\]

Using the density argument, the following lemma can be proved easily.

Lemma 3.1 Let \(H \in \omega\omega\) and \(G\) be \(V\)-generic on \(Q(H)\). In \(V[G]\), define \(\varphi \in \prod_{n<\omega} \mathcal{P}(H(n))\) by
\[
\varphi(n) = \bigcup \{p(n) | p \in \mathcal{G}\}.
\]

Then, it holds that

1. \(|\varphi(n)| \leq n\), for all \(n < \omega\),
2. \(\forall g \in \left(\prod_{n<\omega} H(n)\right)^V \forall^\infty n < \omega (g(n) \in \varphi(n))\).

Lemma 3.2 \(Q(H)\) satisfies the \(\omega_1\)-chain condition.

Proof Let \(W \subset Q(H)\) and \(|W| = \omega_1\). Replace \(W\) by a certain subset of \(W\), if necessary, we can assume that, for some \(k < \omega\),
\[
\tau_H(p) = k \text{ and } p|2k = p'|2k, \text{ for all } p, p' \in W.
\]

Then, every elements of \(W\) are mutually compatible.

Lemma 3.3 Every unbounded family of functions in \(\omega\omega \cap V\) is still unbounded in \(V^Q(H)\).

Bartszinski and Judah [3, Theorem 6.4.13] proved that any finite support iteration by forcing notions which preserved the unboundedness in \(\omega\omega\) does not add a dominating function. So, starting a ground model which satisfies CH, by choosing appropriate \(H\)'s, we can construct an \(\omega_2\)-stage finite support iteration \(P\) such that \(V^P\) satisfies \(b = \omega_1\) and \(f = \omega_2\).

In order to prove Lemma 3.3, we need a result of Brendle and Judah [4]. Let \(P\) be a forcing notion which satisfies the \(\omega_1\)-chain condition and \(\tau : P \rightarrow \omega\) be a homomorphism. Following Brendle and Judah [4], we say that \((P, \tau)\) is nice, if it
satisfies
\[
\begin{cases}
\text{For any preence set } \{p_i \mid i < \omega\} \subset P, \text{ it holds that } \\
\forall m < \omega \exists n < \omega \forall q \in P \left(\text{if } \tau(q) \leq m, \text{ then } \exists i < n \left(q \upharpoonright p_i \right) \right).
\end{cases}
\]

Theorem 3.4 (Brendle and Judah [4]) \((P, \tau) \) be a nice forcing notion. Then, every unbounded family of functions in \({}^\omega \omega \cap V \) is still unbounded in \(V^{Q(H)} \).

Proof of Lemma 3.3 It suffices to show that \((Q(H), \tau_H) \) is nice. So, let \(\{p_i \mid i < \omega\} \) be a preence subset of \(Q(H) \) and \(m < \omega \). To get a contradiction, assume that, for each \(n < \omega \), there exists a condition \(q_n \in Q(H) \) such that
\[
\tau_H(q_n) \leq m \quad \text{and} \quad \forall i < n \left(q_n \perp p_i \right).
\]
Since \(\{q_n \mid k \mid n < \omega\} \) is a finite set for every \(k < \omega \), we can choose \(X_k \in [\omega]^\omega \) by induction on \(k < \omega \) such that
\[
X_{k+1} \subseteq X_k \quad \text{and} \quad \forall n, n' \in X_k \left(q_n \upharpoonright (k+1) = q_{n'} \upharpoonright (k+1) \right).
\]
Define \(r \in Q(H) \) by
\[
r(k) = q_n(k), \ \text{for some/all } n \in X_k.
\]
Note that \(\tau_H(r) \leq m \). Since \(\{p_i \mid i < \omega\} \) is preence, there exists \(i < \omega \) such that \(r \) is compatible with \(p_i \). Let \(k = \tau_H(p_i) + m \). Take \(n \in X_k \) such that \(i < n \). Since \(i < n \), it holds that \(p_i \) and \(q_n \) are incompatible. Since \(\tau_H(p_i) + \tau_H(q_n) \leq k \), it holds that \(\exists j < k \left(|p_i(j) \cup q_n(j)| > j \right) \). By this and the fact that \(r \upharpoonright k = q_n \upharpoonright k \), \(r \) is incompatible with \(p_i \). This is a contradiction.

4 Consistency of \(f < \text{non}(\mathcal{P}D) \)

Concerning about the cardinal invariant associated by \(\text{In}_2 \), T. Bartoszynski [2] pointed out implicitly that, if two functions \(h_0, h_1 \in {}^\omega \omega \) satisfies that
\[
\lim_{n<\omega} h_i(n) = \infty, \ \text{for } i = 0, 1,
\]
then
\[
\min\{|F| \mid \text{not } \text{In}_2(F, h_0)\} = \min\{|F| \mid \text{not } \text{In}_2(F, h_1)\}.
\]
In this section, we shall show that, for any \(H \in {}^\omega \omega \), \(f \) may not be equal to
\[
\min\{|F| \mid \text{not } \text{wIn}_2(F, H)\}. \ \text{Using this, we shall prove the consistency of } f <
non(\mathcal{P}D). Henceforce, \(H \in \omega\omega\) is an arbitrary, but fixed function on \(\omega\). For each \(k < \omega\), let
\[
T_k (= T_k^H) = \{ q \in Q(H) \mid \tau_H(q) \leq k \}.
\]
Define \(H_0, H_1 : \omega \times \omega \to \omega\) by
\[
H_0(k, m) = \min \left\{ l < \omega \left| \forall \delta : l \to [\omega_2]^{\leq k} \exists S \in [l]^m \exists v \in [\omega_2]^{\leq k} \forall i, j \in S (\text{if } i \neq j, \text{then } \delta(i) \cap \delta(j) = v) \right. \right\},
\]
\[
H_1(k, m) = \min \left\{ l < \omega \left| \forall \delta : l \to T_k \exists S \in [l]^m \exists q \in Q(H) \quad \forall i \in S (q \leq \delta(i)) \right. \right\}.
\]
Note that \(H_0\) is a recursive function. And, \(H_1\) is an \(H\)-recursive function, since it holds that
\[
\exists q' \in Q(H) \forall q \in S (q' \leq q) \iff \forall i < mk (|\bigcup_{q \in S} q(i)| \leq i), \text{ for any } S \in [T_k]^m.
\]

Define \(H_2, H^* : \omega \to \omega\) by
\[
H_2(k) = H_1(k, H_1(k, H_1(\ldots, H_1(k, k + 1) \ldots)))
\]
k times
\[
H^*(k) = H_0(k, H_2(k)).
\]

Define an \(\omega_2\)-stage finite support iteration \(P_\alpha\) (for \(\alpha \leq \omega_2\)) associated with \(Q_\alpha\) (for \(\alpha < \omega_2\)) by
\[
\models_\alpha Q_\alpha = Q(H), \text{ for all } \alpha < \omega_2.
\]
Let \(P(H) = P_{\omega_2}\). It holds that
\[
V^{P(H)} \models \forall F \subset \prod_{n<\omega} H(n) \quad (\text{if } |F| \leq \omega_1, \text{then } \text{wIn}_2(F, H)).
\]

The purpose of this section is to show

\textbf{Theorem 4.1} \quad V^{P(H)} \models \text{not wIn}_2((\prod_{n<\omega} H^*(n))^V, H^*).

\textbf{Corollary 4.2} \quad \text{Suppose that } V \models \text{CH}. \text{ Let } H \in \omega\omega \text{ be the function which is defined in the proof of Theorem 2.3. Then, it holds that}
\[
V^{P(H)} \models f = \omega_1 \text{ and non}(\mathcal{P}D) = \omega_2.
\]
To show Theorem 4.1, we need some definitions and lemmas. Let

\[D = \{ p \in P(H) \mid \forall \alpha \in \text{supp}(p) \ (p \models \alpha \text{ decides } \tau_H(p(\alpha))) \}. \]

The following lemma can be proved easily.

Lemma 4.3 \(D \) is dense in \(P(H) \). \(\square \)

Define \(\rho : D \to \omega \) by

\[
\rho(p) = \min \left\{ k < \omega \mid \begin{array}{|c|}
|\text{supp}(p)| \leq k \\
\forall \alpha \in \text{supp}(p) \ (p \models \alpha \Rightarrow \tau_H(p(\alpha)) \leq k)
\end{array} \right\}.
\]

For each \(k < \omega \), let

\[D_k = \{ p \in D \mid \rho(p) \leq k \} \]

Lemma 4.4 Let \(k < \omega \) and \(\delta : H^*(k) \to D_k \). Then, there exist \(p^+ \in P(H) \) and \(P(H) \)-name \(\dot{S} \) which satisfy (1), (2).

(1) \(\models \dot{S} \subseteq H^*(k) \) and \(|\dot{S}| \geq k + 1 \).

(2) \(\forall i < H^*(k) \forall p' \leq p^+ \ (\text{if } p' \models i \in \dot{S}, \text{then } p' \leq \delta(i)) \).

Proof Let \(k < \omega \). Define \(l_m \) (for \(m \leq k \)) by

\[
\begin{align*}
l_0 &= k + 1 \\
l_{m+1} &= H_1(k, l_m)
\end{align*}
\]

Note that \(H^*(k) = H_0(k, l_k) \). Assume that \(\delta : H^*(k) \to D_k \). Since \(\langle \text{supp}(\delta(i)) \mid i < H^*(k) \rangle : H^*(k) \to [\omega_2]^k \), by the choice of \(H_0 \), there exist \(S_0 \in [H^*(k)]^k \) and \(v \in [\omega_2]^k \) such that

\[\forall i, j \in S_0 \ (\text{if } i \neq j, \text{then } \text{supp}(\delta(i)) \cap \text{supp}(\delta(j)) = v) \].

Define \(p \in P(H) \) by

\[\text{supp}(p) = \bigcup \{ \text{supp}(\delta(i)) \mid i \in S_0 \} \setminus v, \]

\[p(\alpha) = \delta(i)(\alpha), \text{if } \alpha \in \text{supp}(\delta(i)) \text{ and } i \in S_0. \]

Let \(n = |v| \) and \(v = \{ \alpha_1, \cdots, \alpha_n \} \subseteq \). Note that \(n \leq k \). By induction on \(1 \leq m \leq n \), choose \(P_{\alpha_m} \)-names \(\dot{S}_m, \dot{q}_m \) such that

(3) \(\models \alpha_m \dot{S}_m \in [\dot{S}_{m-1}]^{k-m} \) and \(\dot{q}_m \in \dot{Q}_{\alpha_m} \).

(4) \(p \models \alpha_m \cup (\dot{q}_j \mid 1 \leq j < m) \models \alpha_m \dot{q}_m \leq \delta(i)(\alpha_m), \text{for all } i \in \dot{S}_m. \)
We must show that these can be chosen. Assume that $m \leq n$ and \dot{S}_j, \dot{q}_j were chosen, for $j < m$. Since H_1 is absolute and $H_1(k, l_{k-m}) = l_{k-m+1}$, it holds that

$$p \models \alpha_m \cup \{ \dot{q}_j \mid 1 \leq j < m \} \models_{\alpha_m} \exists q \in Q(H) \exists S \in [\dot{S}_{m-1}]^{l_{k-m}} \forall i \in S (q \leq \delta(i)(\alpha_m))$$

Using this, it can be possible to choose \dot{S}_m and \dot{q}_m.

Let $p^+ = p \cup \{ \dot{q}_m \mid 1 \leq m \leq n \}$, $\dot{S} = \dot{S}_n$. It is clear that this p^+ and \dot{S} satisfy (1) in the lemma. In order to show that these satisfy (2), assume that

$$i < H^*(k) \text{ and } p' \leq p^+ \text{ and } p' \models i \in \dot{S}.$$

Since $\models_{P} \dot{S} = \dot{S}_n \subset \dot{S}_{n-1} \subset \cdots \subset S_0$, $i \in S_0$. For each $m = 1, \ldots, n$, since \dot{S}_m is a P_{α_m}-name, it holds that $p' \models_{\alpha_m} \dot{q}_m \leq \delta(i)(\alpha_m)$, for all $m = 1, \ldots, n$.

So, $p' \leq \delta(i)$.

\[\square \]

Lemma 4.5 Let $k < \omega$. Assume that a $P(H)$-name \dot{a} satisfies

$$\models \dot{a} \in [H^*(k)]^{<k}.$$

Then, there exists some $j < H^*(k)$ such that

$$\forall p \in D_k (\text{ not } p \models j \in \dot{a}).$$

Proof Suppose not. Take $\delta : H^*(k) \rightarrow D_k$ such that

$$\delta(j) \models j \in \dot{a}, \text{ for all } j < H^*(k).$$

By the previous lemma, there exist $p^+ \in P(H)$ and $P(H)$-name \dot{S} such that

$$\models \dot{S} \subset H^*(k) \text{ and } |\dot{S}| \geq k + 1,$$

$$\forall i < H^*(k) \forall p' \leq p^+ (\text{ if } p' \models i \in \dot{S}, \text{ then } p' \leq \delta(i)).$$

Then, it holds that $p^+ \models \dot{S} \subset \dot{a}$. This contradicts that $p^+ \models |\dot{S}| \geq k + 1$ and $|\dot{a}| \leq k$.

\[\square \]

Proof of Theorem 4.1 Assume that $\models_{P(H)} \dot{\varphi} \in \prod_{k<\omega} [H^*(k)]^k$. Using the previous lemma, for each $k < \omega$, take a $j_k < H^*(k)$ such that

$$\forall p \in D_k (\text{ not } p \models j_k \in \dot{\varphi}(k)).$$
We claim that $\models \exists^\infty k < \omega (j_k \not\in \dot{\varphi}(k))$. Suppose not. Then, there exist $p \in D$ and $n < \omega$ such that

$p \models \forall k > n (j_k \not\in \dot{\varphi}(k))$.

Take $k > n$ such that $p \in D_k$. Then, it holds that $p \models j_k \in \dot{\varphi}(k)$. But, this contradicts the choice of j_k.

\[\square \]

Added in proof:

After the completion of this paper, Dr. Kada [7] have proved that $d < \text{non}(\mathcal{P}D)$ is consistent with ZFC.

References

Department of Mathematics

University of Osaka Prefecture

Gakuen-chou, Sakai, Japan

email:kamo@center.osakafu-u.ac.jp