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Pseudo Dirichlet sets and a new cardinal invariant

Shizuo Kamo (Sakai) (%m0 X # +)

Abstract

7. Bukovska [5] proved tﬁhat p < non(PD), where PD denotes the set of all
pseudo-Dirichlet sets. In this paper, we shall show that p can be replaced by h
in this inequality. It is known that p < h is consisitent (see [1]). So, the equality
p = non(PD) can not be proved. This is a parﬁal answer of problem 2 in [6].
Next, we shall introduce a certain cardinal invariant f and show that add(NV) < f <
non(PD). Also, we shall construct two generic models such that one satisfies the

inequality b < f and another satisfies the inequality f < non(PD).

1 Introduction

Throughout this paper, we shall use the standard terminologies for forcing of set
theory and cardinal invariants on w (see [3]). For each a € R, we denote by ||la|| the
distance of ¢ and the set of integers Z. Let A be a subset of the unit interval [0, 1].

A is called a pseudo Dirichlet set, if there exists an X € [w]* such that

Ya € AV®ne X (||nal < ).

X Nnn|+1
We denote the set of all pseudo Dirichlet sets by PD. Z. Bukovskd [5] showed that
p < non(PD). Let h be the least cardinal x such that the boolean algebra P(w)/fin

does not satisfy the s-distributive law.
Theorem 1.1  h < non(PD).

Proof For each a € [0,1), let |ja]|* denote the unique real number 7 such that

0<r<1landa=r (mod Z). To show this theorem, let 4 C [0.1] and [A] < h.



For each a € A, take a maximal almost disjoint set W, C [w]“ such that

1
Vne XVme X\ n(||nall* - ||ma|*| < 7 ), for all X € W,.

Since |A] 7< h, there exists a maximal almost disjoint set W such tﬁat W is an
refinement of all W,’s. Take a Y € W. Choose some Y’ = {yili<wlceYW
such that

Y N [y, yiy1)| > ¢ and Yir1 = Yi < Yit2 = Yig1, for all ¢ < w.
Let Z = {yit+1 — yi | i <w}. We complete the proof by showing that

1

VCO
nEZ(Hna]]<———|Znn|+l

), for all a € A.

Let a € A. Since W is a refinement of W,, there exists an X € W, such that
Y C* X. Take an ¢ < w such that Y\ y; C X. Then, for any j € [1 + 1,w), it holds

that

1 < 1
XOyl+1 " j+1

(w541 = y5)all < Mllyjerall” ~ llyzall*| <

2 Combinatorial principle wln,

T. Bartoszynski [2] introduced the notion of slalom and, using this, investigated
systematically the relations between combinatorics and cardinal invariants which are
assoclated by the null ideal A" and the meager ideal M. The following statement

In; and the theorem are some of them.

Definition 2.1 For h € “w and F' C “w, define the statement Iny(F,h) by

Iny(Foh) =30 e [[WISMM Ve FY®n <w( f(n)€ gln)).

n<w

The statement Iny(F,id,,) is denoted by Iny(F'), where id,, is the identity function

on w.
Theorem 2.1 (Bartoszynski [2]) add(N) = min{|F|| F C “w and not Iny(F) .

In this section, we shall introduce the statement wln, which is some variant of

In,. And we shall study relations between win, and non(PD).



Definition 2.2 ForH,he“wand F C H H(n), define the statement winy(F. h, H)

n<w
by

wing(F,h, H) = 3p € [[[Hm)SMM Ve FY n <w( f(n) € ¢(n)).

n<w

winy(F, H) denotes the statement winy(F,id,,, H). Let

f=min{|F||3H e“w(FC HH(n) and not wina(F,H) ) }.

n<w
The following lemma can be easily proved by the result of Bartorszynsk‘i.
Lemma 2.2  add(N) = min{b, f}. | ]
The main result of this section is the follﬂwing theorem.
Theorem 2.3 f < non(PD).

To show this theorem, we need some notations and lemmas.

A sequence (I, | n < w) is called an interval partition of w, if there exists an
increasing function f € “w such that f(0) = 0 and, for all n < w, I, = {k < w |
f(n)<k< f(n+1)}

The next lemma can be deduced from [6, Proposition 1]. But, for a convenience for

the reader, we give a proof.

Lemma 2.4 Letn <w and 0 < m, k < w. Then, there exists some p < w such

that

1
vao’...7am_16{0,1]33<w(n§s<pand‘v‘i<m(H‘.sa.,-||<k—)).

Proof By inductionon 1 <m <w.

Casel. m=1.

We claim thta p = nk + 1 satisfies the condition. To show this, let a € [0,1].

Define the mapping o: X = {nj|j =1, --, k} — k by, for each j < k,
r. " l
o(nj) = ¢ the unique ¢ such that é < ||ngjall* < H]; "

If there exists some nj such that o(nj) =0or k — 1, then s =njis a required one.



Otherwise, there exist 1 < j < k such that o(ni) = o(nj) and s = n(j — i) is a
required one.
Case 2. m=m'+1.

By induction hypothesis, there exist 0 = pg < p; < -+ < pg such that

Vao, -, am_1 €[0,1]Is<w (pj+n<s<pjprand Vi< m'( l|sai]] < oY ) ),
for j < k.
We show that p = p; satisfies the condition. So, let ag, -+, a,, € [0,1]. By the

choise of p; (for j < k), there exist sg, -+-,85-1 < w such that

) 1 .
pj+n < sp <pjprand Vi <m' ( lsjaill < o)), for j < k.

-Then, it holds that
1

Isjam:|| < =, for some j < k

k
or
1 .
[[sjam: — sjram/]| < o for some 7 < 7' < k.

In either cases, similar to case 1, we can take a required element s. a

Corollary 2.5  There is an interval partition (I, | n < w) which satisfies

) For any n < w and ag, -+, an—1 €[0,1), there exists some k € I, such that
|kai|| < 277, for all i < n.

a
Proof of Thorem 2.3 Take an interval partition (I, | n < w) which satisfies

(*) in the previous corollary. Define H € “w by

H(n)=2" Z [Zx], for all n < w.
k<n

To show the theorem, let A C [0,1] and |4] < f. Foreach a € A, define f, € H H(n)

n<w

by

Jfa(n) a fa(n) +1
H(n)S < H(n)

,forall n < w.

Since |A| < f, there exists a ¢ € H [H(n)]" such that

ndw



Yae AV n<w( fun)€ p(n)).

For each n < w, take s, € I, such that

I

H(n)“ < 27" for all j € (n).

B

We complete the proof by showing that
Va e AV®n <w(|snal <277,
So, let a € A. Take an m < w such that

Vn>m( fun) € o(n)).

. fa(n) fa(n) +1 .
, for > EAANIARS ELANAYAR S
Then, for any n > m, since Hn) = a < ) it holds that
fa(n) fa(n) +1

X < . 8y

" Hm) =T H )
So,

fa(n) Sn —nt1
: < : : . a
HsnaH — “'SnH(n)H + H(n) < 2

Note that what we really proved is min{|F| | not winy(F, H)} < non(PD),

where H is a function defined in the proof of Theorem 2.3.

3 The cardinal invariant f

In the previous section, we introduced the cardinal invariant f and showed the
equality add(AV) = min{b, f}. Both of add(\') and b appear in the Cihoii’s dia-
gram. It seems to be an interesting problem to check the relations between f and
other cardinals in the diagram. Since it is known that PD C .V N M, it holds that
f < min{ non(A\'), non(M) }. So, f seems to be not so large. If the inequality f < b
always holds, then f is equal to add(N') and f does not become a new cardinal
invariant. In this section, we shall show that there exists a generic model which

satisfies the inequality b < f.

Definition 3.1 For each H € “w, define the forcing notion Q(H ) by

QUH)={pe JJHM" 3k <w¥n<w(|p(r)] <k)}

n<w



q<p iff Va<w(p(n)Cq(n)).
Define Ty : Q(H) — w by

TH(p) = min{k <w|V¥n <w ([p(n)| <k)}.

Using the density argument, the following lemma can be proved easily.

Lemma 3.1  Let H € “w and G be V-genericon Q(H). InV[G], define ¢ € H P(H(n))

by
¢(n) = J{p(n) | peg}.
Then, it holds that
(1) le(m)] < n, for all n < w,
(2) Yoe(J] Hm) v=n<w(gm) @) 0

n<w
Lemma 3.2  Q(H) satisfies the wy-chain condition.

Proof Let W C Q(H) and |W| = w;. Replace W by a certain subset of W, if
necessary, we can assume that, for some k < w,
tH(p) = k and pl2k = p'12k, for all p, p' € W.

Then, every elements of W are mutually compatible. a

Lemma 3.3  Fvery unbounded family of functions in “w NV is still unbounded

in VU,

Bartszinski and Judah [3, Theorem 6.4.13] proved that any finite support iter-
ation by forcing notions which preserved the unboundedness in “w does not add a
dominating function. So, starting a ground model which satisfies CH, by choosing
appropreate H's, we can construct an ws-stage ﬁnite support iteration P such that
VF satisfies b = w; and f = w,.

In order to prove Lemma 3.3, we need a result of Brendle and Judah [4]. Let
P be a forcing notion which satisfies the w;-chain condition and 7 : P — w be a

homomorphism. Following Brendle and Judah [4], we say that (P,7) is nice, if it



satisfies

For any predence set {p; | ? <w } C P, it holds that
Vm<win<wVgeP(ifr(q) <m,thenIe<n(qgTp))

Theorem 3.4 (Brendle and Judah [4]) Let (P,7) be a nice forcing notion. Then,

every unbounded family of functions in “w NV is still unbounded in V9H), a

Proof of Lemma 3.3 It suffices to show that (Q(H),7g) is nice. So, let {p; |
i < w} be a predence subset of Q(H) and m < w. To get a contradictiqn, assume
that, for each n < w, there exists a condition ¢, € Q(H) such that

TH(gn) <mand Vi< n (g, Lpi).
Since { ¢ 1k [ n < w} is a finite set for every & < w, we can choose X € [w]* by
induction on k£ < w such that

Xi41 C Xgand Vo, n' € X (gul(k+ 1) =gul(k+1)).
Define r € Q(H) by

r(k) = gn(k), for some/all n € X.
Note that 7g(r) < m. Since {pi | i <w} is predence, there exists : < w such that
7 is compatible with p;. Let & = 7(p;) + m. Take n € X such that i < n. Since
i < n, it holds that p; and ¢, are incompatible. Since 7gy(p;) + Ta(¢n) < k, it holds
that 35 < & ( [pi(J) Ugn(j)| > 7 ). By this and the fact that vtk = galk, r is

incompatible with p;. This is a contradiction. v a

4 Consistency of f < non(PD)

Concerning about the cardinal invariant associated by In,, T. Bartoszynski [2]
pointed out implicitly that, if two functions ho, hy € “w satisfies that

Tllién hi(n) = oo, for i = 0,1,

then min{ |F|| not Iny(F,ho)} = min{ |F|| not Iny(F, hy)}.
In this section, we shall show that, for any H € “w, f may not be equal to

min{ |F| | not winy(F,H)}. Using this, we shall prove the consistency of f <



non(PD). Henceforce, H € “w is an arbitrary, but fixed function on w. For each

k< w,let
Te (=TF)={q€ QH) | tu(q) < k}.

Define Hy, Hy :w X w — w by

T s 15k o m3 . 15,15k
Ho(k,m)=min{l<w Vil —[wa]>" 35 € [1]"3v € wy] }

Vi,je€ S (ifi#j, then 6(i)nNé(j)=v)

VieS(g<8())

H1(k.m)=min{l<w Vé:l—Te3Se[l|"3qe Q(H) }

Note that Hp is a recursive function. And, H; is an H-recursive function, since

it holds that

3¢ e QUH)VYqe S (¢ <q) |iff Vi<mk(|Uq(i)[§i),f01'a.ny

q€S
S e [Tk]m.
Define Hy, H* : w — w by

HZ(k) = Hl(k;Hl(kv—Hl( o '1H1(k7k + 1) o )))7

k times

H*(k) = Ho(k, Hy(k)).

Define an wj-stage finite support iteration P, (for @ < wy) associated with
Qo (for o < wy) by
Fo Qo = Q(H) , forall a < wy.

Let P(H) = P,,. It holds that

VEE = vF ¢ T H(n) (if |F| < w1, then wing(F, H) ).

n<w

The purpose of this section is to show

Theorem 4.1 VP = pnot winy(( H H*(n))Y, H").

n<w

Corollary 4.2 Suppose that V' |= CH. Let H € ww be the function which is

defined in the proof of Theorem 2.3. Then, it holds that

VPH) = f = w; and non(PD) = w;. =



To show Theorem 4.1, we need some definitions and lemmas. Let

D={pe P(H) |Vd € supp(p) ( pra decides r(p(a)) ) ).
The following lemma can be proved easily.
Lemma 4.3 D is dense in P(H). ]
Define p: D — w by
|supp(p)| < k
p(p) =min ¢ £k <w| and ,
Ya € supp(p) ( plalari(p(a)) < k)
For each & k < w, let
Dy={peDlp(p)<k}.
Lemma 4.4  Letk <wandé: H*(k) = Dy. Tﬁen, there exist p* € P(H) and
P(H)-name S which satisfy (1), (2).
(1) S c H*(k)and|S|>k+1.

(2) Vi< H*k)Vp <pT (ifp' i€ S, thenp <6(i)).

Proof Let k < w. Define [, (for m < k) by

lh = k+1
lm+1 Hl(kvlm) ’

Note that H*(k) = Ho(k,ly). Assume that § : H*(k) — Dj. Since (supp(6(¢)) |

Il

i < H*(k)) : H*(k) — [wy]S*, by the choise of Ho, there exist So € [H*(k)]'* and
v € [wq]S¥ such that

Vi, j € So (if i # 7, then supp(6(¢)) Nsupp(é(s)) = v ).
Define p € P(H) by

supp(p) = U{supp(6(:)) | i € So} \ v,

p(a) = 6(i)(a), if @ € supp(6(z)) and ¢ € Sp.
Let n = |v| and v = { @, -+, }<. Note that n < k. By induction on 1 <m < n,
choose P, -names Sms Gm such that
(3) o Sm € [Smo1]*=m and Gm € Qan,

(4) plamU(g|1<ji<m)iFa,im <6(i)(am), foral ic Som.



We must show that these can be chosen. Assume that m < n and 5]', q; were
chosen, for j < m. Since H; is abusolute and Hy(k,{t_n) = lk_my1, it holds that
PlomU{g |1 <j<m)ire,3qg€ QH)IS € [Smor]*mVie 5 (q<
6(i)(am) )
Using this, it can be possible to choose S, and G-
Let p¥ = pU{(Gn |1 <m<n), §S=35,. Itisclear that this pt and S satisfy
(1) in the lemma. In order to show that these satisfy (2), assume that
i< H*(k)and p' < pt and p'IFi€ S.
Since Il—pS' = Sn C Sn_l C -+ C So,t€ Sg. For each m = 1,---,n, since Sm is a
P,,,-name, it holds that p'fau, kg, t € S.. By this, since p’ < p*, we have that
Plam o, Gm < 68(1)(ay) ,forall m=1,---,n.

So, p’ < 6(1). O

Lemma 4.5 Let k < w. Assume that a P(H)-name a satisfies
ae [H*(k)<k.
Then, there exists some j < H*(k) such that

Vpe Dy(notprjea).

Proof Suppose not. Take 6 : H*(k) — D; such that
6(7)F7 € a, for all 7 < H*(k).

By the previous lemma, there exist p* € P(H) and P(H)-name S such that
=S C H*(k) and |S| > k + 1,
Vi< H*(k)¥p' < pt (if p'lrie S, then p' < 6(i) ).

Then, it holds that p* I~ S C a. This contradicts that ptI-|S| > k + 1 and |a| < k.

a

Proof of Theorem 4.1  Assume that l-p(gy ¢ € H [H*(k)]*. Using the previous
k<w

lemma, for each k < w, take a ji < H*(k) such that

Vp € Di ( not pi-j, € o(k)).

10



We claim that IF 3%k < w ( jx € @(k) ). Suppose not. Then, there exist p € D
and n < w such that
pIVE> n (k€ 9k)).
Take & > n such that p € Dg. Then, it holds that plFjix € (k). But, this

contradicts the choise of jg. a

Added in proof:
After the completion of this paper, Dr. Kada [7] have proved that d < non(PD)

is consistent with ZFC.
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