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A rarefied gas between two coaxial circular cylinders made of the condensed phase of the gas is considered, where each
cylinder is kept at a uniform temperature and is rotating at a constant angular velocity around its axis (cylindrical
Couette flows of a rarefied gas with evaporation or condensation on the cylinders). The steady behavior of the gas,
with special interest in bifurcation of a flow, is studied on the basis of kinetic theory from the continuum to the
Knudsen limit. The solution shows profound variety: reversal of direction of evaporation-condensation with variation
of the speed of rotation of the cylinders; contrary to the conventional cylindrical Couette flow without evaporation
and condensation, bifurcation of a flow in a simple case where the state of the gas is circumferentially and axially
uniform.

1 Introduction
Bifurcation of flows attracts many scientists and engi-
neers, and a lot of works have been done in the frame-
work of classical gas dynamics, especially in relation to
turbulence.1-9 B\’enard and $r_{\mathrm{R}\mathrm{y}\mathrm{l}\mathrm{o}\mathrm{r}}$-Couette flows are its
most well-known examples. The study of these flows for
a rarefied gas is also being done in recent years. $10^{-}14$

In this paper we will present a new example of bifur-
cation of a simple flow, which is found in a rarefied gas
as well as in a gas in the continuum limit. That is, we
consider a gas between two coaxial circular cylinders
made of the condensed phase of the gas, on the surface
of which evaporation or condensation thus may take
place. Each cylinder is kept at a uniform temperature
and is rotating at a constant angular velocity around
its axis. We investigate the behavior of the gas (cylin-
drical Couette flows of a rarefied gas with evaporation
or condensation on the cylinders) under the condition
that the state of the gas is axially and circumferen-
$\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{U}\mathrm{y}$ uniform on the basis of kinetic theory from the
continuum to the Knudsen limit. The centrifugal force
induced in the gas by rotation of the cylinders affects
evaporation and condensation on the cylinders, and this
introduces profound variety of the behavior of the gas.
In the following analysis, we find reversal of direction of
$\mathrm{e}\mathrm{v}\mathrm{a}\mathrm{p}_{0}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$-condensation with variation of the sPeed of
rotation of the cylinders and bifurcation of a flow in the
simple case where the state of the gas is circumferen-
tially and axially uniform, contrary to the conventional
cylindrical Couette flow without evaporation and con-
densation.

2 Problem and basic equation
Consider a rarefied gas between two coaxial circular
cylinders made of the condensed phase of the gas, where
each cylinder is kept at a uniform temperature and is
rotating at a constant angular velocity around its axis.
Let the radius, temperature, and circumferential veloc-
ity of the surface of the inner cylinder be $L_{1},$ $T_{1}$ , and

$V_{\theta 1}$ , respectively; let the corresponding quantities of the
outer cylinder be $L_{2},$ $T_{2}$ , and $V_{\theta 2}$ . The saturation gas
pressure at temperature $T$ (or $T_{1},$ $T_{2}$ ) is denoted by $p_{s}$

(or $p_{s1},$ $p_{2}\epsilon$ ). The Knudsen number Kn of the system is
defined by $l_{1}/L_{1}$ , where $l_{1}$ is the mean free path of the
gas molecules in the equilibrium state at rest with pres-
sure Ps 1 and temperature $T_{1}$ . We will investigate the
steady behavior of the gas under the following assump-
tions: i) The behavior of the gas is described by the
Boltzmann-Krook-Welander equation (BKW or BGK
$\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n})^{1}.5-18$ Notes on the generalization of the re-
sult for the standard Boltzmann equation will be given
in several places. ii) The velocity distribution of the
gas molecules leaving the inner (or outer) cylinder is
the corresponding part of the Maxwellian distribution
with pressure $p_{s1}$ (or $p_{s2}$ ), circumferential velocity $V_{\theta 1}$

(or $V_{\theta 2}$ ), and temperature $T_{1}$ (or $T_{2}$ ). (This is called
the complete condensation condition on the interface
of a gas and its condensed phase.18-20) iii) The behav-
ior of the gas is axially and circumferentially uniform.
Then the axial velocity vanishes.

The Boltzmann-Krook-Welander equation for a steady
flow with axial and circumferential uniformity is given
in the cylindrical coordinate system $(r, \theta, z)$ , with the
axis of the cylinder as the $z$ axis (Fig. 1), as follows:

$\xi_{r}\frac{\partial f}{\partial r}+\frac{\xi_{\theta}^{2}}{r}\frac{\partial f}{\partial\xi_{r}}-\frac{\xi_{r}\xi_{\theta}}{r}\frac{\partial f}{\partial\xi_{\theta}}=A_{Col}\rho(fe-f)$, (1)

$f_{\mathrm{e}}= \frac{\rho}{(2\pi RT)^{3/2}}\exp(-\frac{(\xi_{r}-u_{r})^{2}+(\xi_{\theta}-u_{\theta})2\xi_{z}+2}{2RT})(2)$ ’

$\rho$ $=$ $\int\int\int fd\xi_{r}d\xi_{\theta}d\xi_{z}$ , (3a)

$\rho u_{r}$ $=$ $\int\int\int\xi_{r}fd\xi_{r}d\xi_{\theta}d\xi_{z}$ , (3b)

$\rho u_{\theta}$ $=$ $\int\int\int\xi_{\theta}fd\xi rd\xi_{\theta}d\xi_{z}$ , (3c)
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$3R\rho T$ $=$ $\int\int\int[(\xi_{r}-ur)^{2}+(\xi\theta-u_{\theta})2\xi^{2}+z]f$

$d\xi_{r}d\xi_{\theta}d.\xi z$ ’ (3d)
$p$ $=$ $R\rho T$, (3e)

where $\xi_{r},$ $\xi_{\theta}$ , and $\xi_{z}$ are, respectively, the radial $(r)$ , az-
imuthal $(\theta)$ , and axial $(z)$ components of the molecular
velocity; $f$ is the velocity distribution function of the
gas molecules, which is a function of $r,$ $\xi_{r},$ $\xi_{\theta}$ , and $\xi_{z}$ ;
$\rho$ is the density of the gas; $u_{r}$ and $u_{\theta}$ are, respectively,
the radial and circumferential components of the flow
velocity, which are its nonvanishing components; $T$ is
the temperature of the gas; $p$ is the pressure of the gas;
$A_{co\mathrm{t}}$ is a constant; $R$ is the specific gas constant (or
the Boltzmann constant divided by the mass of a gas
molecule). The integrations in Eqs. $(3\mathrm{a})-(3\mathrm{d})$ , and in
what follows unless otherwise stated, are carried out
over the range $(-\infty<\xi_{r}<\infty,$ $-\infty<\xi_{\theta}<\infty,$ $-\infty<$

$\xi_{z}<\infty)$ . The $A_{\mathrm{c}\circ l\beta}$ is the collision frequency of a gas
molecule, which is independent of molecular velocity
for the BKW equation.

The complete condensation boundary conditions on
the cylinders are given as follows: on the inner cylinder
$(r=L_{1})$ ,

$f= \frac{\beta s1}{(2\pi R\tau_{1})^{3/}2}.\exp(-\frac{\xi_{f}^{2}+(\xi\theta-V_{\theta 1})^{2}+\xi_{z}^{2}}{2RT_{1}})$

$(\xi_{r}>0)$ , (4)

where
$\rho_{s1}=p_{s1}/RT_{1}$ , (5)

and on the outer cylinder $(r=L_{2})$ ,

$f= \frac{\rho_{s2}}{(2\pi RT_{2})^{3/}2}\exp(-\frac{\xi_{f}2+(\xi\theta-V_{\theta 2})^{2}+\xi z2}{2RT_{2}})$

$(\xi_{r}<0)$ , (6)

where
$\rho_{s2}=_{Ps2}/RT_{2}$ . (7)

For the convenience of analysis, we introduce the fol-
lowing nondimensional variables (Fig. 1) and marginal
velocity distribution functions:

$r=L_{1^{\wedge}}r$, (8a)

$\xi_{r}=(2R\tau_{1})^{1}/2\zeta\cos\theta\zeta$ ,

$\xi_{\theta}=(2R\tau_{1})^{1}/2\zeta\sin\theta_{\zeta}$ , (8b)

$\xi_{z}=(2RT1)^{1/2}\zeta z$
’

$\rho=\rho_{s1\rho}\wedge$, $u_{r}=(2R\tau_{1})^{1/}2u_{r_{)}}\wedge$

(8c)
$u_{\theta}=(2RT_{1})1/2\wedge u_{\theta}$ , $p=ps1p\wedge$, $T=T_{1}\hat{T}$ ,

$= \frac{2RT_{1}}{\rho_{s1}}\int_{-\infty}^{\infty}fd\xi_{z}$ . (8d)

With these new variables, the BKW equation (1) is
reduced to

$D= \frac{2}{\sqrt{\pi}\mathrm{R}}\rho\wedge(-)$ , (9)

Fig. 1. Coordinate systems.

where
$D= \zeta\cos\theta_{\zeta}\frac{\partial}{\partial r\wedge}-\frac{\zeta\sin\theta_{\zeta}}{r\wedge}\frac{\partial}{\partial\theta_{\zeta}}$ , (10a)

$\ =\frac{l_{1}}{L_{1}}$ , $l_{1}= \frac{(8R\tau_{1}/\pi)1/2}{A_{c\circ\iota}\rho S1}$ , (10b)

$= \frac{\rho\wedge}{\pi}$

xexp $(- \frac{\zeta^{2}+u_{r}^{2}+u\theta\wedge\wedge 2-2ur\zeta\wedge\theta\zeta-2u\theta\zeta\cos \mathrm{s}\mathrm{i}\wedge \mathrm{n}\theta_{\zeta}}{\hat{T}}).(10\mathrm{c})$

The $l_{1}$ is the mean fiiee path of the gas molecules in the
equilibrium state at rest with pressure Ps1 and temper-
ature $T_{1_{)}}$ and Kn is the Knudsen number at the state.
By the introduction of the marginal velocity distribu-
tions $g$ and $h$ , the variable $\zeta_{z}$ is eliminated, and in the
new independent variables $(r\wedge, \zeta, \theta_{\zeta})$ , the equations for
$g$ and $h$ contain only the derivatives with respect to $r\wedge$

and $\theta_{\zeta}$ .
The macroscopic variables $\rho\wedge,$ $u_{r}\wedge,$ $u_{\theta}\wedge$ , and $\hat{T}$ are ex-

pressed by $g$ and $h$ as

$\rho\wedge=$ $\int\int\zeta gd\zeta d\theta_{\zeta}$ , (lla)

$u_{r}\wedge$ $=$ $\frac{1}{\rho\wedge}\int\int\zeta^{2}\cos\theta\zeta gd\zeta d\theta\zeta$ , (llb)

$u_{\theta}\wedge$ $=$ $\frac{1}{\rho\wedge}\int\int\zeta^{2}\sin\theta_{\zeta}gd\zeta d\theta_{\zeta}$ , (11C)

$\frac{3}{2}\hat{T}=$ $\frac{1}{\rho\wedge}\int\int\zeta(\zeta^{2}g+h)d\zeta d\theta\zeta-u-u_{\theta}^{2}.(\wedge 11\mathrm{d}\wedge r2)$

The two-fold integrations with respect to $\zeta$ and $\theta_{\zeta}$

in Eqs. $(1\mathrm{l}\mathrm{a})-(1\mathrm{l}\mathrm{d})$ , and in what follows unless other-
wise stated, are carried out over the domain $(0\leq\zeta<$

$\infty,$ $-\pi<\theta_{\zeta}\leq\pi)$ .
The boundary conditions are, at $r\wedge=1$ , .
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$= \frac{1}{\pi}\exp(-\zeta^{2}-\frac{V_{\theta 1}^{2}}{2RT_{1}}+\frac{2V_{\theta 1}\zeta\sin\theta_{\zeta}}{(2R\tau_{1})^{1/2}})$

$(|\theta_{\zeta}|<\pi/2),$ : (12)

and at $\wedge r=L_{2}/L_{1}$ ,

$= \frac{1}{\pi}\frac{p_{s2}T_{1}}{p_{s1}T_{2}}$

$\cross\exp(-\frac{T_{1}}{T_{2}}(\zeta^{2}+\frac{V_{\theta 2}^{2}}{2RT_{1}}-\frac{2V_{\theta 2}\zeta\sin\theta_{\zeta}}{(2R\tau_{1})^{1/2}}))$

$(\pi/2<|\theta_{\zeta}|\leq\pi)$ . (13)

The problem is determined by the six parameters
Kn, $L_{2}/L_{1_{)}}V_{\theta 1}/(2R\tau_{1})^{1}/2,$ $V_{\theta 2}/(2R\tau_{1})^{1/2}$ , Ps $2/p_{s1}$ , and
$T_{2}/T_{1}$ . We will analyze this boundary-value problem
mainly numerically for various sets of values of these
parameters. The saturation gas pressure $p_{s}$ is generally
a rapidly increasing function of temperature $T$ . For
many gases, $p_{s2}/p_{s1}=1.2$ , for example, corresponds to
$1<T_{2}/T_{1}<1.02$ ; thus, it is sufficient to take $T_{2}/T_{1}=$

$1$ in illustrative examples.

3 Outline of method of numerical solution
The numerical analysis of the boundary-value prob-
lem (9), (12), and (13) will be carried out by a finite-
difference method. We studied a cylindrical problem in
Refs. 21 and 22, where steady evaporation of a rarefied
gas from a stationary cylindrical condensed phase into
an infinite expanse of the gas with various pressures or
into a vacuum was considered. We can make use of the
finite-difference method developed in Ref. 21. Thus, we
only outline the method here.

(i) We consider the problem in a finite domain $(1\leq$

$\wedge r\leq L_{2}/L_{1}$ , $0\leq\zeta\leq\zeta_{D}$ , $-\pi\leq\theta_{\zeta}\leq\pi)$ in $(r\wedge,$ $\zeta$ ,
$\theta_{(})$ space, where $\zeta_{D}$ is chosen properly depending on
the situations. IYom our numerical tests, $g$ and $h$ are
seen to decay rapidly with $\zeta$ , and therefore accurate
computation of the problem can be carried out with
reasonable size of $\zeta_{D}$ . The discrete solution $(\mathit{9}\#, h_{\#})$

of $(g, h)$ at the lattice points in $(\hat{r}, \zeta, \theta_{\zeta})$ space is con-
structed as the limit of the sequence $(g_{\#}^{(n)}, h_{\#}^{(n)})$ ob-
tained as follows. The initial solution $(g_{\#’\#}^{(0)}h^{(0}))$ of the

$\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}(g_{\#’\#}^{(n})\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}h^{(}n\mathrm{P})\mathrm{b}\mathrm{e}\mathrm{k}\mathrm{n}\mathrm{o}\mathrm{w}\mathrm{n}.\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{S}\mathrm{s}\mathrm{i}_{\mathrm{S}\mathrm{c}}\mathrm{h}\mathrm{o}\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{p}_{\mathrm{O}}\mathrm{r}_{1\mathrm{i}}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}1\mathrm{y}.\mathrm{L}\mathrm{e}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{S}\mathrm{o}1\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(g\#’ h^{()}(n+1)\#\mathcal{R}+1)\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{n}$

$(-\pi\leq\theta_{\zeta}<-\pi/2)$ and $(\pi/2<\theta_{\zeta}\leq\pi)$ is computed
successively from $\wedge r=L_{2}/L_{1}$ to $\wedge r=1$ (the solution in
domains $\mathrm{I}_{1}$ and I2 in Fig. 2) and then $(g_{\#}^{(n+1)}, h(n+1))\#$

in $(-\pi/2<\theta_{\zeta}<\pi/2)$ from $\wedge r=1$ to $r\wedge=L_{2}/L_{1}$ (the
solution in domains $\mathrm{I}\mathrm{I}_{1}$ and II2 in Fig. 2) with the aid
of a finite-difference equation for Eq. (9). In the com-
putation of $(g_{\#}^{(n+1)}, h_{*}^{(n+)})1$ in the domain $\mathrm{I}_{1}$ (or I2),
the computation along the line $\theta_{\zeta}=\pi$ (or $\theta_{\zeta}=-\pi$),
which can be done independently of the surrounding
data because of $\sin\theta_{\zeta}=0$ , is done first, and then the
computation in $\mathrm{I}_{1}$ (or I2) is done with the aid of the
data on $r\wedge=L_{2}/L_{1}$ and $\theta_{\zeta}=\pi$ (or $\wedge r=L_{2}/L_{1}$ and
$\theta_{\zeta}=-\pi)$ . The computation of $(g_{\#}^{(1}n+),$ $h_{\#}^{(n+1)})$ in the
domain $\mathrm{I}\mathrm{I}_{1}$ (or $\mathrm{I}\mathrm{I}_{2}$ ) is done with the aid of the data on
$\wedge r=1$ and $\theta_{\zeta}=\pi/2$ (or $r\wedge=1$ and $\theta_{\zeta}=-\pi/2$ ). The

Fig. 2. Diagram of the process of computation.

data on $\theta_{\zeta}=0$ , which is the common boundary of $\mathrm{I}\mathrm{I}_{1}$

and $\mathrm{I}\mathrm{I}_{2}$ , are computed independently of the surround-
ing data because of $\sin\theta_{\zeta}=0$ .

(ii) On the surface of the cylinders ($r\wedge=1$ and $L_{2}/L_{1}$ ),
the marginal velocity distribution functions $g$ and $h$ are
discontinuous at $\theta_{\zeta}=\pm\pi/2$ (or $\xi_{r}=0$), because the
nature of the velocity distribution function of the in-
coming molecules and that of the outgoing molecules
are different. The discontinuity propagates into the gas
along the characteristic of Eq. (9) ffom the inner cylin-
der, but not from the outer cylinder, since the charac-
teristic does not enter the gas $\mathrm{h}\mathrm{o}\mathrm{m}$ there.23 Therefore,
the discontinuity of $(g, h)$ lies on the surface

$\wedge r\sin\theta_{\zeta}=1$ $(-\pi/2\leq\theta_{\zeta}\leq\pi/2)$ . (14)

The position of the discontinuity is independent of the
molecular speed $\zeta$ . As the distance $\wedge r$ increases, the
discontinuity decays owing to molecular collisions. For
small Knudsen numbers, the discontinuity from the in-
ner cylinder is practically negligible on the outer cylin-
$\mathrm{d}\mathrm{e}\mathrm{r}_{\rangle}$ but for intermediate or large Knudsen numbers, it
remains appreciable there.

When we discretize Eq. (9), which has the derivatives
$\partial/\partial r\wedge$ and $\partial/\partial\theta_{\zeta}$ , we should not apply finite-difference
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formulas for differentiation that contain the data across
the discontinuity. Therefore, we divide the domain $\mathrm{I}\mathrm{I}_{1}$

(or $\mathrm{I}\mathrm{I}_{2}$ ) into two regions $\mathrm{I}\mathrm{I}_{1a}$ and $\mathrm{I}\mathrm{I}_{1b}$ (or , $\mathrm{I}\mathrm{I}_{2a}$ and $\mathrm{I}\mathrm{I}_{2b}$ )
(Fig. 2) by discontinuity surface (14) and apply stan-
dard finite-difference approximations in each region. In
this scheme, the limiting values of $(g_{\#}^{(n)}, h_{\#}^{(n)})$ on the
discontinuity surface from both sides are required as
the boundary condition. They are obtained separately
by integration of Eq. (9) along the characteristic (14).
In the region where the discontinuity has decayed suffi-
ciently, we use a standard finite-difference scheme with-
out dividing the domain for efficiency.

4 Free molecular and continuum solutions
In this section we explain the general behavior of the
solutions of two extreme cases: the free molecular so-
lution and the continuum solution.
4.1 Free molecular solution
The free molecular solution is easily obtained by the
standard $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}^{18}’ 19$ as follows:

$f= \frac{\rho_{s1}}{(2\pi RT_{1})^{3/2}}\exp(\frac{V_{\theta 1}^{2}}{2RT_{1}}[(\frac{r}{L_{1}})^{2}-1])$

$\mathrm{x}\exp(-\frac{\xi_{r}^{2}+(\xi_{\theta}-V\theta 1r/L1)2+\xi_{z}^{2}}{2RT_{1}}.)$ , $[\xi_{r}>0$

and $-L_{1}/r<\xi_{\theta}/(\xi_{r}^{2}+\xi_{\theta}^{2})^{1/2}<L_{1}/r],$ $(15\mathrm{a})$

$= \frac{\rho_{s2}}{(2\pi RT_{2})^{3/2}}\exp(-\frac{V_{\theta 2}^{2}}{2RT_{2}}[1-(\frac{r}{L_{2}})^{2}])$

$\cross\exp(-\frac{\xi_{r}^{2}+(\xi_{\theta}-V\theta 2r/L_{2})^{2}+\xi_{z}^{2}}{2RT_{2}})$ ,

[for the other values of $\xi_{r}$ and $\xi_{\theta}$ ]. (15b)

The contributions of the two cylinders are independent.
The macroscopic variables, which are obtained by mo-
ments of the distribution function, are expressed by the
sum of two contributions.

The mass flow $J$ and the energy flow $W$ from the
inner cylinder to the outer per unit time and unit length
of the cylinders are

$J$ $=$ $2\pi L_{1}(m_{I}-m_{\circ)}$ ,

$m_{I}$ $=$ $\frac{p_{s1}}{(2\pi R\tau_{1})^{1/2}}$ , (16)

$m_{O}$ $=$ $\frac{p_{s2}}{(2\pi R\tau_{2})^{1/2}}\exp(-\frac{V_{\theta 2}^{2}}{2RT_{2}}[1-(\frac{L_{1}}{L_{2}})^{2}])$ ,

and

$W$ $=$ $2\pi L_{1}(_{W_{I}}-wo)$ ,

$w_{I}$ $=$ $p_{s1}( \frac{RT_{1}}{2\pi})^{1/2}(2+\frac{V_{\theta 1}^{2}}{2RT_{1}})$ ,

$w_{O}$ $=$ Ps2 ( $\frac{RT_{2}}{2\pi})^{1/2}[2+\frac{V_{\theta 2}^{2}}{2RT_{2}}(\frac{L_{1}}{L_{2}})^{2}]$

(17)

$\cross\exp(-\frac{V_{\theta 2}^{2}}{2RT_{2}}[1-(\frac{L_{1}}{L_{2}})^{2}])$ ,

where $m_{I}$ and $w_{I}$ are the contributions of the inner
cylinder and $m_{O}$ and $w_{O}$ are those of the outer cylinder.

The mass flow rate $J$ is independent of the circumfer-
ential velocity $V_{\theta 1}$ of the inner cylinder, and increases
with the speed $|V_{\theta 2}|$ of the outer cylinder.
4.2 Continuum solution
The solution of the continuum limit (Ikn $arrow 0$ ) can be
obtained by the asymptotic theory developed in Refs.
24 and 25. When evaporation or condensation is tak-
ing place on the cylinders, the behavior of the gas is de-
scribed by the following system of equations and bound-
ary conditions. The equations are the Euler set of equa-
tions:

$\frac{d}{dr}(\rho u_{r}r)=0$ , (18)

$\rho(u_{r}\frac{du_{r}}{dr}-\frac{u_{\theta}^{2}}{r})+\frac{dp}{dr}=0$ , (19)

$u_{r} \frac{du_{\theta}r}{dr}=0$ , (20)

$u_{r} \frac{d}{dr}(u_{r}^{2}+u_{\theta}^{2}+5RT)=0$ , (21)

$p=R_{\beta}T$. (22)

In terms of the Mach number $M_{r}$ , with sign, of the
radial velocity component $u_{r}$ :

$M_{r}=u_{r}/\sqrt{5RT}/3$, (23)

the boundary conditions on the cylinders are given as
follows: at $r=L_{1}$

$u_{\theta}=V_{\theta 1},$ $p=p_{s1}h_{1}(M_{r}),$ $T=T_{1}h_{2}(M_{r})$ ,
$(0<M_{r}\leq 1)$ , (24a)

$p=p_{s1}F_{S}(-M_{r)}|(u_{\theta}-V_{\theta 1})/\sqrt{5RT}/3|, T/T_{1})$ ,
$(-1<M_{r}<0)$ , (24b)

$p>p_{s1}F_{b(}-Mr’|(u_{\theta}-V_{\theta 1})/\sqrt{5RT}/3|,$ $T/T_{1})$ ,
$(M_{r}\leq-1)$ , $(24_{\mathrm{C}})$

and at $r=L_{2}$

$u_{\theta 2}=V_{\theta 2},$ $p=p_{s2}h_{1}(-M_{r}),$ $T=T_{2}h_{2}(-M_{r})$ ,
$(-1\leq M_{r}<0)$ , (25a)

$p=p_{s2}F_{S}(M_{r}, |(u_{\theta}-V_{\theta 2})/\sqrt{5RT}/3|,T/T_{2})$ ,
$(0<M_{r}<1)$ , (25b)

$p>p_{s2}F_{b}(M_{r}, |(u_{\theta}-V_{\theta 2})/\sqrt{5RT}/3|,T/T_{2})$ ,
$(M_{r}\geq 1)$ , (25c)

where the functions $h_{1}$ and $h_{2}$ , obtained from the so-
lution of the half-space problem of evaporation, are
listed in Refs. 24 and 26, and the function $F_{s}$ and $F_{b}$ ,
obtained from the half-space problem of condensation
with a parallel flow, are shown in Ref. 27. In the flow
a discontinuity (or a shock wave) is allowed, where the
Rankine-Hugoniot relation should be satisfied.28

The general solution of the set of equations (18) -

(22) (an isentropic circulating source or sink flow)29,30
is expressed by the following parametric representation
in terms of the Mach number $M$

$M=\sqrt{\frac{3(u_{r}^{2}+u_{\theta})2}{5RT}}$ . (26)
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That is,

$\frac{p}{\rho*}=(\frac{4}{3+M^{2}})^{3/2}$
$\frac{p}{p_{*}}=(\frac{4}{3+M^{2}})^{\epsilon}/2(27\mathrm{a})$

$\frac{\rho}{\rho*}=(\frac{4}{3+M^{2}})^{3/2},$ $\frac{T}{T_{*}}=\frac{4}{3+M^{2}},$ $\rho*=\frac{p*}{RT_{*}}$ ,

$M_{r}=M( \frac{3+M^{2}}{4})^{3/2}$

$\cross[\sin^{2}\alpha_{*}+(\frac{3+M^{2}}{4})^{3}\cos^{2]\mathrm{c}}\alpha_{*}-1/2\mathrm{o}\mathrm{s}\alpha_{*}$ .
$(27\mathrm{b})$

$\frac{r}{r_{*}}=\frac{1}{M}(\frac{3+M^{2}}{4})^{1/2}$

$\cross[\sin^{2}\alpha_{*}+(\frac{3+M^{2}}{4})^{3}\cos^{2}\alpha_{*}]1/2$

(27C)

$u_{r}=( \frac{\rho_{*}r_{*}}{\rho r})(\frac{5RT}{3}*)^{1/2}\cos\alpha_{*}$ ,
(27d)

$u_{\theta}=( \frac{r}{r}*)(\frac{5RT}{3}*)^{1/2}\sin\alpha_{*}$ ,

where $p_{*},$ $T_{*},$ $r_{*}$ , and $\alpha_{*}\mathrm{a}r\mathrm{e}$ arbitrary constants. The
constants $\rho_{*},$ $p_{*},$ $T_{*},$ $\alpha_{*}$ , and $r_{*}$ are, respectively, the
density, the pressure, the temperature, the angle of de-
flection of the flow velocity from the radial direction,
and the radial coordinate at the hypothetical point with
$M=1$ (sonic point). In Fig. 3, the relations $|M_{r}|$ vs
$M$ and $r/r_{*}\mathrm{v}\mathrm{s}M_{r}$ are shown for various $\alpha_{*}$ . The $r/r_{*}$

takes the minimum value at $|M_{r}|=1$ . Thus the so-
lution is classified into four types: $M_{r}\leq-1$ , $-1\leq$

$M_{r}<0,0<M_{r}\leq 1$ , and $M_{r}\geq 1$ . The $M_{r}$ naturally
varies along the flow but never exceeds the above limits
in the continuous flow. A shock wave (discontinuity) is
allowed in a flow with $|M_{r}|>1$ , where the flow can be
decelerated ffom $|M_{r}|>1$ to $|M_{r}|<1$ .

With the aid of the general solution, let us overview
the feature of the evaporation-condensation problem.
From the relation between $M_{r}$ and $r/r_{*}$ , the flow cannot
be accelerated or decelerated across $|M_{r}|=1$ (the sonic
speed with respect to $M_{r}$ ), and from Eqs. (24a) and
(25a) the evaporating sPeed on the condensed $\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{S}\mathrm{e}$ is
limited by $|M_{r}|\leq 1$ . Thus, only three types of flow are
possible in the present evaporation-condensation prob-
lem: (i) When evaporation is taking place on the $\mathit{0}$uter
cylinder $(M_{r}<0)$ , the flow is subsonic with respect
to $M_{r}$ and accelerating (circulating sink flow). When
the evaporation is taking place on the inner cylinder
$(M_{r}>0),$ $(\mathrm{i}\mathrm{i})$ the flow is subsonic with respect to $M_{r}$

and decelerating (circulating source flow) or (iii) the
flow is an accelerating flow evaporating ffom the inner
cylinder with $M_{r}=1$ and may be accompanied by a
shock wave in the middle region.

When the saturation gas pressure $p_{s1}$ of the inner
cylinder is larger than that $p_{s2}$ of the outer cylinder
(ps $1>p_{s2}$ ), evaporation on the outer cylinder [or a flow
of type $(\mathrm{i})]$ is impossible. In fact, in the flow of type
(i) the pressure decreases along the flow $[p(r=L_{1})<$

$p(r=L_{2})]$ , but from the boundary conditions (24b) and
(25a) with the inequalities $h_{1}(|M_{r}|)\leq 1$ and $F_{s}\geq 1$ ,

it follows that $p(r=L_{2})<p_{s2}$ and $p(r=L_{2})>Ps1$ ;
the two relations contradict when $Ps1>p_{s2}$ .

On the other hand, when $p_{s1}<p_{\epsilon 2}$ , the situation
is complicate: evaporation on either of the cylinders is
possible and bifurcation of flow is expected. For exam-
ple, when both the cylinders are at rest, the gas evapo-
rates obviously on the outer cylinder and proceeds ra-
dially to the inner cylinder without circulating motion
[a flow of type (i) with $u_{\theta}=0$]. If the inner cylinder
begins to rotate from this state, the flow remains radial
$(u_{\theta}=0)$ from Eq. (20) or (27d) and the boundary con-
dition (25a) on the outer cylinder, which is at rest, but
the mass flow rate decreases. The boundary condition
(24b) on the inner cylinder, where condensation is tak-

Fig. 3. Solution in the continuum limit. (a) $|M_{r}|$ vs $M$ ;
(b) $r/r_{*}\mathrm{v}\mathrm{s}M_{r}$ . The arrows on the curves in (b) indicate
the direction of flow. It is found that $|M_{r}|$ is a monotonic
increasing function of $M$ and that $r/r_{*}$ takes the minimum
value at $|M_{\mathrm{r}}|=1$ .
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ing place, binds the pressure but not the circumferen-
tial velocity there. Next let us imagine that the system
is making a solid rotation with a large angular speed.
Then the pressure of the gas increases rapidly with ra-
dial distance because of the centrifugal force, and the
pressure on the outer cylinder would be larger than $p_{s2}$

and that on the inner cylinder would be smaller than
Ps 1. Thus evaporation takes place on the inner cylinder
and condensation on the outer (even ifPs $1<p_{s2}$ ). Then
the speed of rotation of the outer cylinder is decreased
to rest. Similar flow (a circulating source flow) would
be maintained, because the circumferential motion is
determined by the condition of the inner cylinder and
the boundary condition of the outer cylinder does not
restrict the circumferential velocity $u_{\theta}$ . This considera-
tion suggests the possibility of bifurcation of flow when
the inner cylinder is rotating fast and the outer is at
rest.

When the evaporation or condensation happens to
vanish $(u_{r}=0)$ , the set of Eqs. (18) –(22) degener-
ates to an undetermined system, and the higher-order
analysis of the asymptotic expansion of the Boltzmann
equation is required to obtain the determined system,
which is derived in Ref. 25 together with its boundary
condition on the cylinders (see also Ref. 31). That is,
the set of equations is

Fig. 4. The mass-flow rate $J$ versus the circumferential
speed $|V_{\theta 2}|$ of the outer cylinder $(L_{2}/L_{1}=2,$ $p_{s2}/p_{S}1=1.1$ ,
$T_{2}/T_{1}=1$ , and $V_{\theta 1}=0$ ). The numerical solutions of the
BKW equation for various Kn are shown by the symbols:
$\blacksquare:\mathrm{K}=0.002;\bullet_{:}$ 0.005; 2: 0.01; $\otimes:0.02;\square :0.1;\mathrm{O}$ : 1;
$\mathrm{O}:10$ . The solid line –: the solution at $\mathrm{R}=0_{+}$ by the
asymptotic analysis in Sec. 4.2. The dashed line—- : the
free molecular solution.

$\frac{pu_{\theta}^{2}}{r}-\frac{dp}{dr}=0$, (28)

A $( \frac{du_{\theta}}{dr}+\frac{u_{\theta}}{r})=\frac{\gamma_{1}}{r}\frac{d}{dr}[r^{2}\tau^{m}(\frac{du_{\theta}}{dr}-\frac{u_{\theta}}{r})]$ , . (29)

$\Lambda\frac{d}{dr}(\frac{u_{\theta}^{2}}{2}+\frac{5RT}{2})$

$= \gamma_{1}\frac{d}{dr}[rT^{m}u_{\theta}(\frac{du_{\theta}}{dr}-\frac{u_{\theta}}{r})]$ (30)

$+ \frac{5\gamma_{2}R}{2}\frac{d}{dr}[rT^{m_{\frac{dT}{dr}]}}$ ,

$p=R\rho T$, (31)
where $m=1/2,$ $\gamma_{1}=$ 1.270042, $\gamma_{2}=$ 1.922284 for a
hard-sphere molecular gas, $m=1,$ $\gamma_{1}=1,$ $\gamma_{2}=1$

for the BKW equation, and A is a constant to be de-
termined with the solution $(u_{\theta}, \rho,p, \tau)$ . The physical
meaning of A is as follows: If the rarefaction of the gas
(or the effect of the mean free path of the gas molecules)
were taken into account, the radial velocity $u_{r}$ would
not be zero. Then,

$\Lambda=c0u_{r}r\tau m(RT)^{-1}/2l-1$ , (32)

where $l$ is the local mean free path of the gas molecules
and $c_{0}$ is a nondimensional constant [$c_{0}=2\sqrt{2}/\pi$ (hard-
sphere and BKW)]. The set of equations (28)$-(32)$ is
equivalent to the set of the axially and circumferen-
tially uniform Navier-Stokes equations where the radial
velocity of the order of the Knudsen number is retained.
The boundary conditions for the set of equations on the
two cylinders are

$u_{\theta}=V_{\theta 1}$ , $T=T_{1}$ , $p=p_{s1}$ (at $r=L_{1}$ ),
$u_{\theta}=V_{\theta 2}$ , $T=T_{2}$ , $p=ps2$ (at $r=L_{2}$ ). (33)

The system of equations (28) $-(31)$ and boundary con-
ditions (33) is a determined system, where the set of one

algebraic equation and one first-order and two second-
order differential equations for four functions $(u_{\theta}, \rho,p,T)$

with an undetermined constant (A) is to be obtained
under six boundary conditions. It is noted that the be-
havior of the gas at $\mathrm{R}=0_{+}$ is determined together
with a quantity of the order of Kn (or $u_{r}$ ). That is,
it is not the conventional cylindrical Couette flow [the
axially and circumferentially uniform solution of the
Navier-Stokes equation under the nonslip boundary con-
dition without evaporation-condensation $(u_{r}=0)$ on
the boundary] except when $\Lambda=0$ .

In the next section we will discuss the flow in the
whole range of the Knudsen number (including the more
explicit description of the two limiting solutions) for
$p_{s2}>p_{s1}$ , where bifurcation and reversal of a flow are
expected.

5 Flows in the whole range of the Knudsen
number and discussions

5.1 Reversal of flow
First, we consider the case where the inner cylinder is
at rest $[V_{\theta 1}/(2R\tau_{1})^{1/2}=0]$ . Taking $p_{s2}/p_{s1}=1.1$ ,
$T_{2}/T_{1}=1$ , and $L_{2}/L_{1}=2$ , we investigate the behavior
of the gas numerically for $\mathrm{v}\mathrm{a}r$ious values of the param-
eters Kn and $V_{\theta 2}/(2R\tau_{1})^{1/2}$ . The temperature ratio is
put equal to unity by the reason explained in the last
paragraph of Sec. 2. The results of computation to-
gether with those for the free molecular and continuum
flows are given in Figs. 4-9, on the basis of which we
will discuss the feature of the flow.

In order to grasp the overall feature of the flow in the
domain of the parameters Kn and $V_{\theta 2}/(2R\tau_{1})^{1/2}$ , we
first discuss the mass-flow rate between the cylinders.

42



Fig. 5. The profiles of the flow velocity $(u_{r}, u_{\theta})$ , pressure
$p$ , and temperature $T$ of the gas for various circumferential
velocities $V_{\theta 2}$ of the outer cylinder when the inner cylinder is
at rest 1: (Kn$=0.1,$ $p_{s2}/p_{s1}=1.1,$ $T_{2}/T_{1}=1,$ $L_{2}/L_{1}=2$).
The symbol $\nu(\sqrt)$ indicates the position corresponding to
$V_{\theta 1}$ , Ps 1, or $T_{1}$ ( $V_{\theta 2,p_{s}2}$ , or $T_{2}$ ).

Fig. 6. The profiles of the flow velocity $(u_{r}, u_{\theta})$ , pressure
$p$ , and temperature $T$ of the gas for various circumferential
velocities $V_{\theta 2}$ of the outer cylinder when the inner cylinder is
at rest 11: (Kn$=10,$ $p_{s2}/p_{s1}=1.1,$ $T_{2}/T_{1}-rightarrow 1,$ $L_{2}/L_{1}=2$).
The symbol $\rangle$ ($) indicates the position corresponding to
$V_{\theta 1}$ , Ps 1, or $T_{1}$ ( $V_{\theta 2,p_{s}2}$ , or $T_{2}$ ).

The mass-flow rate $J$ ffom the inner to outer cylinder
versus the speed $V_{\theta 2}$ of the outer cylinder is shown for
various Knudsen numbers from $\mathrm{I}\mathrm{f}\mathrm{f}\mathrm{i}=0$ to $\infty$ in Fig. 4.

In the ffee molecular flow, as explained in Sec. 4.1,
the effects of the inner and outer cylinders are inde-
pendent of each other. All the molecules leaving the
inner cylinder reach the outer cylinder. On the other

hand, some molecules leaving the outer cylinder do not
reach the inner cylinder and return directly to some
other point on the outer cylinder. This is determined
by the direction of the velocity of a molecule leaving
the inner cylinder. As the speed of the outer cylinder
increases, the number of molecules that reach the in-
ner cylinder decreases and finally no molecules reach it,
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Fig. 7. The profiles of the flow velocity $(u_{r}, u_{\theta})$ , pressure $p$ ,
and temperature $T$ of the gas for various Knudsen numbers
$\mathrm{M}$ when the inner cylinder is at rest 1: $(V_{\theta 2}/(2RT_{1})^{1/2}=$

$0.15,$ $p_{S}2/p_{s1}=1.1,$ $T_{2}/T_{1}=1,$ $L_{2}/L_{1}=2)$ . The dotted
line $\cdots\cdot$ . indicates the Knudsen layer flattened on the cylin-
ders at $\mathrm{M}=0_{+}$ . The symbol ’ ($) indicates the position
corresponding to $V_{\theta 1}$ , Ps 1, or $T_{1}$ ( $V_{\theta 2,p_{s}2}$ , or $T_{2}$ ).

since the high speed motion of the outer cylinder im-
parts a large circumferential motion to the molecules
leaving the outer cylinder. Thus, the net mass-flow
rate (ffom the inner cylinder to the $\mathit{0}$ uter) increases
from $2\pi L_{1}(2\pi R\tau_{1})-1/2[Ps1-p_{s2}(\tau_{1}/T_{2})^{1/}2]$ to $2\pi L_{1Ps1}$

$(2\pi R\tau_{1})^{-}1/2$ (or a negative to a positive value). That

Fig. 8. The profiles of the flow velocity $(u_{r}, u_{\theta})$ , pressure $p$ ,
and temperature $T$ of the gas for various Knudsen numbers
Kn when the inner cylinder is at rest 1I: $[V_{\theta 2}/(2RT_{1})^{1/2}=$

$0.75,$ $p_{s2}/ps1=1.1,$ $T_{2}/T_{1}=1,$ $L_{2}/L_{1}=2]$ . The symbol $\nu$

($) indicates the position corresponding to $V_{\theta 1}$ , Ps 1, or $T_{1}$

( $V_{\theta 2,Ps}2$ , or $T_{2}$ ).

is, evaporation takes place on the outer cylinder and
condensation on the inner when both the cylinders are
at rest. As the speed of the outer cylinder increases,
the rate of evaporation on the outer cylinder decreases
and vanishes at some speed, and then reversal of the
flow or evaporation on the inner cylinder occurs.
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In the continuum flow (Kn $=0_{+}$), as in the free molec-
ular flow, evaporation takes place on the outer cylinder
and condensation on the inner when both the cylinders
are at rest, and as the speed of the outer cylinder in-
creases, the rate of evaporation on the outer cylinder
decreases and vanishes at the speed

$|V_{\theta 2}|$ $=$ $\frac{(5RT_{2})^{1}/21^{1}-(p_{\epsilon}2/p_{s}1)-2/5]^{1/2}}{[(L_{2}/L1)^{2}-1]1/2}$

$=$ $0.1766(2RT_{1})^{1/2}$ . (34)

(This result is independent of molecular models. The
first formula applies to $\mathrm{a}x$bitrary values of $p_{s2}/p_{s1},$ $\tau_{2}/T_{1}$ ,
and $L_{2}/L_{1}.$ ) For the higher speed of the outer cylinder,
in contrast to the free molecular flow, no reversal of
flow takes place, and neither evaporation nor conden-
sation occurs on the cylinders, because evaporation on
the inner cylinder at rest does not supply circumfer-
ential motion. The solution without evaporation and
condensation is obtained by the system (28)$-(31)$ and
(33). According to $\Lambda$ , determined by these equations,
the Kn-order term of the nondimensional mass-flow rate
$J/2\pi L_{1}$ ps 1 $(2R\tau_{1})^{1/2}$ is negative for $|V_{\theta 1}|/(2R\tau_{1})^{1/2}<$

0.4697 and positive for $|V_{\theta 1}|/(2R\tau_{1})^{1/2}>0.4697$ . (This
value is 0.4693 for a haxd-sphere molecular gas.) Corre-
spondingly, the profiles of the flow field at Kn $=0_{+}\mathrm{i}_{\mathrm{S}}$ dif-
ferent from that of the conventional Couette flow (the
solution of the Navier-Stokes equation with $u_{r}=0$ )
excePt at $|V_{\theta 1}|/(2R\tau_{1})^{1/2}=0.4697$. This is studied in
detail in Refs. 25 as an example

$\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{w}\mathrm{i}32\mathrm{n}\mathrm{g}$
the incom-

pleteness of the classical gas dynamics.
The mass-flow rate in the intermediate Knudsen num-

bers increases monotonically with the speed $|V_{\theta 2}|$ of the
outer cylinder. The variation of the mass-flow rate with
the Knudsen number is not monotonic when $|V_{\theta 2}|$ is
smaller than about $\sqrt{RT_{1}}/2$. This is discussed in rela-
tion to the profile of flow field later.

The profiles of the velocity, pressure, and tempera-
ture at Kn $=0.1$ and 10 are shown for various speeds of
the outer cylinder in Figs. 5 and 6, where we can see
the $\mathrm{v}\mathrm{a}r$iation of the flow field with the speed of the outer
cylinder. The circumferential motion of the outer cylin-
der is transmitted to the whole region of the gas, induc-
ing pressure variation owing to the centrifugal force. As
the speed of the outer cylinder increases, the pressure
near the outer cylinder exceeds $p_{s2}$ and the pressure
near the inner cylinder goes down below Ps 1. This re-
sults in the reversal of the flow (from $u_{r}<0$ to $u_{r}>0$).
The qualitative feature is the same for both the Knud-
sen numbers. The temperature field at &=0.1 clearly
shows the combination of the heating effect of gas mo-
tion and temperature jump (or drop) on the condens-
ing (evaporating) boundary. The heating is obviously
stronger for faster motion, and the jump (or drop) is
bigger for stronger condensation (or evaporation). The
latter contribution is not so evident at $\mathrm{M}=10$ .

Figures 7 and 8 show the profiles for various Knudsen
numbers at $|V_{\theta 2}|/(2R\tau_{1})^{1/2}=0.15$ and 0.75. In these
figures we can see the variation of the flow field with
the Knudsen number.

In the case of $|V_{\theta 2}|/(2R\tau_{1})^{1/2}=0.15$ (fairly small
$|V_{\theta 2}|)$ Fig. 7), the circumferential velocity at Ikn $=0_{+}$ ,

Fig. 9. The type of solutions classified by the direction
of flow in the plane (Kn, $V_{\theta 2}/(2RT_{1})^{1/2}$ ) for $L_{2}/L_{1}=2$ ,
$\mathrm{P}s2/p_{s1}=1.1,$ $T_{2}/T_{1}=1$ , and $V_{\theta 2}=0$ . The type of a
solution is indicated by the symbols: $\square$ (point) and $\mathrm{R}$

(range): a solution with $u_{r}>0;\blacksquare$ (point) and –
(range): $u_{r}<0$ ; EEEB at Kn $=0_{+}:$ $u_{r}=\mathrm{O}(\mathrm{f}\mathrm{f}\mathrm{i})>0;\mathrm{E}\mathrm{E}\coprod$

at Kn $=0_{+}:$ $u_{r}=O(l\mathrm{h})<0$ .

where the flow is isentropic and evaporation is taking
place on the outer cylinder, is determined by the veloc-
ity $V_{\theta 2}$ of the outer cylinder and is not affected by the
velocity $V_{\theta 1}$ of the inner cylinder. As the Knudsen num-
ber increases, the effect of the stationary inner cylinder
is transmitted into the gas and the circumferential mo-
tion of the gas is retarded. This reduces the pressure
near the outer cylinder and increases the pressure near
the inner cylinder. Thus the rate of evaporation on the
outer cylinder increases. This increase ceases at about
$\mathrm{M}=0.1$ ; then it decreases to the value at Kn $=\infty$ (see
also Fig. 4). This maximum is the result of different de-
pendence on the Knudsen number for large and small
$\mathrm{R}$ , as in the Knudsen minimum in the Poiseuille flow
of a rarefied gas.19,33 This behavior for large Knudsen
numbers can be understood in the following way. At Kn
$=\infty$ , all the molecules from the inner cylinder reach the
outer directly. At a $1\mathrm{a}r$ge but not infinite Kn, molecu-
lar collisions block some of the molecules to reach the
outer cylinder; in return the molecules from the outer
cylinder are subject to collision effect, but only a part
of them was to reach the inner cylinder without colli-
sions. Thus the latter blocking effect is smaller than
the former. The number of molecules from the outer to
the inner cylinder, therefore, is bigger with molecular
collision. This nonmonotonic dependence on Kn is seen
for $0<|V_{\theta 2}|/(2R\tau_{1})^{1/2}\leq 0.45$ .

In the case $|V_{\theta 2}|/(2R\tau_{1})^{1/2}=0.75$ (Fig. 8), neither
evaporation nor condensation occurs on the cylinders
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Fig. 10. The mass-flow rate $J$ versus the circumferential speed $|V_{\theta 1}|$ of the inner cylinder $(L_{2}/L_{1}=2,$ $p_{S}2/p_{s1}=1.2$ ,
$T_{2}/T_{1}=1$ , and $V_{\theta 2}=0$ ). The numerical solutions of the BKW equation for various Kn are shown by the symbols: $\bullet_{:}$ Kn
$=$ 0.005; 2: 0.01; $\otimes:0.02;\ominus:0.05;\square :0.1_{1}\nabla:0.2;\triangle:0.5;\mathrm{O}$: 1. The solid line –: the solution at $\mathrm{R}=0_{+}$ by the
asymptotic analysis in Sec. 4.2. The dashed line– – - : the free molecular solution.

at $\mathrm{M}=0_{+}$ . As already mentioned, the profiles, ob-
tained by Eqs. (28)$-(31)$ and (33), are different from
those of the conventional cylindrical Couette flow. At
this value of $|V_{\theta 2}|/(2RT_{1})^{1/2}$ , A is positive, that is, the
radial velocity $u_{r}$ of the order $\mathrm{M}$ is positive. As the
Knudsen number increases, the effect of the circum-
ferential motion of the outer cylinder is further trans-
mitted into the gas for small Kn and induces higher
pressure near the outer cylinder owing to the additional
centrifugal force, or the blocking effect of molecular col-
lisions, discussed in the case of $|V_{\theta 2}|/(2RT_{1})^{1/2}=0.15$ ,
decreases for large Kn. Thus, in contrast to the case of
$|V_{\theta 2}|/(2R\tau_{1})^{1/2}=0.15$ , the flow to the outer cylinder
increases monotonically with R.

As the summary of this subsection, the type of solu-
tions classified by the direction of flow ($u_{r}>0$ or $u_{r}<$

$0)$ is shown on the parameter plane (Kn, $|V_{\theta 2}|/(2RT_{1})^{1/2}$)
in Fig. 9. At $\mathrm{R}=0_{+}$ , the evaporation-condensation
ceases for $|V_{\theta 2}|/(2R\tau_{1})^{1/2}\geq$ 0.1766; the sign of $u_{r}$ of
the order of Kn in this range of $|V_{\theta 2}|/(2RT_{1})^{1/2}$ , which
is obtained by asymptotic analysis of the BKW equa-
tion, is also shown. Only one solution exits for a set of
(Kn, $|V_{\theta 2}|/(2R\tau_{1})^{1}/2$ ), and bifurcation of flow does not
occur. Except for the continuum limit, reversal of flow
occurs at some speed of the outer cylinder.

5.2 Bifurcation of flow
In this section we consider the case where the outer
cylinder is at rest $[V_{\theta 2}/(2R\tau_{1})^{1/2}=0]$ . $r_{\mathrm{B}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g}pS2}/p_{s1}=$

$1.2,$ $T_{2}/T_{1}=1$ , and $L_{2}/L_{1}=2$ , we investigate the be-
havior of the gas numerically for various values of the
parameters Kn and $V_{\theta 1}/(2R\tau_{1})^{1/2}$ . The temperature ra-
tio is put equal to unity by the reason explained in the
last paragraph of Sec. 2. The results of computation to-
gether with those for the hee molecular and continuum
flows are given in Figs. 10-16, on the basis of which we
will discuss the feature of the flow.

The mass-flow rate $J$ from the inner to outer cylinder
versus the speed $|V_{\theta 1}|$ of the inner cylinder is shown for
various Knudsen numbers $\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{M}=0$ to $\infty$ in Fig. 10.

In the free molecular flow, where all the molecules
leaving the inner cylinder reach the outer cylinder, the
number of molecules leaving the inner cylinder is inde-
pendent of the velocity of the inner cylinder. Thus the
mass-flow rate is $2\pi L_{1}p_{s1}(2\pi R\tau_{1})-1/2[1-(\mathrm{p}_{\epsilon 2}/p_{s1})$

$(T_{1}/T_{2})^{1/}2]$ irrespective of $V_{\theta 1}$ .
In the continuum flow (Kn $=0_{+}$ ), on the other hand,

the situation is complicate. When both the cylinders
are at rest, evaporation takes place on the outer cylin-
der. It decreases gradually with the speed of the inner
cylinder, but never vanishes until the speed becomes
infinite. Besides this solution, there are two other solu-
tions when the $\mathrm{s}_{\mathrm{P}^{\mathrm{e}\mathrm{e}\mathrm{d}}}$ of the inner cylinder exceeds the
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Fig. 11. The profiles of the flow velocity $(u_{r}, u_{\theta})$ , pressure $p$ , and temperature $T$ of the gas for various circumferential
velocities $V_{\theta 1}$ of the inner cylinder when the outer cylinder is at rest 1: (Kn$=0.005,$ $p_{s2}/p_{s1}=1.2,$ $\tau_{2}/\tau_{1}=1,$ $L_{2}/L_{1}=2$ ).
(a) The family of solutions with $J<0;(\mathrm{b})$ The family of solutions with $J>0$ . The symbol $\rangle$ $(\sqrt)$ indicates the position
corresponding to $V_{\theta 1,Ps1}$ , or $T_{1}$ ( $V_{\theta 2,p_{s}2}$ , or $T_{2}$ ).

value

$|V_{\theta 1}|$ $=$ $\frac{(5RT_{1})^{1}/2[(p_{2}S/p_{s}1)^{2}/\mathrm{s}-1]1/2}{1^{1-}(L_{1}/L2)^{2}]^{1}/2}$

$=$ $0.5022(2RT_{1})^{1/2}$ . (35)

(The bifurcation of flow occurs at this speed of the in-
ner cylinder, which is independent of molecular mod-
els. The first formula applies to arbitrary values of

$p_{s2}/p_{s1},$ $T_{2}/T_{1}$ , and $L_{2}/L_{1}.$ ) One of them is a flow with
evaporation on the inner cylinder. The rate of evapora-
tion $J$ increases from zero to $0.2360(2\pi L1)\rho_{s}1(2RT1)^{1/2}$

as the speed $|V_{\theta 1}|$ of the inner cylinder increases from
$0.5022(2R\tau 1)^{1/2}$ to $1.373(2R\tau 1)^{1/2}$ , and it remains con-
stant for the larger $|V_{\theta 1}|$ . As $|V_{\theta 1}|$ increases, the speed
of evaporation (or $M_{r}$ ) on the inner cylinder increases
and reaches $M_{r}=1$ . Thus for the larger $|V_{\theta 1}|$ , the rate
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Fig. 12. The profiles of the flow velocity $(u_{r}, u_{\theta})$ , pressure
$p$ , and temperature $T$ of the gas for various circumferential
velocities $V_{\theta 1}$ of the inner cylinder when the outer cylinder is
at rest 1I: (Kn$=0.05,$ $p_{\theta}2/p_{s1}=1.2,$ $T_{2}/T_{1}=1,$ $L_{2}/L_{1}=2$).
The symbol $\nu(\sqrt)$ indicates the position corresponding to
$V_{\theta 1}$ , Ps 1, or $T_{1}$ ( $V_{\theta 2,p_{s2)}}$ or $T_{2}$ ).

of evaporation remains constant, since evaporation with
$M_{r}>1$ is impossible [see Eq. $(24\mathrm{a})$]. The flow is an ac-
celerating supersonic flow accompanied by a shock wave
(Fig. 14). The other one is a flow without evaporation
and condensation on the cylinders, the solution ofwhich
is obtained by the system (28)$-(31)$ and (33). Accord-
ing to $\Lambda$ , determined by these equations, the Kn-order

term of the nondimensional mass-flow rate $J/2\pi L_{1}$

$\rho_{s1}(2R\tau 1)^{1/2}$ is negative for $|V_{\theta 1}|/(2R\tau_{1})^{1/2}<$ 0.6672
and positive for $|V_{\theta 1}|/(2R\tau_{1})^{1/2}>0.6672$. (This value
is 0.6593 for a hard-sphere molecular gas.) Correspond-
ingly, the profiles of the flow field at Kn $=0_{+}$ is differ-
ent from that of the conventional Couette flow except
at $|V_{\theta 1}|/(2R\tau_{1})^{1/2}=$ 0.6672. This is also an example
showing the incompleteness of the classical gas dynam-
ics discussed in Refs. 25 and 32.

The mass flow rate increases monotonically with the
speed $|V_{\theta 1}|$ of the inner cylinder when the Knudsen
number Kn is larger than about 0.02. For smaller Knud-
sen numbers the situation is quite different. There are
two branches of solutions for a given Knudsen number:
one is a family of flows with evaporation on the outer
cylinder existing in the range $0\leq|V_{\theta 1}|\leq V_{A}$ , the rate
of evaporation of which slowly decreases with $|V_{\theta 1}|$ , and
the other is a family of flows with condensation on the
outer cylinder existing in the range $|V_{\theta 1}|\geq V_{B}$ , the rate
of condensation of which increases with $|V_{\theta 1}|$ . Here, $V_{A}$

and $V_{B}$ depend on Kn, and $V_{A}>V_{B}$ . There are two
solutions in the range $V_{B}\leq|V_{\theta 1}|\leq V_{A}$ (bifurcation of
flow). There should be the third family of solutions,
corresponding to the solution with $u_{r}=0$ at Kn $=0_{+}$ ,
that connects the two families from $V_{A}$ to $V_{B}$ , but it
could not be obtained numerically, probably because of
instability of the solution.

The profiles of the velocity, pressure, and temper-
ature at $\Re=$ 0.005 and 0.05 are shown for various
speeds of the inner cylinder in Figs. 11 and 12, where
we can see the variation of the flow field with the speed
of the inner cylinder.

At Kn $=0.005$ , there are two families of proffies: one
exists in $0\leq|V_{\theta 1}|/(2R\tau_{1})^{1/2}\sim<1.068$ [Fig. 11 $(\mathrm{a})$ ]; the
other in $|V_{\theta 1}|/(2R\tau_{1})^{1/2}\sim>0.6255$ [Fig. 11 $(\mathrm{b})$ ], in each
of which the profiles vary smoothly with $|V_{\theta 1}|$ . Two $\mathrm{p}\mathrm{r}\not\in$

files are possible for $0.6255\sim<|V_{\theta 1}|/(2R\tau_{1})^{1/2}\leq 1.068$ .
At $|V_{\theta 1}|=0$ , the flow is radial from the outer cylin-
der to the inner. As $|V_{\theta 1}|$ increases, the circumferen-
tial motion of the inner cylinder is transmitted into the
gas, but its penetration is strongly blocked by the con-
vection radial flow and reaches only half way from the
inner cylinder even at $|V_{\theta 1}|=(2R\tau_{1})^{1/2}$ (a little higher
than sonic speed). Owing to this limited angular mo-
tion resulting in only small pressure rise by centrifugal
force, the pressure near the outer cylinder is lower than
$p_{s2}$ , and the gas remains evaporating from the outer
cylinder. For $|V_{\theta 1}|/(2R\tau_{1})^{1/2}\sim>1.075$ , this type of flow
no longer exists, and completely different flows appear.
The angular motion comparable to that of the inner
cylinder prevails over the whole field, except in a thin
layer near the outer cylinder, inducing a pressure higher
than $p_{s2}$ near the outer cylinder, and therefore evapo-
ration occurs on the inner cylinder. This type of flow
exists not only for $|V_{\theta 1}|/(2R\tau_{1})^{1/2}\sim>$ 1.075 but also
for smaller $|V_{\theta 1}|/(2R\tau_{1})^{1/2}$ down to about 0.6255. It
was impossible to obtain a family of solutions that con-
nects the two branches smoothly, probably because of
instability of the flow.

At Kn $=0.05$ (Fig. 12), the $\mathrm{v}\mathrm{a}r$iation is smooth for all
$|V_{\theta 1}|/(2R\tau_{1})^{1}/2$ ; only one profile is possible for a given
$|V_{\theta 1}|/(2R\tau_{1})^{1/2}$ .
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Fig. 13. The profiles of the flow velocity $(u_{r}, u_{\theta})$ , pressure $p$ , and temperature $T$ of the gas for various Knudsen numbers
Kn when the outer cylinder is at rest 1: $[V_{\theta 1}/(2RT_{1})^{1/2}=0.7, ps2/ps1=1.2, T_{2}/T_{1}=1, L_{2}/L_{1}=2]$. $(\mathrm{a})$ The profiles for
$\mathrm{R}=$ 0–0.0125.; (b) The profiles for $\mathrm{R}=$ 0.0135–00. The dotted line $\cdots\cdot$ . indicates the Knudsen layer flattened on the
cylinders at $\Re=0_{+}$ . The symbol $\rangle$ ($) indicates the position corresponding to $V_{\theta 1,\mathrm{P}s1}$ , or $T_{1}$ ( $V_{\theta 2}$ , Ps 2, or $T_{2}$ ).

Figures 13-15 show the profiles for various Knudsen
numbers at $|V_{\theta 1}|/(2R\tau_{1})^{1/2}=0.7,2.5$ , and 0.3. In
these figures, we can see the variation of the flow field
with the Knudsen number.

At $|V_{\theta 1}|/(2R\tau_{1})^{1/2}=0.7$ (Fig. 13), there are two
families of the profiles, one with $u_{r}<0$ and the other
with $u_{r}>0$ , for small Knudsen numbers (Kn is smaller
than about 0.0125). (There is another solution with
$u_{r}=0$ at Kn $=0_{+}.$ ) This nonuniqueness can be under-

stood in the following way. Owing to the convection of
the radial gas flow, the effect of circumferential motion
of a condensing cylinder (the inner or outer cylinder
depending on $u_{r}<0$ or $u_{r}>0$ ) on the circumferential
motion of the gas hardly penetrates deep into the gas
when the Knudsen number is small. Let $u_{r}<0$ . The
flow is radial, and the circumferential motion is con-
fined in a narrow region near the inner cylinder; thus
the pressure is nearly uniform outside the region and
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Fig. 14. The profiles of the flow velocity $(u_{r}, u_{\theta})$ , pressure $p$ ,
and temperature $T$ of the gas for various Knudsen numbers
Kn when the outer cylinder is at rest 11: $[V_{\theta 1}/(2RT_{1})^{1/2}=$

$2.5,$ $Ps2/p_{S}1=1.2,$ $T_{2}/T_{1}=1,$ $L_{2}/L_{1}=2]$ . The dotted
line $\cdots\cdot$ . indicates the Knudsen layer flattened on the cylin-
ders at $\mathrm{M}=0_{+}$ . The symbol $>($ indicates the position
corresponding to $V_{\theta 1,p_{s1}}$ , or $T_{1}$ ( $V_{\theta 2,p_{s2}}$ , or $T_{2}$ ).

the pressure near the outer cylinder is lower than $p_{s\mathit{2}}$ .
Thus in conformity with the assumption, evaporation
takes place on the outer cylinder. Let $u_{r}>0$ . The flow
is circulating over the whole field except near the outer
cylinder, and a considerable pressure variation due to
centrifugal force is induced and the pressure near the
outer cylinder is higher than $p_{s2}$ . Thus, in conformity

$\backslash \approx\Omega^{n}-$.

$\dot{\mathrm{h}}$

$\backslash \mathrm{h}$

Fig. 15. The profiles of the flow velocity $(u_{r}, u_{\theta})$ , pressure $p$ ,
and temperature $T$ of the gas for various Knudsen numbers
Kn when the outer cylinder is at rest 111: $[V_{\theta 1}/(2RT_{1})^{1/\mathit{2}}=$

$0.3,$ $ps\mathit{2}/ps1=1.2,$ $T_{2}/T_{1}=1,$ $L_{2}/L_{1}=2]$ . The dotted
line $\ldots.$ . indicates the Knudsen layer flattened on the cylin-
ders at $\mathrm{R}=0_{+}$ . The symbol $\rangle$ ($) indicates the position
corresponding to $V_{\theta 1,p_{s}1}$ , or $T_{1}$ ( $V_{\theta 2}$ , Ps2, or $T_{2}$ ).

with the assumption, condensation (evaporation) takes
place on the outer (inner) cylinder. As the Knudsen
number increases, the effect of the condensing cylinder
on the circumferential motion penetrates deeper into
the gas, and two solutions approach. One of the so-
lutions $(J<0)$ , however, disappears at about Kn $=$

50



0.0135, and the other solution loses its radial motion
and finally reverses its direction.

At larger speed $[|V_{\theta 1}|/(2R\tau_{1})^{1/\mathit{2}}=2.5]$ of the in-
ner cylinder (Fig. 14), nonunique situation of the so-
lution is similar to that in the previous example. The
larger circumferential velocity induces the larger pres-
sure variation to reverse the direction of flow even when
the penetration of circumferential motion is not deep,
and the first type flow (a flow evaporating on the outer
cylinder) occurs for only smaller Knudsen numbers.
Among Knudsen numbers for which the computation
is carried out, only the case $\Re=0_{+}$ is the first type
of flow. Along the second type flow, the flow is first
accelerated and then decelerated. The deceleration be-
comes sharper as the Knudsen number decreases; and
finally at Kn $=0_{+}$ , the decelerated region is reduced
to a discontinuity (a shock wave) accompanied by a
moderately decelerating region.

At small speed $[|V_{\theta 1}|/(2R\tau_{1})^{1/\mathit{2}}=0.3]$ of the inner
cylinder (Fig. 15), where the solution with $u_{r}=0$ at
Kn $=0_{+}$ does not exist, the pressure variation induced
by circumferential motion is too small to reverse the
direction of flow even if the circumferential motion is
induced over the whole field, and thus evaporation takes
place on the outer cylinder for all Knudsen numbers.

As the summary of this subsection, the type of solu-
tions classified by the direction of flow $(u_{r}>0,$ $u_{r}=$

$0$ , or $u_{r}<0$ ) is shown on the parameter plane (Kn,
$|V_{\theta 1}|/(2R\tau_{1})^{1}/\mathit{2})$ in Fig. 16. There exist three types
of solution at Kn $=0_{+}$ when $|V_{\theta 1}|/(2R\tau_{1})^{1/2}\geq\sqrt{5/2}$

$[(p_{s2}/p_{S}1)^{2/5}-1]^{1/2}[1-(L_{1}/L_{2})^{2}]-1/2=0.5022$ . Two
solutions are obtained in some range of small Knud-
sen numbers. For the larger Knudsen numbers, there
is only one solution. Bifurcation as well as reversal of
a flow is seen in the second example, where the inner
cylinder is rotating.

6 Concluding remarks
In the present paper, a rarefied gas between two coaxial
circular cylinders made of the condensed phase of the
gas was considered, where each cylinder is kept at a uni-
form temperature and is rotating at a constant angular
velocity around its axis (cylindrical Couette flows of a
rarefied gas with evaporation or condensation on the
cylinders). The steady behavior of the gas was studied
on the $\mathrm{b}\mathrm{a}s$ is of kinetic theory from the continuum to the
Knudsen limit. The solution showed profound variety,
especially bifurcation of flow was seen even in the sim-
ple case where the state of the gas is circumferentially
and axially uniform. In view of the Taylor-Couette in-
stability of a flow, the stability of the bifurcated flows
in the absence of the constraint of circumferential or
axial uniformity is a problem to be studied.

Bifurcation and reversal of flow, typical features of
the problem, are not special for the BKW equation. At
least for the continuum limit, these are found for the
standard Boltzmann equation. The fact that asymp-
totic analysis for small Knudsen numbers goes parallel
for these equations and the physical discussion about
the behavior of the gas, which is not special for the
BKW model, support this.

$\backslash -\mathrm{N}\wedge \mathrm{t}_{\mathrm{t}}\circ\overline{\mathrm{h}}$

$\underline{\underline{\vee\backslash }\triangleright^{\dot{\Phi}}}$

Fig. 16. The type of solution classified by the direction
of flow in the plane (Kn, $V_{\theta 2}/(2RT_{1})^{1/2}$ ) for $L_{2}/L_{1}=2$ ,
$p_{s2}/p_{s1}=1.2,$ $T_{2}/T_{1}=1$ , and $V_{\theta 2}=0$ . The symbol $\square$

(point) and $\subset\supset$ (range): a solution with $u_{r}>0;\blacksquare$

(point) and – (range): $u_{r}<0$ ; $\mathrm{D}$ : two solutions
$(u_{r}<0, u_{r}>0)$ exist; $\ovalbox{\tt\small REJECT}$ at $\mathrm{R}=0_{+}$ : three solutions
$[u_{r}<0, u_{r}=0(u_{r}=O(\mathrm{R})<0), u_{r}>0]$ exist; $\mapsto$ at
$\mathrm{R}=0_{+}:$ three solutions [$u_{r}<0,$ $u_{r}=0$ ($u_{r}=$ O(Kn) $>0$),
$u_{r}>0]$ exist.

The numerical computation was carried out on sev-
eral workstations such as $\mathrm{H}\mathrm{P}90\mathrm{o}\mathrm{o}/\mathrm{C}180$ and VT-Alpha
533 $\mathrm{S}/\mathrm{N}$ (CPU: Alpha $21164\mathrm{A}533\mathrm{M}\mathrm{H}\mathrm{z}$ ), and took sev-
eral years of the CPU time.
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