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ASYMPTOTIC BEHAVIOR OF VARIATIONAL EIGENVALUES

KB RABE ‘. SEHMBOKES  (Tetsutaro Shibata)

1. Introduction. We consider the nonlinear elliptic two-parameter problem
—Au+Ag(u) = pf(u), u>0 in Q,

(1.1)
=0 on 0,

where A\, 1 > 0 are parameters, and @ C RY (N > 3) is a bounded domain with an
appropriately smooth boundary 02. We assume
(A.1) f,g € C(R) are odd in u, and f(u),g(u) > 0 for u > 0. Furthermore, there exist

constants 1 < ¢ < p < (N +2)/(N —2) and Ky, Jo, K1, J1 > 0 such that

g—%—z—»[{o, %Q—»Kl as u — 00, | ‘(1~2)
‘Q%.L_)._.;JO, %Q—)Jl as u | 0. (1.3)

The typical example of f, g is

flw) =P e+ JulTh, g(u) =u, (1<g<p<(N+2)/(N-2)). (1.4)
The purpose of this paper is to investigate and understand the structure of the set
{(X\, 1)} C R? such that (1.1) has a solution u € I/VO1 (Q) by variational methods, where
W,7*(Q) is the usual real Sobolev space. To this end, viewing A > 0 as a given parameter,
we apply the following two variational problems subject to the constraints depending on
positive parameters o, 3 and A:

Maximize /
» Q

U €E Ny = {u € WOI’Q(Q) : 1/ |Vu|2d.r + /\/ (/ g(s)ds> dr = a} ,
2 Ja a \Jo

u(x)
( / g(s)d5> dr under the constraint (M.2)
0

u(z) ‘
( / f (s)ds) dzr under the constraint (M.1)
0 .

Minimize 1/ }Vulzd:c-l-)\/
2 Ja

Q

‘ u(z)
u € Mg := {u € Wy2(Q) : /Q (/0 f(s)ds) dr = ﬁ}.
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Then we obtain two solutions trio (A, u1 (X, &), w1 s o), (A, p2(A, B), u2.x,8) € R3 X Wg’z Q)
corresponding to the problems (M.1) and (M.2), respectively, by the Lagrange multiplier
theorem. A natural problem in this context is to clarify the difference between 4 (A, )
and p2()\, B). To do this, we shall establish two asymptotic formulas for 41(}, @) and
(X, B) as A — oo, respectively, which are explicitly represented by means of A and «, 5.
Under the suitable conditions on (), a) (resp. (A, 3)), one of them for p; (A, o) (resp.
p2(A, B)) depends only on the asymptotic behavior of f and g as u — oo, and another
depends only on the behavior of f and g near 0. We emphasize that if o, 3 > 0 are fixed,

then p1()\, @) — oo faster than ps (A, 3) as A — oo.

2. Main Results. We begin with notation. For u,v € W& 2(Q) and t € R, let

d._ UCL'd.'L‘ u = su u\x u,v) .= ulxrjyv\xr)axr
mmeunduzuum.mg(m<w L()UL

F(t) :=/O f(s)ds, G(t) ::/O g(s)ds, @(u) :=/QF(u(:c))da:,

U(u) = /Q G(u(z))dz, A,\(u‘).:: %HVUH% + AP (u).

Furthermore, for any domain D C RY the norm of L4(D) will be denoted by || - |4
for simplicity. For a given A\, a, 3 > 0, p = p1(\, @) and p = pp(A, B) are defined as the
Lagrange multipliers associated with the problem (M.1) and (M.2), respectively. Namely,
pi1(\, ) and po(A\, B) are the Lagrange multipliers associated with the eigenfunctions

U1 x 0 € Nx,o and uz x,g € Mg which satisfy

P(u1 p0) = sup P(u). (2.1)
UEN)\’Q
M(uzag) = inf M), | (2.2)

respectively. Then (A, pu1(\ @), u1 ) ,0) and (A, p2(A, B), uz x,g) satisfy (1.1) by the La-
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grange multiplier theorem. Further, u;(\, @) and us(\, 3) are represented as follows:

20 + M (g(u1,n,a), v10,0) — 20 (U1 0 0)}
(f(u1x,0), U1\ o)
[Vuga,8ll5 + Mg(uzx ), uzx )
(f(uzx8), u2.2,8) '

p(\, @) = : (2.3)

/Lz()\,,B) = (24)

Indeed, if (A, p,u) € R% x Wy?(Q) satisfies (1.1), then multiply (1.1) by u. Then inte-
gration by parts yields

IVll3 + Mg (), w) = p(f (u), w). | (2.5)
(2.5) implies (2.4). Since u1,0 € Nxq, (2.5) also yields (2.3). Let w € H'(RN) be the

unique solution of the following nonlinear scalar field equation:

—Aw=wf—w, w>0 in RV w(0)= max w(z). (2.6)
z€RN

Further, let W be the unique solution of (2.6), in which the exponent p is replaced by ¢.
In order to state our results, we define the several conditions for (un-indexed) seqﬁences

{(\ @)} CR% and {(\, )} C RZ:

A — oo0. (B.1)
a®AN72 0. (B.2)
a?AN=2 0. (B.3)
BAN - . | (B.4)
BN 0. (B.5)

We explain the meaning of these conditions. In the problem (M.1), ||uix «llco be-
haves like (a?AN=2)1/% for X\ >> 1. Therefore, if (B.2) (resp. (B.3)) is assumed, then
lu1 3 allec — o0 (resé. 0). Hence we see that the asymptotic behavior of f(u), g(u) as
u — 0o (resp. u — 0) reflects mainly on the asymptotic formula for p; (A, ). Similarly,
in the problem (M.2), the growth order of [luz x g[|oo is (32AY)Y/(2(P+1))  Hence the con-

dition (B.4) (resp. (B.5)) implies ||uz gllcc — 0o (resp. 0). Therefore, the asymptotic
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behavior of f(u),g(u) at u = co (resp. u = 0) gives effect mainly on the asymptotic

behavior of uz (), B).

Now we state our main results.

Theorem 2.1. Assume (A.1). If a sequence {(\,a)} C R? satisfies (B.1) and (B.2),
+

then the following asymptotic formula holds:

lop | N+2-p(N-2)
4

pi(h, @) = Caa 75\ +o(a AR, 2.7)
N+2—p(N-2) _ L,
where Cy = K7 'Ky (|w]21/2)"

We note that o > 0 may not be fized in Theorem 2.1. If a > 0 is fixed, then (B.1)
implies (B.2) immediately. However, if & > 0 is not fired, then (B.1) does not imply (B.2)

in general.

Theorem 2.2. Assume (A.1). If a sequence {(\,a)} C R% satisfies (B.1) and (B.3),

then the following asymptotic formula holds:

i\ ) = Caa T AT L o(@ T ), (2.8)
N+2—g(N—2) _
where Cy = J7 'y & ([W[i1/2)% .

We should notice that in the situation of Theorem 2.2, a > 0 is not fized. Clearly, if
a > 0 is fixed, then (B.1) contradicts (B.3). (B.1) and (B.3) are consistent, for example,
ifa=A""(m > (N -2)/2).

Theorem 2.3. Assume (A.1). If a sequence {(\,3)} C R% satisfies (B.1) and (B.4),

then the following asymptotic formula holds:

+2—p(N —2) N+2-p(N-2)

s\, B) = Cuf~ 5N 30 fo(B PN B ), (2.9)

_ 2 Nt2-p(N-2) N
where Cy = K, "' Ky, "™ (p+1)7 = |lw|} ;.
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Theorem 2.4. Assume (A.1). If a sequence {(\,3)} C R2 satisfies (B.1) and (B.5),

then the following asymptotic formula holds:

pa(\, B) = CsB™H N3 4 o(f AT I ), (2.10)
2 N+2-qg(N-2) _
where Cs = J, 1, 2TV (g + 1)_‘;%i IIWIIZH

Remark 2.5. (1) Note that 8 > 0 may not be fized in Theorem 2.3. If 8 > 0 is fixed,
then (B.1) implies (B.4) immediately. However, if 8 > 0 is not fized, then (B.1) does
not imply (B.4) in general. Furthermore, in Theorem 2.4, 3 > 0 is not fired. Clearly, if
B > 0 is fixed, then (B.1) contradicts (B.5). (B.1) and (B.5) are consistent, for example,
if B=A""(m > N/2).

(2) Theorem 2.1 and Theorem 2.3 imply that if «, 8 > 0 are fized, then

w1 (A, )
NZ(/\a ﬁ)

This phenomenon is explained as follows. We see that as A — oo, ||ug, )\,allgii behaves

— 00 as A — oo.

like (P+1)/2\~(N+2-p(N=2))/4 (¢f (3.15) in Section 3). Therefore, if a, 3 > 0 are fixed,

then ®(u; o) — 0 and consequently, u; x o € Mg is impossible. Hence if # > 0 behaves

like o(P+1)/2)\=(N+2=p(N=2))/4 35 X\ _, o, then the 'growth order of ux(A,B3) as )\’ — 00

is the same as that of p1(A, ). More precisely (let Ky = K; = 1 for simplicity), if the

top term of p;(A, ) coincides with that of py(A, B), then by Theorem 2.1 and Theorem
_ptl ptl

2.3, B = By, must satisfy 8y o, = C, F:TCF a5 A\~ (N+2-p(N=2))/4  Thjg corresponds

to the fact that
1

_ +1
P(ui ) = m(l +o(W)|lurx,ellny:
_pl ] i1 ptl . _Ni2 p(N_2)
=C, 77’ m(l + 0(1))”10”23: A i
= (1+0(1))Bxa;

which will be shown in Section 4.

Since the proof of Theorems 2.2-2.4 are similar to that of Theorem 2.1, we only prove

Theorem 2.1 in the rest of this paper.
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3. Lemmas. Since (1.1) is autonomous, by translation, we may assume without loss
of generality that 0 € Q. In Section 3 and Section 4, we consider the problem (M.1).
For simplicity, C' denotes various positive constants independent of (), &). In particular,
the character C' which may appear repeatedly in the same inequality sometimes denotes
different constants independent of (A, @). Further, a subsequence of a sequence will be
denoted by the same notation as that of original sequence. Finally, for convenience,

Ko = K; = Jy = J; = 1 in what follows. By (1.2) and (1.3), for t > 0 we have

CtP+19) < fFt)y < CTH P +19), (3.1)

Ct<g(t) <C™'t, (3.2)

C(lEHT + ullit) < (F (), u) < O (JlullPh + el (3.3)
C(lullZht + lullh) < @(w) < C7H(lulfiy + ulldd), (3.4)
Cllullz < (g9(u),u) < C7lull3, (3.5)

Cllull < ¥(u) < C7Hul3. (3.6)

We can prove the existence directly by choosing a maximizing sequence {u,} C N o
of (2.1), since sup,cyn, . ®(u) < co for a fixed (A\,a) € R3. In fact, by (3.4) and the

Gagliardo-Nirenberg inequality (cf. [7])

N+2—n(N—2) N(n

lullyiy < Cllully™ 7 lullx ? << (VN 4+2)/(N -2)) (3.7)

for u € Wy*(Q), we obtain that sup,cy, = ®(u) < 00

The aim of this section is to estimate p1(\, &) from below and above by A and a.
Lemma 3.1. Assume that {(\,a)} C R? satisfies (B.1) and (B.2). Then

N+2-p(N—2)

ATE (3.8)

pi(A a) < Ca' 2"

To prove Lemma 3.1, we need some preparations.
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Lemma 3.2. For 1 > 0, let w, € C?(B.) be the unique solution of the equation
Aw, +wP —w, =0 in B, :={z e RN :|z| < 1},
(3.9)
w; >0 in By, w,=0 on 0B;.

Then w, — w not only in H'(RYN), but also uniformly on any compact subset in RN as

T — OQO.

The unique existence of w, follows from Kwong [13], and the latter assertion can be
proved by the similar arguments as those of Lemmas 4.5, 4.7 — 4.8 in Section 4. Hence

we omit the proof. By [10], w, is radially symmetric, that is, w,(z) = w(r) (r = |z|).

Lemma 38.8. Assume that {(\,a)} C R? satisfies (B.1) and (B.2). Let W x5, be the
solution of (8.9) for T = \/Arg, where 0 < 1o < 1 is a constant. Put

c,\,aal/z/\(N‘z)/“w\/XTo(\/Xlx]), z € By, :={zcRN:|z| <rg} CQ,

U)\,a(|$D = { 0, x € Q\Broa

where ¢y , :=min{c > 0: ca1/2/\(N_2)/4w\/Xm(\/—/\_|a:|) € Nyat- Then C <cyo <C7L

-1
Proof. For t > 0, let my o(t) := As(tUxr,a) = 5]!V(tU>\,a)[|§ + AU(tUy,o). Then clearly

mx,«(0) = 0 and my () — oo as t — oo for a fixed (A, ). Hence ¢y o > 0 exists. Since

HVUA,OL

3= allVus,lz  MUnelld = acllwyz, 2,

by (3.6), we obtain

1 _
0 = MU0) ~ e (51T 5, [+ O s, ) (310)

By Lemma 3.2 and (3.10) we obtain our conclusion. [J

Proof of Lemma 3.1. By direct calculation we have

+1 +1 41 Pkl _ N42-p(N-2)
1Uxallpry = o llw s llpiia 2 AT 05

this along with (2.1), (3.3), (3.4) and Lemmas 3.2 - 3.3 implies

(f(ur00)s U pa) = CO(urna) > C¥(Usa) = CllUs o2

(3.11)

_ N+2-p(N-2)
4

> Ca%l/\



126

Furthermore, since 11 x,o € Ni,«, we have

[Vurpall3, Muipels < Co.

(3.12)
Then, by (2.3), (3.6), (3.11) and (3.12)
2
ﬂl(/\, o) < 200 + C)\|]u17>\,a}|2 < C()z(l;p) /\N+2—i(Nv2) ‘

(f(ul,/\,a),m,x,a)
Thus the proof is complete. [
Lemma 3.4. Assume that {(\,a)} C R? satisfies (B.1) and (B.2). Then

p1(A, @) > Ca' T\ (3.13)

Proof. Since uj o € Ny, we obtain by (3.6) that there exists a constant § > 0 such
that

1
IVurxalls + AMg(u1ra), u1n,0) =6 {EHVUL,\,aH% + /\‘I’(Uu,a)} = 0Ax(u1 2 ,0) = bar.

(3.14)
Then we obtain by (B.2), (3.7) and (3.12) that
N+2-— —2) N(p—1) , Pl _N+2-p(N-2)
luraalfi < Clurpaly 2 [Vuiaaly = S Ca™ATT 5,
N+2—g(N—-2) N(g—-1) +1  _N42-g(N-2)
lurpalily < Cluiaall, * Vupalls = <Ca™ A 2 (3.15)
| B e e
Then by (3.3) and (3.15), we obtain
41 Nf2-p(N-2)
(furra), utae) < ClluiaelZiT + uraelliT]) < Ca™ A . (316)

Then by (2.5), (3.14) and (3.16), we obtain

Vu [ 2 +)\ U o) U o
i a) = IV8al3 + AG(0,0,0), 1100)
(f(u1x,0) U1 2 ,0)
ba

1—p
2
= oy = CaT A
Ca™= A 1

N+2-p(N —2)
1
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U

4. Proof of Theorem 2.1. We put

Ena = (A (A, )Yy (2) = £ x ol na(),
Qy = {y € RV : y= \/X:ny € Q}y wl,)\,a(y) = gii’aul,&tx(aj) (y = \/X:U),

ho(t) = g(t) —t, Ho(t) := /O ho(s)ds, hi(t):= f(t) — |t]P~1t, Hi(t) = /O ha(s)ds.

Then by (1.1), we see that V1,0 and wy x o satisfy the following equations, respectively:

1 _ . .
_;\‘A'Ul,)\,a = ’Ui),/\,a +fl,iah'l(fl,/\,avl,/\,a) — Vo — 51,)\’&}10(51,)\,0101,/\,&) m Q,

Vipe >0 in Q, v1,,=0 on 09, (4.1)
_Awl,)\,a = wf,/\,a Wi At g,ii),ah'l (Gl,k,awl,)\,a) - f;’i,ahO(gl,A,awl;A,a) in Q)\a

Wine >0 in Qy, wine=0 on 00y. (4.2)

If {\,a)} C R? satisfies (B.1) and (B.2), then by Lemma 3.1, we obtain

Pl > C(a’AN-2)5 L 4.3
e = ) > Cla )T — oo (4.3)

By Lemma 3.1, we easily obtain the following Lemma 4.1.

Lemma 4.1. Assume that {(\,a)} C R2 satisfies (B.1) and (B.2). Then

IVwinal3 <C, (4.4)
lwixels <C, | (4.5)
lwiaalllt] <C (1< < (N42)/(N—2). (4.6)

Lemma 4.2. Assume that {(\,a)} C R3 satisfies (B.1) and (B.2). Then
(i) supcqvipa(z) <C.

(it) e, A™N2 < o]y de <C AN i 1< 7 < o
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Proof. By (4.4) and (4.5), we obtain

1
— Vv A,o
A(Al 1

‘ _ 1
o) o = 6 (FIT0 0l + o)

= (|[Vwial® + ||w17,\’al|§))\—N/2 < oA N2,

4.7)
Furthermore, by (3.6) and Lemma 3.4, we obtain
1 . _ _ , — -
/Q <X|wu,a12 +vim> de > CE3 N M (umpe) = C6 XA
= Ol )P Tar T AN > oA/,
{#’1 ’ ) } - ( )
4.8

Once (4.7) and (4.8) which correspond to Lin, Ni and Takagi [14, Corollary 2.1 (2.6),
Proposition 2.2] are established, then (i) and (ii) follow from exactly the same arguments
used in the proof of [14, Lemma 2.3 and Corollary 2.1 (2.7)] by using (4.7) and (4.8).

Hence the proof is complete. [

Lemma 4.3. Assume that {(\,a)} C R? satisfies (B.1) and (B.2). Then ||vixallo =
C.

Lemma 4.4. Assume that {(\, @)} C R2 satisfies (B.1) and (B.2). Then
. +

P = A 2dist (21,0, 0Q) — 0.

Lemma 4.5. Assume that {()\,a)} C R? satisfies (B.1) and (B.2). Furthermore, let
Yi o 1= \/Xarl’)\,a € RN. Then for any subsequence S C {(\, «)}, there exists a subse-
quence {(\j, a;)jen} of S such that z;(y) = w1z, a; (YF+Y1.2;,0;) — w(Y) on any compact

subset in RN as j — co.
Lemmas 4.3-4.5 follow from Lemma 4.1, Lemma 4.2 and exactly the same arguments
used in the proof of Ni and Wei [16, Step 1 (proof of (3.2)), p. 737-738]. Furthermore,

the following Lemma 4.6 is a direct consequence of (1.2), (4.3) and Lemma 4.2 (ii). Hence

we omit the proofs.
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Lemma 4.6. Assume that {(\, @)} C R? satisfies (B.1) and (B.2). Then

8 [ (€ atnnal)uinalildy —0,
Qx

(4.9)
8 [ HiEnmatina)dy — 0
Qa
51“7,1\,04/ ho(§1.3,aW1x,0(¥))W1xa(y)dy — 0,
" (4.10)
Exa | Hol€ipaawina(y)dy — 0.
Qx
Lemma 4.7. Assume {(\, )} C R satisfies (B.1) and (B.2). Then
[wllp+1 < liminf flwyxallpr1 < lmsup lwisallprr < ffwllp+r- (4.11)

Proof. The first inequality in (4.11) follows from (4.6), Lemma 4.5 and Fatou’s lemma.

We show the last inequality. First, multiply (2.6) by w. Then integration by parts yields
IVwllf + [[w]l3 = lfwllf;. (4.12)

Let B,, C . Furthermore, let x) € C?(R") satisfy

( ): 17 |y|§\/;\_r0—1,
P00 = Vo,

and

0<xa(¥) <1, |Vxa(y)] <C for ye RN, A>1.

Let Va(y) = w(y)xa(y) for y € RY. Then for A > 1, clearly, we have
[VVallz = @+ o(M)IVwllz,  [Vallz= @ +o)wllz,  [[Vallp+1 = (L + o) wllps1-
(4.13)

Let ¢y := inf{c > 0 : cVi(VAz) € Ny o} and ey (z) := eAVi(v/Az). Then we can easily

show that ¢y — co as A — co. By using this and (1.2), we obtain

= o(1)llexll3.

/ Hy(ex(z))dx
Q
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By this and (4.13), we obtain

a=mwn=§w@%+§A@a%+Lﬂwmmmﬁ

= LAV (VAR + (L+ oW)IVAIR) = 33N T (1wl + (1 + o)l )
= 2N (o)l
(4.14)
Similarly, we also obtain
[ Huer@)de = ol = oA VAL (4.15)

By (2.1) we have ®(uj x.o) > ®(ex), namely,

1

1 +1
L unnall+ [ a2 sl + [ e

This along with (4.10), (4.13) and (4.15) yields

(1 +o(1)EENN 2wy x albi7 = (L + o) ]us Sl > (14 o)) leallBH
= (14 o(1)ET AN IBE = (1 +o(1))e “A‘N/anu*;i}.

This along with (4.14) implies that

(pH1)(N+2 (N-—2)) (p+1)(p—1)
lwraalZHE > (1+0(1)2a) A~ T (@) Ty, ¢ - (416)

Finally, by Lemma 3.4, (4.9) and (4.10), we obtain

)‘{(g(ul,)\,a)y ul,)\,a) - 2\I’(u1,)\,a)}

=\ {/ ho(u1 o (Z))urze(z)de — 2/ Ho(ul,,\,a(:v))d:c}
Q Q
2-N 2N '
=& a0l ? / ho(€1 30w N a¥)Wi N e(¥)dy — 2272 / Ho(€10,0w10,a(Y))dy
Q)‘ QA

N+2—p(N—2)

= o(1)€2, AT = oA, @) TN D = o(l)a.
This along with (2.3) and (4.9) yields

2(1+ o(1)) _ 2(1+ o(1))o
At o) urralBl (L + o)AV [ allBTL

(A, a) =
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This implies
2—p(N

N+2— —2)
(L+o(INAT 2D |JwyxalfF]

2 1
A, )71 . e 4.17
Ha(, @)? 2(1+ o(1))x (4.17)
By substituting (4.17) into (4.16), we obtain
(p+1)(p=1) | (Pt 1)(p-1)
2

llwllpy ™ = @ = oM)llwixallps

Thus we obtain the last inequality in (4.11). O

By Lemma 4.7, we easily obtain:

Lemma 4.8. Assume that {(\, )} C R? satisfies (B.1) and (BQ) Then
lwiaallz = llwllz,  [Vwixallz = Vw2 _ (4.18)

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1: By Lemma 4.6 and Lemma 4.8, we obtain

1
U(urpe) = §!IU1,A,aH§+/Ho(Ul,A,a(x))dfc
o)

1. . _

= ATV lwiaall3 AT Ho(€rp awipne(y)dy (4.19)
2 3Ny ﬂ)\
1. . .

= 5)\ N2e2 | o (lwli3 + o(1)).

Then by (4.12) and (4.19)

' 1
a=MUra) = §HVU1,A,a|!§ + AT (u1,,0)
1. _ )
= §£f,k,a/\(2 N2 (1 + o) Vw3 + (1 + o(1)) wl|3)

. 1 _
= 5 (L 0(1)ER 2 AN 2 21

this implies

. 2 N+2-p(N-2) 2¢
pi(A, ) TPTATRE DT = -
(1 +o(1)llwllbis

Now, Theorem 2.1 is a direct consequence of (4.20). For the case where Ky # 1, K; # 1,

(4.20)

we have only to replace A, p1 (A, &) by KA, Kip1(\, o), respectively. [
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