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ON THE EVOLUTION OF A HIGH
ENERGY VORTICITY IN AN IDEAL FLUID

RRTERFEHEZL KREHEL (HIRosHI OHTSUKA)

1.Introduction.

The motion of a two dimensional incompressible homogeneous ideal
fluid is governed by the system of the partial differential equations called
the Euler equations. On the other hand, the vortex model is also used
by many researchers to study the motion of the fluid. In the vortex
model, the (scalar) vorticity is assumed to be concentrated in some points
evolving according to the system of the ordinary differential equations
called the Kirchhoff-Routh equations. (3.2) in section 3 is an example of

a system of the Kirchhoff-Routh equations.

However, if some parts of the vorticity concentrate in some points,
the fluid never has finite kinetic energy. Moreover, the solution of the
Kirchhoff-Routh equations does not constitute a solution of the Euler

equations even in such a weak sense as Definition 2.1 in this note.

Therefore, we want to understand the solutions of the Kirchhoff-
Routh equations in terms of the solutions of the Euler equations with

high but finite kinetic energies.

To this purpose, we define the high energy vorticities and establish

the structure theorems of them (Theorem A and Theorem B). Then, we
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consider the limit of the energy diverging sequence of the weak solutions

of the two-dimensional incompressible Euler equation (Theorem C).

Remark. The details of this note are in [O].

2.0n two demensional incompressible ideal fluids.

Let Q C R? be a simply connected bounded domain with smooth
boundary 0. We consider the motion of the incompressible homoge-

neous ideal fluid with unit density in 2.

The Euler equations are as follows:

ou

e +(u-V)u=-Vp in Qx(0,T), (2.1)

: 0 0 :
divu = 5;“1 + a—mguz =0 in Qx(0,T), (2.2)
u-n=0 on 900 x(0,T), (2.3)

where u(z,t) = (u!(z,t),u?(z,t)) is the velocity field and p(z,t) is the

(scalar) pressure.

Applying the curl operator to (2.1), we obtain the evolution equation

of the vorticity w(z,t) = curlu(z,t) = z2ru?(z,t) — L ul(z, t):
%+(u-V)w=0, (2.4)

Because () is simply connected, it is well known that u satisfying (2.2)

and (2.3) admits the representation

0 0
U = V‘LG(.U = (@Gw, ——a—m—lGW), (25)

where Gw(z,t) = [, 9(z,y)w(y,t)dy and g(z,y) is the Green function of
— A with 0-Dirichlet boundary condition.



95

Using (2.5), we can eliminate u from (2.4) as follows:

Oow

5 +(VIGw - V) w = 0. (2.6)

Therefore, the vorticity evolves by itself according to (2.6), which we call
the Euler equation for the vorticity, or simply, the Euler equation in this

note. We consider solutions of (2.6).

It is well-known that a sufficiently smooth solution of the vorticity
equation conserves several quantities during the evolution. Especially,
the kinetic energy (1/2) [, lu(z t)lzda: Which is equal to E(w(-,t)) =
3 Jo 9(z,y)w(z, t)w(y, t)dzdy, and [, f(w(z,t))dz for any smooth func-
tion f(-) are conserved. Indeed, multiply each side of (2.6) by Gw and
f'(w) respectively and integrate them. Moreover, ||w(-,t)||zqa(n) for 1 <
g < oo is conserved. Furthermore, if w is positive initially, then w is also

positive at every following time.

In our analysis, a vorticity should be a weak solution in the sense
of Definition 2.1 below staying in the high energy class E(q,s, K) de-
fined in section 3. In particular, we consider the weak solutions in
L>(0,T; L)) for g > 1.

Using (V+Gw - V)w = div(wV+Gw), we have the following weak

expression of (2.6):

/ / w(V+Gw - V)pldzdt = 0 (2.7)

for every scalar function ¢ € D(Q x (0,7)). From the elliptic reg-
ularity theory and the Sobolev embedding, (2.7) has the meaning if
w e L®(0,T; L*3(Q)). However, we can extend (2.7) as follows:
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Definition 2.1. w(z,t) € L*°((0,T); L}(Q)) is a weak solution of the

Euler equation if w(z,t) satisfies

/ / % o + / / (2, v, )w(@, w(y, dedyldt = 0 (2.8)

for every scalar function ¢ € D(Q x (0,T)), where

Hy(z,y,t) = Hy(z,y,t) + Vah(z,y) - Vio(a, 1),

H(p(il?,y,t) — _% (CB - y)i . [Tff_m;jg — Vso(y,t)]

Y

1 _
h(z,y) = g(z,y) — o= log|z —y|™".
2T

(2.8) is equivalent to (2.7) if w € L>®(0,T; L*/3()). For the precise
derivation of (2.8) from (2.7), see [S] (or [O]).

We know the following facts on the existence of a weak solution of

the Euler equation:

Facts 2.2. (Lions[L] and Yudovich[Y]) For every wy € Li(Q) for 1 <
q < oo, there erists a weak solution w € L*(0,00;L4(Q?)) such that
w € C([0,00); LP(Q)) for all 1 < p < q and w(:,0) = wo(-). Moreover,
this w conserves E(w), ||w||r(q) for every 1 < r < q, and the positivity

of w.

Remark. For g = oo, Yudovich proves the above facts [Y]. For 1 < ¢ < oo,
we obtain Facts 2.2 from the results by Lions [L], though his notion of

the weak solution of the Euler equations is different from us.
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3.The results.
We consider the following classes of the vorticities:
P(Q) ={we L) :w > 0and ||| q) =1}

P,(Q) =P(2)NLYN) for somel < g < oo.

Py(Q,8) ={w € Py(R) : 0 < ||wl|pan) < s} for some s > 0.

Let I be the characteristic function of B,(0). Then Al (z — o) for some
zg € () is a typical element of P,(£2, s) for sufficiently large s if \, € and
s that satisfy

re*A=1 and weA =359, ie., &= (ms?)"V? (3.1)

where ¢/ = ¢/(¢—1) for 1 < ¢ < oo and ¢’ = 1 for ¢ = co. In the rest

of this note, A, ¢ and s always satisfy these relations (3.1), Moreover,
if ¢; is given for example, A; and s; are determined by 71'6,%)\,; = 1 and
mel\d = si.

The following facts are standard:

Fact 3.1.

E(q,s):= sup FE(w)<oo and E(g,8) — 00 as §— oo.
wEPy(Q,s)

Now, we define the class of the high energy vorticities of Py(€2, s) as
E(q,s,K) :={w € Py(Q,s) : E(g,s) - K < E(w) < E(q,s)},

for some K > 0. Then, we obtain the following results:
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Theorem A. There ezxists a constant §9 = §o(Q2) such that for every
s > 3o, every w € E(q,s,K), and every v > 0,

ro(y) :=inf{r > 0: sup'/ w(y)dy >1—~v} <eexp(Co/7),
z€N JQNB,(z)

where Cy is a positive constant independent of s,w, and 7.

Theorem A implies that every w € E(q,s, K) concentrates near its

center Z,, := [, zw(x)dz, for example.

Theorem‘ B. Fizrl < q < oo and K > 0. There exists a constant
K > K satisfying the following properties. If we choose any sequence
s, —> 00 as n — oo and w, € E(q,sn,K) such that there exists a
limiting center Tp(:= Zy,,) — Too € Q as n —> oo, then

Too € Qg :={x € : meas}ch(a:) ~K<H(z)< m&:}cH(m)},

where H(z) = (1/2)h(z, ) and h(z,y) = g(z,y) — (1/27)log |z — y|~ .

Theorem C. If we choose any sequence s, —» 00 as n — 0o and
wn(z,t) € L®(0,T;L*(Q)) that is a weak solution the Euler equation
such that w,(-,t) € E(q, 8n, K) for a.e. t € (0,T). Furthermore, if there
is a limiting path of center T,(t)(:= Z,, (1)) — Too(t) in L>(0,T)2
weakly * as n — oo, then, for almost every t, this Too(t) is equal to a
solution of

dz

- = V4 H(2) (3.2)

staying in Qp.

Remark 3.1. The equations (3.2) are called the Kirchhoff-Routh equa-
tions of one vortex with unit intensity (i.e., a vorticity consists of a Dirac

measure). See, e.g.,[T2].
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Remark 3.2. It is easy to see that there exists a sequence that satisfies
the hypothesis of Theorem B and Theorem C, because 2 is bounded and

we know Facts 2.2.7

Remark 3.8. Our results relate to Turkington’s results on E(oo, s,0) in
[T1], closely. See also [T2].

4.Sketch of the proofs.

4.1. Theorem A.

Instead of E(q, s, K), we consider
F(q,s,K) ={w € Py(Q,s): F(q,s) — K < F(w) < F(q,s)},
where

F(g,s)= sup F(w)(< o0),
wEPy(Q,s)

F)= /Q No(2)w(z)dz,
1

1
- [1 .
Nw(z) o /Q og P ylw(y)dy

Then, we prove the following theorem:

Theorem 4.1. There exists s1 > 0 depending only on §2 such that for
every s > s1, every K > 0, every w € F(q,s,K), and every v > 0,

ro(7) < eexp(C1/v),
where C1 is a constant depending on K but independent of w, s, and .

Now, Theorem A follows the fact that E(q,s,K) C F(q,s,K') for

some K’ > 0, which we can see from the following energy estimate:



100

Facts 4.2.

(1) E(w) < F(w) + Cs, especially E(q,s) < F(g,s) + Co,

(2) F(q,s) + sup H(z) — C3 < E(q,s) for sufficiently large s,
€ (4.1)

where Cy and C3 are constants independent of s.

The estimate (1) is easily obtained because h(z,y) is bounded from
the above. On the other hand, the estimate of (2) is obtained by calcu-

lating the energy of the typical element AL (z — zo) € Py(Q,s), where
zo € Q) satisfies H(zg) = sup,cq H(z).

The following estimate of the Newton potential Nw(z) of w(z) is the
key in the proof of Theorem 4.1:

Lemma 4.3. For every ¢ > 0, every R > 1 and every w € Py(Q) for
1 <qg< oo,

Nuw(z) < — log = + —¢2/1 ) — —1 d
w(z). < o og . + 27r6' |wl||La () 5 ogR/Q\BRe(w)w(y) Y,

where Cy4 is a constant depending only on q.

Proof. We have the following decomposition}of Nuw(z):

1 1
Nw(z) = —[log - —l—/ log
27 QNB. (z)

w(y)dy
€ |z -yl )

3
+/ log w(y)dy]|.
AB.(z) 1T~ Y| (v)dy]

It is easy to see that

€ !
/ log w(y)dy < /9 Cyllw| La(a),
QNB.(z) |z — gy
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where Cy = ||log|z|||fo(p,) < co. On the other hand, as R > 1 and

w > 0, we obtain

€

g
log w(y)dy < / log w(y)dy
/Q\Bs(:n) |z — | ) N\Bre(z) |T—9Y|

< —logR/ w(y)dy. O
* Q\Bre(z)

Corollary 4.4. For every sufficiently large s and every w € P,(Q, s),

1 1 Cs

1 ‘
F —1 — — —1 f dy. 4.2
(w ) 47 og + 4t 47 OgRa}QQ A\Bne(m)W(y) Y ( )

Proof. F(w) < supgycq Nw(z) provided w € P(R2). O

Proof of Theorem 4.1. Fix zo € . Then A (x — zo) € Py(Q,s) for

sufficiently large s. Therefore, we have

1 1 C
F(g,8) > F(Me(z — zo)) = ;- log ~ + 4—3 (4.3)

Using (4.2) and (4.3), for every R > 1 and every w € F(q, s, K), we have
1 1
log R inf dy < 4x|—log—- — F
ogRinf, | el < dal g )]+ Cs
< A4n[F(g,s) — F(w)] — Cs + Cs
S 471'K + 05 - 06- (44)
Now, we take C7 > max{4nrK + C5 — Cq,0}. 'Then, if R > 1, we can

rewrite (4.4) as

sup/ w(y)dy >1—C1/logR. (4.5)
€SN QﬂBRe(:D)

For every v > 0,’let R satisfy v = Cy/log R, that is, R = exp(C1/7).
Then, R > 1, since C; > 0. Therefore, using (4.5), we obtain

inf{r >0: sup/ w(z)dr >1—~} < Re =eexp(C1/y). O
. z€Q JQNB,(z) o
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4.2. Theorem B.
Let v = v(s) = —C}(loge)~? for some fixed Cj > Cy. Then

v(s) — 0 and 7(s) :=ecexp(Cp/v(s)) — 0 as s— co.

Therefore, w, — (¢ — Too) weakly in the sense of the measures.

On the other hand, using the energy estimate (4.1), we have, for

sufficiently large n,

F(q,sn)+supH(z) — Cs — K
ze
< E(q7 sn) - K

< Blun) = Flon) + 5 [ [ b v)on(e)onw)dady
F(q, sn) //h T, Y)wn (z)wn (y)dzdy,

that is,
1
supH(z) — K — C3 < —/ / h(z,y)wn(z)wn (y)dzdy. (4.6)
2€Q 2 JaJa

Since H(z) = (1/2)h(z,x) — —o0 as z — 01, we can see that T, € Q.
Then, the righthand side of (4.6) converges to H(Z) because w, —>
§(z — Zoo). Therefore, we obtain Theorem B with K> K+ Cs.

4.3. Theorem C.
The following proof is essentially equal to that of Theorem 3.2 in [T2].

Instead of considering the motion of the center of the vorticity Z,(t),

we consider the motion of more regular function

én(t):/Qmﬁ(m)wn(x,t)da:,
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where {(z) € C§°(R) is a fixed function satisfying

0<{¢(z)<1 for VzeQ,
((z)=1 for VzeQy,.

Here L; > K is a fixed constant.

It is easy to see thé,t
”:fn — ftnlle(o’T)z = 0(1) as n —> oo. (47)

Moreover, we have the following fact:
Lemma 4.5. Let w € L (0,T; L*(Q)) be a weak solution of the Euler

equation. Then &(t) = [, z€(z)w(z,t)dt € WH*°(0,T)2. Especially,

L / / Hoie (@, y)o(, Ywly, )dzdy in D'(0,T).
& =),/

Proof. Insert a test function n(t)z*¢(z) for n(t) € D(0,T) into (2.8). O
The following theorem is the main part of the proof of Theorem C:

Theorem 4.6. For every 0 < T < oo and every o > 0, there exists a
constant sy depending on T and o that satisfies following properties. Let

a weak solution of the vorticity equation w(z,t) € L*°(0,T; L*(Q)) satisfy
w(-,t) € E(q,s,K) for a.e. t € (0,T) for some s > sy. Then there exists
2(t) that is a solution of (3.2) staying in Qr, such that

”53(t) - Z(t)”W1>°°(O,T)2 S o.

Sketch of the proof. At every t € (0,T) such that w(-,t) € E(q, s, K), we
may assume that By sy (Z(t)) C Qy, for a.e. ¢t € (0,T) if s is sufficiently
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large. Now, we take Ty € (0,T) such that w(z,T1) € E(q, s, K), and z(t)
that is a solution of (3.2) satisfying z(T1) = Z(T1). Then, z(t) stays in

Qr, because z(t) conserves H(z(t)). Furthermore, for a.e.t, we have

d . d .
1S 2 (t) — —F ()| < Jy + Jo + s,

[ [ (e el el dedy)
Br(s)(j(t)) B'r(a)(i(t))
=1 [ / By (2,9, )y, £)dady
Br(s)(i(t)) Br(s)(j(t))
- [ [ Buele pote oty Odzdy.
aJa
It is easy to see that

J1 < Crl2(t) — 2(2)]

where C7 is a constant depending only on L;, because V- H(z) is uni-

formly continuous over (1;,. It is also easy to see that

Js < Cs(llwllzr(e) + Wl B, con)llwlliL @\, @) < 207 = o(1),

where a constant Cg and o(1) is also independent of ¢ and w.

By the way, we have

/ / Hyee (2, y)w(a, oy, t)dady
B'r(s)(i(t)) Br(s)(‘i‘(t))

- / / (VAR (2, y)w (e, (g, t)dady,
Br(s)(ﬁ(t)) Br(s)(i(t))
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because Hyi¢(z,y) = 0 if &,y € B (5)(£(t)) C Qr,. Therefore

J2 = (V- H) (2(t)

_ / / (VIR (2, y)w(z, w(y, t)dzdy]
Bro (1)) I B (3(4) |

=o(l) as s— oo,

where o(1) is also independent of ¢t and w.

We can summarize the above calculations as follows:

dz
dt
for a.e. t € (0,T), where o(1) is independent of ¢ and w.

(t) - %f-(m < Colz(t) —#(t)| +o(1) as s— o0 (48)

Then, using the Gronwall inequality, we obtain Theorem 4.6. [

Now, we sketch the proof of Theofem C. We may assume T < 00.
Using (4.7) and Theorem 4.6, we can construct {z,(t)}, which are the
solutions of (3.2) and z, — %o in L>®(0,T)2%. As {2,(¢)} are the solu-
tions of (3.2), it is easy to see that the Zo, is equal to a solution of (3.2)

for a.e.t € (0,T). Therefore, we obtain Theorem C.
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