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On the solution of the Time Dependent
Ginzburg-Landau equations
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1 Introduction

Let € be a bounded domain in R? (d = 2,3) with smooth boundary 9Q. We
consider the Time Dependent Ginzburg-Landau equations:

o =D+ r(1 = [P + iy, in (0,00) x 0, (1)
A, = —1ot?A — Z(H(Dav) ~$(Dad)} + V&, in (0,00 x 2,  (2)

where D9 = (Vi) — 1A%)), 9 is the complex order parameter, A is the magnetic
vector potential, ® is the scalar electric potential and & is a real positive constant
called the Ginzburg-Landau parameter of the substance. The system (1)-(2), which
we call the TDGL equations below, was proposed by A.Schmid [8] or L.P.Gor’kov
and G.M. Eliashberg [6]. The TDGL equations have an important property, namely,
that of gauge invariance. Throughout this paper we consider the problem in the
Coulomb gauge, namely,

divA =0, in 0. (3)

Then, the boundary conditions are prescribed as

o

— =0 oN 4
an ? on 7 ( )
A-n=0, on 0, (5)
rotA x n =0, on 0, (6)
o0 )

—_— = N 7
an 07 Onv ? (



where n denotes the unit outer normal vector to the boundary 8. The initial
conditions are

$(0,z) = 1y, in Q, (8)
CA(0,2) = Ay, in Q. (9)

In the following, in order to get the uniquness of solutions, we assume that
/ ®(t,z)de =0,  Vi>0. (10)
Q

Let W™?(0) be the standard Sobolev space of complex-valued functions, and
as usual, W™?(0Q) is denoted by H™(Q). W™?(Q2) and H™(£)) denote the Sobolev
spaces of real vector-valued functions. As usual, L*(Q2) = H°(Q) and L*}(Q) =
H°(0). We introduce the following function spaces :

Co(Q) = {¥ € C=(Q); g-ﬁ— —0 on 80},
H,(Q) ={AeL*); divA=0 inQ, A-n=0 on N},
H.(Q) = {A € H(Q);divA =0 in Q,

rotAxn=0, A-n=0 on N},

Cr(Q) ={A e {C()}% divA =0 in Q).

Clearly, C2°(€) is dense in L*(€) and C(9) is dense in H, () (See [11]).
The scalar products and the norms of L2(Q) and L?() are denoted by

oods = [@e@de, [l = ()
(AB): = [ A@)-Blayds, Al = (A, AL

Also, the norms of L=() and L*°(Q) are denoted by
[l = ess sup ih(z)],  [|A[lp= = ess sup|A(z)].
z€Q TEQ

L%(9Q) is defined by L?(Q) & H,(Q) where @ implies direct product. Clearly £*(Q2)
becomes a Hilbert space. The scalar product and the norm of £?() are defined by

UV)e = [ b@)ple)ds+ [ Alx)-Bla)ds,
WU = 1912 + Al = 12 + Al

where U = (4,A)" and V = (¢,B)". For all 1 < p < oo, £LP() is defined by
LP(Q) ® LP(©2). We denote the norm in £7(Q) by

1UNNze = 1Y 11Zs + 1Al (11)
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Analogously, H™(Q), W™?(Q) and L£>() are defined by H™(Q)eH™(Q2), W™ (Q)D
W™P2()) and L*(Q2) @ L*(Q), respectively. We introduce

HI() = HE(9) @ (H(2) N H(2),

where o > 1.
Since divA = 0, the TDGL equations (1)-(2) are rewritten as

o= AP — 2i(A - V) ~ [APY + 5(1 = [$[) + 129, (12)
Ac= AA = PILB(VY) = p(V9)} + [6PAL (13)
A® = div { S{F(D.4p) - w(DAD)}} (14)

where P is the orthogonal projection P : L*(Q2) — H, ().
First, we discuss (14). We recall the Gagliardo-Nirenberg inequality
197 Fllze < ClO* fllza 1712, (15)
where %—%zs(%——)-}—(l—s)— jlk<s<1 (1fk—j—~§isanon—negative
integer, only s < 1 is allowed.) where d is a number of dimension. Hereafter, C

denotes various positive constants which may change from line to line. Calculating
the right-hand side of (14), we have

div {S7D) — oD} = 5 {Faw 0BT - 2i(TlwPA}.  (19)
Using the Gagliardo-Nirenberg inequality, we have
Idiv { 3 (B(D4¥) ~ 6D} | Iz
< C {9l 1A%]ze + | Allgs 9]z [|Vllos}
< Il 1el5! + Al vl n¢u3/8} ford=3, (17)
Jaiv {5 (B(D ) ~ w(Dap) } Iz
< C{IllEE eI + Al llelzs 111757}, ford=2, (18)

where C is a constant depending on . By the standard elliptic theorems, we have

Lemma 1 We suppose that (1, A) € H2(2) is given. Then, the boundary value
problem

A0 = div LD - p(DaD} ), 0 (19)
g—(: =0, on 00 (20)
/ﬂ ®(z)dz = 0, (21)

has a unique solution ®(p, A) € H*(Q).



We employ the semi-group theory. (12) and (13) with the initial conditions
(8), (9) and the boundary conditions (4)-(7) are expressed as an abstract evolution
equation of the form '

%U + AU = B(U), (22)

U(0) = Uo = (o, Ao)’, (23)

_ . . . [ A+ 41 0 _

where U = (1, A)* is a pair of functions, A = ( 0 A+ B8I) D(A) =

H2(2) and
B(U) = ( (B4 )y — 20(A - Vib) — |A[*Y — k[¢* +i@(y, A)¢p )
) 5A ~ P {B(V4) - 6(T0)} + 1 PA] ’

where D(B) D D(A%) (e > 2 (d = 3), a > % (d = 2)) (See below proposition 2,
proposition 3 ).

If —A is invertible and the infinitesimal generator of an analytic semigroup,
A% can be defined for 0 < o < 1 so that A® is a closed linear invertible operator
with domain D(A%) dense in X. The closedness of A* implies that D(A*) endowed
with the graph norm of A%, (i.e. the norm |||U]]| = [|U||x + ||A°U||x ), is a Banach
space. Since A% is invertible, its graph norm |||- ||| is equivalent to the norm ||U||o =
| A*U||x. Thus, D(A*) equipped with the norm || - ||, is a Banach space, which we
denote by X,. From this definition it is clear that 0 < o < B implies X, D Xp
and that the imbedding of X, into X, is continuous. The following theorem is
well-known.

Theorem 1 (H. Fujita and T. Kato [5]) We consider that

%u(t) + Au(t) = B(u) (¢ >0), (24)

u(0) = uo. (25)

Let —A be the infinitesimal generator of an analytic semigroup T(t) satisfying
|T(t)|| < M and assume further that 0 € p(—A). Let U be an open subset of X,.
Let the function B : U — X satisfy that for every u € U, there is a neighborhood
YV C U and constant L > 0, such that

|B(u1) — B(ug)||x < Lljuy — vz, forallu; €V (v =1,2).
Then, for every initial data uo € U, the initial value problem (24), (25) has a

unique local solution u € C([0,T5) : X) N C((0,Tp) : D(A)) N C*((0,Tp) : X) where
To = To(||uolla) > 0.



Applying Theorem 1, we have our main results.

Theorem 2 (Existence of local strong solutions.) Let Uy € D(A*) with
a > 3(d=3), L (d=2). The initial value problem of the TDGL equations (12)-
(14) with the conditions (3)-(10), has a unique local strong solution U € C([0,To) :
L)) N C((0,Ty) : D(A)) N CH(0,Tp) : L2()) where Ty = To(||Uol|a) > 0.

For d = 2, we have next theorem.

Theorem 3 (Global strong solution) Ifd = 2, then the solution in Theorem
2 1is global. i.e. we may take Ty = oc.

2 Proof of Theofem 2.

In order to prove Theorem 2, we prepare three propositions.

Proposition 1 —A is the infinitesimal generator of Co semigroup of contraction

on L*(Q).

Proof of Proposition 1. Since divA = 0, we have

IVA]> — [rotA|* = div {(A - V)A}. (26)
Therefore,
/Q IVA[2de = /Q IrotA|?dz + /{m {(A-V)A} - nds. (27)
We estimate the second term on the right-hand side of (27) as
d 0A d ony, 9
|j§1 A eS| = |j’§1/aQ A LS < c/{m |A[2dS
< €l[VAJR: + Cl| Az, (28)

for any e(<< 1). Here A = (Ay, Az, 43) (d=3), A = (A1, A4;) (d =2) and C(> ¢)

is a positive constant depending on e. Since (27) and (28), we have
(1= OlIAlE < | IrotAde + BIA, (29)

where f=1—¢e+ C.(>1).
We next consider the operator A. Clearly A is strongly elliptic. Since A =



—rot?+ grad div, using (4)-(6) and (29), we have for U(= (15, AY) € ()80 (@),
(— AU, U)LQ
:/ Az da:+/ AA(z) - A(z)dz — B, )12 — B(A, A)pe

- /ﬂ Vip(z) - Vir(z)de — [ 1otA(z) - rotA(e)dz — A, 9)re — B(A, Ay

=l + 191172 — (1= Ol Alf — Bl ]z
—(1 = U3
0. (30)

IA N IA

which holds valid for every U € H2(). Therefore, —A is dissipative.
We define a continuous sesquilinear form on H!(92) x H1(Q2) by

a(U,V) = /Q Vip-Vpde+ /Q rotA-rotB de+ (1, @)1 +B(A, Bl + AU, V) (31)

where U = (¢, A)", V = (p,B)" and A is a complex number. We have

|a(U, V)]

< {/Q |V1/)|2dx}1/2 {/ﬂ leﬁPdg;}l/z . {/ﬂ ]rotA|2dx}1/2 {/Q Irot‘,B[2d:c}1/2

+HOl1Y 1z llellee + Bl Al Bz + AUz [[V]lc2
< (Co + ADNU e 1V ]2 (32)

where Cg = max{2, 8}. For 0 < |\| < 1 — ¢, we obtain

la(U,U)| > ]/Vw ) Vip(z dw+/rotA (z) - rotA(z)dz

+B(, %) e + B(A, A)z| — |\[||U |2
> (I—e= DU (33)

If 0 < |A < 1—e¢, then a(U, V) is coercive. We may apply the classical Lax-Milgram
theorem to obtain a unique weak solution U € H.(f2) to the boundary value problem

AU +\U = f | (34)

for all f € £*(Q) and 0 < |A\| < 1 —e. Especially, this solution belongs to
H?*()@H?(Q). This implies that the range of \I+.41is £2(Q) for all 0 < |A| < 1—e.
Clearly, D(—A) D C(Q) ® C(Q). Since C(0) & C=(N) is dense in L3(1),
it follows that D(—.A) is dense in £3(1).
From the Lumer-Phillips theorem, it follows that —A is the infinitesimal gen-
erator of Cy semigroup of contraction on £2(Q2). Q.E.D.



Since A is self-adjoint and non-negative, operator —.A is infinitesimal of an an-
alytic semigroup on £2(2). Therefore we may define fractional powers of A. For
0 < a < 1, we define the path of integration C into the upper and lower sides of
negative real axis and obtain :

AU = M/wt“"(tf—i- AU dt,  O<a<l. (35)
0

T
If U € D(A), then we define

Sll’l 7TOé

AU = / 1eTAL + AU dt,  0<a< 1. (36)

Using (30) and Schwarz’s inequality, we have
AU || c2 |[U|lcz2 > (AU, U) 2

> (1=9Ua =2 (1= UIZ
> Uz, (37)
for some 0 < § < 1 — €. Therefore,
AT U |2 < 67Uz (38)

D(A%) endowed with the graph norm of A%, is a Banach space. Since A% is invert-
ible, its graph norm |||- ||| is equivalent to the norm ||U||, = || A*U||z2. Thus, D(A%)
equipped with the norm || - || is a Banach space, which we also denote by D(.A%).
It is clearly that D(A%) ~ H2*(Q) and

1Ullrze < ClU]la = Cll AU |2, (39)

(See [12]). When d = 3, using Sobolev’s inequality and Holder’s inequality, we have

[Ullwra2is < ClAU |z, foralla> o, (40)
Uller < ClA°U||pe,  forall o -Z- (41)
for any 1 < p < 12. When d = 2, we have
Uller < ClA°U|| e, forall @ > % (42)
Ul < Cl AUz, foralla> % (43)

for any 1 < p < 4o0.
We now turn to the nonlinear term of (22). We have



Proposition 2 I[fd=3, a > : and U € D(A), then B(U) is well-defined and
IBW)llez < C{IAUlle> + |4V |22 + AU N2 + AV E:} . (44)
where C'is a constant depending on 3, &, and Q. Moreover, if U,V € D(A), then
IBU) = B(V)llez < C AU — AV |2, (45)

where C is a constant depending on 8, &, ||A*U||z2, || A*V||z2 and Q.

Proof of Proposition 2. We note that D(A) C H*(£). From Sobolev’s theorem,
it follows that U € £>(Q). Therefore, B(U) € £2(Q) and is well-defined. Let
= (¥,A)" and V = (¢, B)". Note that, from Lemma 1, ® is uniquely defined by

(v, A). Let
=®(1,A), I, =d(p,B).

From (14), we have

”V(Ih”i?

-y i {5 D) — oD
— [ Ve (LD - (D) de
< [Vlle D) — 9 DA -

Therefore,

[H(Dav) — (Dat) e, )
Cl[F(Davy) — ¥(D %) 1. (47)

From Gagliardo-Nirenberg’s inequality, we have

IV ®4]|r
[[®1]|2

<
<

194 ls V4|55 12115 < Cl[A(DAY) — $(D )| e

<
< {2l [$llwzs + 612 IA|e } - (48)
We now estimate

[BU)]lez < C{IW)HL’Z + | AllLe + [|A - Ve + APz + 9|22

@l + 20T 1o + | [9P A2 . (49)



Using (40) and (41), we have

IB@)lcr < {1l + Al + AT [l o + AL [l
DI + @bl [ lwnsers + 10l 1A Te) 9]
2l [ llwasar + 025 ATl }
< c{IUllee +1Ulles + WU llers NUlwasers + 1012 10l
HUIES + @IVl 10wz + 1012) 1V s
420Ul [ llwrs + 1011 |

< O IAU o 4 AU + AU + 47U, (50)

for all o > %. Thus we have the first assertion.
Next, we show (45). Suppose that

IB@©) -BWV)lle < c{ll¥ ¢l + | A = Bll
HIA V9 =B Vills + [IALY — [Bl]s
Hllele = 1P lz2 + @16 — Dol
2T — (T a2 + [16PA — [oPBllss |

= C{[O"l"ll+12+13+I4+215+]6}7 (51)

where C is a constant depending on 8 and A,

Iy = |l¥~¢lz+[A B,
L = ||A-V¢—B- V|,
L = [[|APY — Bl o]z,

Iy = |lele = 19l re,

I = ||®1% — Q30]12,

I = [[9(VY) —o(Vo)le,
Iy = |[[¥[*A — |¢’B|r2.

I is estimated as follows:

. 5
Iy =|U—=V| < ||JAU - AV| 2, for all v > 5 (52)



I, and I5 are estimated as follows:

L

IN

IA- VY —A- Vo + |A- Vo~ B V|2

IA- (V= Vo)|l2 + (A = B) - Vo2

< Al [V = @)llpiers + |A = Bllwsz [[Vellpas
< Ullee IVU = V)l grzs + U = Vg2 [VV]| gazse,
< NUllez U = Vilwsszs + U = Viige Vs ers.

I

Using (40) and (41), we have

L

IA

c{“mU”LZ AU — AV| 22 + | AV 2 || AU — Avvng}

IN

Ci||A"U — A"V || 2, for all v > g-

1%(V$) = (Vo) e + [4(Ve) — 0(Ve)|lz2
[l V(b = @)lluiers + [Vellpas [l — @l|ze
[Uller= IV =Vl gizss + VT grogs U = V| o2
1Uller2 1T = Vliwsazrs + [Ulfriress [|U = V]| 22

c{“mUuLz AU — AV]|z2 + AV |2 AT — A”VHLQ}

VAN VAN VANS VAN

IN

IN

)
C5'|A’YU - A’\/V“[p, for all Y 2 ‘é‘

Using (41), we obtain the following estimates of I, and Ig:

L < [IAPY — [BPYlze + [|IBl*y — |BJ*g]|1:
< AP =B flus 19llze + [1IB]lre [t — @] 1s
< (lAllze + IBlle) 1A = Bllze [[9llze + IBlEs 11 — | rs
S CIU = Viles < Coll AT = AV ||2,  forall y 2 2,
Is < (191" =l Al + llel*(A — B)||g
< 9P = lelllze IAllLs + lllelllze |A — Bllgs
< Rl =leelllze Ml + lelllze |AllLs + [[ellZs |A — By
< (Illps + llelice) 11¥ = @l |AllLe + lell7e |A — Bljge
< CIU =Vl < Cell AU = AV |2, for all 7 > g



Next, we estimate I5 as follows:

Iy < llel*e = lel9lize + ey — [ 29 12
< llelzs lle = llzs + 1¥llze el — lllze el + )]s
< lllzs lle = #llze + Il e = wlize (lellze + 19 ]fze)
< CIU = Ve < Col| AT = AV||ge,  forall 4 > g

Finally, we estimate I,. From Poincaré’s inequality, we have
[®1 = ®2fjz2 < O V(@1 — @),
where C’ is a constant depending on . Suppose that
P —
f =5 {#(Dav) - (Dap)}

9= %{G(DBW — ¢(Dpp)}

From (14), we have '
A(Py — ©,) = div(f — g).

Now,
V(@ —@2)llf = — [ (01— &) div(f ) do
= /Q(wq»l—q»z)) (f — ) do
< V(@ = ®3)llee [ — gl

From (59), (63) and estimates of I5 and Ig, we have

V(@1 — @2)||re < [|f —gllLz < Csls + Cels < K[| AU — AV || 2,

11

(63)

(64)

1@ — @al|ze < C')|f = gllie < C'CsIs + C'Cols < K'| AU — AV ]| 2. (65)

for all v > 5/8, where K and K’ are constants. Therefore, from (46), (47), (64),

(65) and Gagliardo-Nirenberg’s inequality, we have

@19 — Potp|| 2 + || @210 — Daep| 12
1®1 — sl przss |[¥]| 122 + | ®allgazss b — @2

I

VAN VANRVAN

)
< CllAU — AV || e, for all v > 5

IV(®1 = @)1 15" 181 — @o| 35" [[6]ls2 + V@A 19135 1190 — |pee

(66)

Combining (52), (54)-(58) and (66), the proof of Proposition 3 is completed. Q.E.D.

Using (42) and (43), we have
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Proposition 3 Ifd =2, a > 1/2 and U € D(A), then B(U) is well-defined and
1Bz < € {A°U|c2 + | AU | % + [|A°U |22 + | AU 122 } (67)
where C is a constant depending on 3, k, and Q. Moreover, if U,V € D(A) then
IB(U) = B(V)|lc: < CllAU — A%V |2, (68)
where C is a constant depending on B, k, ||A°U||zz, ||A*V||z2 and Q.

The proof is similar to those of the case of d = 3 and omit it.

From (44) and (67), it follows that the domain of B can be extended by con-
tinuity to D(A*) (a« > 2 (d = 3), a > 1/2 (d = 2)). Therefore, (44), (45), (67)
and (68) hold for every U,V € D(A%). Therefore, the condition of Theorem 1 is
satisfied. We complete the proof of Theorem 2. Q.E.D.

3 Proof of Theorem 3.

For d = 2 and Uy € D(A'Y?), from Theorem 2, we have a local strong solution

U e C0,To) : LX) N C((0,Tp) : D(A)) N CH(0,Ty) : £Q)) To = To(|Uol}1/2)-
In order to establish global existence of solution, it is sufficient to obtain a propri
estimate

sup || AY2 U < C, (69)

0<t<T
for any T' > 0.
From (1)-(2) with (3)-(10), we have

IDa(0)]2s + [rot A + i;-m )P
+/Ot s — i B[22t + 2 /Ot A — V®|i.dt

K
= [Dagtollze + [IrotAllze + 11 — |thol*|l12
< 2[|Veolle + 2l AolLs IollZs + 20V Aollzz + s1Q] + kllvollze.  (70)

Thus, we have

sup ||Davlle < C, (71)
0<t< 0

sup |[rotAljr: < C, ' (72)
0<t< 0

sup I — [Pl < C, (73)
0<t<oo



T ‘

[l — iplfade < (14)
T

| la-velid<c, (75)

for any T > 0, here C is a constant which depends only on ||Up|#: and €. Since
|[VA|lg> and |[rotAl|g> are equivalent norms in H'(Q) N H,(R2) and [[A[[rz <
C||rotAllgz for any A € HY(Q) N H,(Q), (72) yields that

sup ||A()||lm < C. (76)
0<t<o0

Using Sobolev’s inequality, we have

sup ||A()||wr < C, forany 1<p<6(d=3), (77)
0<t< 0
sup [[A(t)]wr < C, for any 1 < p < oo (d = 2). (78)
0<t<0 )
Hence, we have
[ @)zs < 201 = $I*l72 + 212 (79)
From (73), we get
“sup () < C. (%0)
0<t<00 :
Now,
Vi e Vi — iAp| Lz + [|Av|re

<

< ||Davllre + 2[ Allzs + 219117 (81)
Therefore, from (71), (77) and (80), we have

sup ||[Vy(t)]|2 < C. (82)

0<t< o

Since, |9z < |QY4|[¥||z¢, we have

sup [[$(2)]|z < C. (83)

0<t<oo

Therefore, from (82) and (83), it follows that

sup ||v(t)||lm < C. » (84)
0<t< oo
Hence, we obtain
sup [U@Fe < sup [¢()]Fn + sup [A@D]a: < Mo, (85)
0<t< o0 0<t<o0 0<t<o0
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where My is a constant which depends only on ||Up|ls: and Q. but not on ¢. This
implies ’
sup ||AYV2U |z < C. (86)

0<t<o0

This completes the proof of Theorem 3.
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