<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>C^*-dynamics and related problems (Recent Topics in Operator Algebras)</td>
</tr>
<tr>
<td>著者(著者数)</td>
<td>境 正一郎</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1999年 1077号 62-78</td>
</tr>
<tr>
<td>発行日</td>
<td>1999年02月</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62647</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher 京都大学</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ KURENAI Kyoto University Research Information Repository
C*-dynamics and related problems

境正一郎 (Shōichirō Sakai)

量子格子系と Fermi 場の凝自由力学系の理論を一般化した UHF C*代数における normal *-derivations の理論は、拙著 [5] の中で展開されている。しかし、まだ多くの重要な問題が未解決である。本講演では、これらの問題の中から若干の興味深い問題を選んで解説する。

\(\Omega \) を UHF C*代数とする。このとき、\(\Omega \) には有限次元全複素行列 *-代数の増加列 \(\{ a_n \} \) が存在して、\(\Omega \) の 1 の右側に \(a_1 < a_2 < \cdots < a_n < \cdots \) が存在し、\(\Omega \) は \(* \)-稠密である。

\(\delta(\Omega) = \bigcup_{n=1}^{\infty} a_n + i \), \(\delta \) を \(\delta(\Omega) \) を定義域とする \(\Omega \) における *-derivation とする。このように *-derivation と normal *-derivation という。\(\delta \) は normal *-derivation とすると自己摂影型の列 \(\{ a_n \} \) が存在して

\[\delta(a) = i [a_n, a] \quad (a \in a_n; n = 1, 2, \ldots) \]

cycl phishing.

したがって、\(\delta \) は well-behaved であり

\[\| (1 + \delta)(a) \| \geq \| a \| \quad (a \in \delta(\Omega)) \]
が成立す。

もし、\((1 \pm \delta) \in \sigma(\delta)\) が "\(\sigma\)の稠密になる" なら "Hille-Yoshidaの定理" により

\(\delta\) の内部 \(\sigma\) は以下の強連続\(\ast\)-automorphisms の \(\Sigma\) によるメターグリフ \(t \rightarrow \exp t \delta \ (t \in \mathbb{R})\) の生成作用素と \(\ast\) は \(\sigma\) に、

\[\| \exp t \delta (a) - (\exp t \delta)(a) \| \to 0 \ (n \to \infty)\]

\((a \in \Sigma)\)

が成立する。 即ち、\(C^*\text{-dynamics} \downarrow \mathbb{O}\), \(\exp t \delta\) は approximately inner である。

一般に、\((1 \pm \delta) \in \sigma(\delta)\) の稠密性を具体的に model にして検証するのは容易である。 従って、normal \(\ast\)-derivation \(\delta\) が如何なる条件下で "生成作用素" である \(\ast\)-derivation\(\) に応大できるか？という問題は極めて重要である。

この拡大問題は古典格子系の一般化である commutative normal \(\ast\)-derivation についても検討の中心で、完全な解答が示されている（Cf. [5] §4.6）。

まず、この解答について述べる。

定義 1. \(\delta\) を normal \(\ast\)-derivation とする。 \(\delta\) が commutative であるとは自己随伴られる列 \(\{\delta^n\}_{n=1}^{\infty}\) が
互いに可換に選べることである。即ち，
\[\delta(a) = i [\phi_n, a] \ (a \in \mathfrak{h}_n ; n = 1, 2, \ldots) \]
\[h_m \phi_n = \phi_n h_m \quad (m, n = 1, 2, \ldots) \]
が成立することである。このとき，
次の定理が成立する。

定理 1. \(\delta \) を commutative normal \(*\)-derivation とする。
\[\mathfrak{h}_n = \mathfrak{h}_1 h_1, \mathfrak{h}_2 h_2, \ldots \mathfrak{h}_n \] で生成する \(\mathfrak{h} \) の \(C^* \)-代数とする。このとき，
\[\tilde{\delta}(b) = i [\phi_n, b] \ (b \in \mathfrak{h}_n ; n = 1, 2, \ldots) \] とおくと，\(\tilde{\delta} \) は \(\mathfrak{h}_n \) 上で well-defined であるが，\(\delta \) の内包 \(\overline{\delta} \) は生成作用素である。
さらに，
\[(\exp \tilde{\delta})(b) = (\exp \delta \phi_n)(b) \ (b \in \mathfrak{h}_n ; n = 1, 2, \ldots \) \]
とおくと，\(\overline{\delta} \) が生成作用素ならば \(\overline{\delta} = \overline{\delta} \) である。
が成立する。

従って，次の問題は重要である。

問題 1. \(\delta \) を normal \(*\)-derivation とする。\(\delta \) が \(\mathfrak{h} \) に於ける生成作用素である \(\theta \) \(*\)-derivation に拡大できるための必要十分条件を求めよ。

問題 2. \(\mathfrak{h} \) に於ける normal \(*\)-derivation が生成作用素である \(\theta \) \(*\)-derivation に拡大できる例があるか？
さらには、一般に normal x-derivation の議論を進めよう。

δ と normal x-derivation すなわち bounded x-derivation があるか否かに依存する。τ (δ) < δ の存在を (δ + δ) (δ τ (δ)) < δ τ (δ) と仮定する (c.f. [8] Prop. 4.5.5).

δ は unital simple C*-algebra であり bounded derivation はすべて inner (c.f. [8] Th. 2.5.7) である。

ついて、δ (δ) < δ の存在を (δ + δ) と仮定する。bounded perturbation は生成作用素という性質を不变に保つから δ と δ + δ で置き換えて議論できる。

ところが、δ (δ) < δ の仮定をする。

このとき、δn の作り方 (c.f. [8] p. 159) から判るように
δn (δn) (n = 1, 2, ...) と定められる。

δ (δ1) < δ (δ2), δ (δm) < δ (δm+1), ... δ (δm) < δ (δm+1)
と仮定して十分とする。ここで δn+1 が δn+1 (n = 1, 2, ...) を仮定する。

このとき、次の定理が成立する （c.f. [8] Prop. 4.5.6）.
定理 2. δ = δ + δ と表すと、ここで
δ1 (δ2m) < δ2m, δ2 (δ2m+1) < δ2m+1 (n = 1, 2, ...).
と仮定すると、δ1, δ2 は commutative normal x-derivative.
ある。すなわち、\(\delta_1(a) = i \sum \delta_n(a) \quad (a \in \mathbb{C}_{2n}) \)
\(\delta_n \in \mathbb{C}_{2n} \quad (n=1, 2, \ldots) \)
\(\delta_2(a) = i \sum \delta_n(a) \quad (a \in \mathbb{C}_{2n+1}) \)
\(\delta_n \in \mathbb{C}_{2n-1} \quad (n=1, 2, \ldots) \)
このとき、\(\delta_n, \delta_n' \)は自己随伴に関して存在する。

次に、\(\delta(\mathbb{C}_n) \subset \mathbb{C}_{n+1} \quad (n=1, 2, \ldots) \)と\(\mathbb{C}_n \)に対し、
\[\delta^{m+1}(a) = \delta^{m+1}(a) \]
である。もし
\[\sum_{n=0}^{\infty} r_n^{a} < +\infty \]
と\(+3 \) positive number \(r_n \)が存在するとき \(a \)はanalytic vector である。

定理 3. 上記の \(\mathbb{C}^* \)-dynamicsに対し、\(\Omega \)の中には有限次元全複素行列 \(*- \)代数の増加列 \(\{ \Omega_1, \Omega_2, \ldots \} \)で存在して次の条件をみたす。

(i) \(1 \in \Omega_1 \cap \Omega_2 \cap \cdots \cap \Omega_n \cap \cdots \)
(ii) \(\bigcup_{n=1}^{\infty} \mathcal{O}_n \) は \(\mathcal{O} \) で“稠密である”

(iii) \(\bigcup_{n=1}^{\infty} \mathcal{O}_n \subset A(\delta) \), ここで \(A(\delta) \) は \(\delta \) に関する
analytic な vector 体の集合である。(cf. [8] Th. 4.5.1)

この定理において適当な自己随伴元 \(\alpha \in \mathcal{O}_n \) の中に \(\alpha \)
と \((\delta + \delta n) \bigcup_{n=1}^{\infty} \mathcal{O}_n \subset \bigcup_{n=1}^{\infty} \mathcal{O}_n \) をする。

従って次の問題は興味深い。

問題 3. \(\mathcal{O}_n \) の中に次の条件をみたす自己随伴元 \(\alpha \) が
存在するだろうか？

(i) \((\delta + \delta n) \bigcup_{n=1}^{\infty} \mathcal{O}_n \subset \bigcup_{n=1}^{\infty} \mathcal{O}_n \)

(ii) \(\bigcup_{n=1}^{\infty} \mathcal{O}_n \subset A(\delta + \delta n) \)

問題 3 は肯定的であるならば, "Powers - Sakai の予想
(\(c+ [8] 4.5.9 \)) は肯定的である。

さて, \(\text{UHF C}^* \)-代数 \(\mathcal{O} \) をもった \(\text{C}^* \)-dynamics \(\{ \mathcal{O}, \alpha \} \)
を考えよう。このとき, 定理 3 により \(\alpha \mathcal{O}_n \) が存在する。

きわ \((1 - \delta) \bigcup_{n=1}^{\infty} \mathcal{O}_n \) が \(\mathcal{O} \) で“稠密ならば”,

\(\delta(\alpha) = \{ [\mathcal{O}_n, \alpha] (\mathcal{O}_n \in \mathcal{O}_n ; n = 1, 2, \ldots) \} \) とする \(\alpha \),

\((1 - \delta n) - \Delta \rightarrow (1 - \delta) - \Delta (\text{strongly}) \) とする \(\alpha \) で,

Kato - Trotter の定理より

\[\| \exp t \delta n \alpha - \exp t \delta \alpha \| \rightarrow 0 (n \rightarrow \infty) (\alpha \in \mathcal{O}) \]
即ち \(\tau Z, \alpha \) は approximately inner である。

\(\tau \in \mathfrak{U} \) と任意な tracial state とする。 \(\beta \in (-\infty, \infty) \) に対し

\[
\psi_{n, \beta}(\alpha) = \frac{\tau(e^{-\beta \alpha})}{\tau(e^{-\beta N})} \quad (\alpha \in \mathbb{C})
\]

とおくと \(\psi_{n, \beta} \) は \(\mathbb{C} \) の state である。

\(\psi_{\beta} \in \mathcal{P}_{n, \beta} \) の \(\mathbb{C} \) の state space に \(\mathfrak{U} \) から \(\mathfrak{U} \) (\(\mathfrak{U}^* \)) 位相に関連する基準点とするとき \(\psi_{\beta} \) は \(\mathfrak{U} \) dynamics に \(\mathfrak{U} \), exp \(\frac{\theta}{\beta} \) の inverse temperature \(\beta \) に依う KMS state である。

次の問題は重要である

問題 3. \(\psi_{\beta} \in \mathcal{P}_{\beta} \), exp \(\frac{\theta}{\beta} \) に依う KMS state とする。このとき、次の条件をみたすように随伴する元の列 \(\{ n \} \) が \(\mathfrak{U} \) の中に存在するかどうか？

(i) \(\delta(\alpha) = i [\ln, \alpha] \) （\(\alpha \in \mathbb{C} \); \(n = 1, 2, \ldots \)）

(ii) \(\phi_{n, \beta}(\alpha) = \frac{\tau(e^{-\beta \alpha})}{\tau(e^{-\beta N})} \) （\(\alpha \in \mathbb{C} \)）とおき

\(\phi_{\beta} \) は \(\mathbb{C} \) の state space に \(\mathfrak{U} \) から \(\mathfrak{U} \) (\(\mathfrak{U}^* \)) 位相に関連 \(\psi_{n, \beta} \) の基準点である。

\(\delta \) は commutative normal \(* \)-derivation ならば、この問題に対する解答は Yes である。すなわち、強力な定理が得られている（cf. [5] §4.6 ）。

ここでは、簡単のため \(\delta_{n} \circ \rho_{n} \) \(\rho_{n} \) の n を
定理 4. \(\delta \) を Commutative normal *- derivation とし、次の条件をみたすものとする。
(i) \(D(\delta) = \bigoplus_{n=1}^{\infty} A_n \)
(ii) \(\delta(D(\delta)) \subseteq D(\delta) \)
(iii) \(\delta(a) = i \{ \ln, a \} (a \in A_n), \ln \in A_{n+1} \)
かつ \(\ln \ln = \ln \ln \cdot (n,n = 1,2,\ldots) \).

このとき、\(A_n \) は \(\mathbb{C} \) と \(\ln \) で生成される \(A_n \) の *- 部分代数とする。まず、\(\gamma_\beta \) を \(\text{C}^* \text{ dynamics of} \ A_n, \exp t \delta_n \) の \(\beta \) に対する KMS state とするとき、\(A_n \) の中に次の条件をみたす自己随伴元の列 \(\{ \ln \} \) が存在する。

(a) \(\ln \in A_n \) (\(n = 1,2,\ldots \))
(b) \(\delta(b) = i \{ \ln, b \} (b \in A_n; n = 1,2,\ldots) \)
(c) \((\exp t \delta_n)(b) = (\exp t \delta_n)(b) (b \in A_n; n = 1,2,\ldots) \)
(d) \(\gamma_\beta(b) = \frac{\tau(b \delta_n(b \ln))}{\tau(e^{-\beta \ln})} (b \in A_n; n = 1,2,\ldots) \).

問題 3 は次のようにとても十分に興味深い。

問題 4. \(\chi, \alpha, \delta \) を UHF \(C^* \) 代数 \(A_n \) と \(C^* \text{ dynamics of} \ A_n, \exp t \delta_n \) における approximately inner とする。このとき、\(\gamma_\beta \) は \(A_n, \delta \) の \(\beta \) に対する KMS state とするとき、次の条件をみたす自己随伴元の列 \(\{ \ln \} \) が
存在するだろうか？

(i) \(\| (\exp t \delta_1 \ln)(\alpha) - (\exp t \delta)(\alpha) \| \to 0 \quad (n \to \infty) \)

\((\alpha \in \Omega) \quad (ここで\ t = \exp t \delta) \)

(ii) \(\gamma_n, \theta (\alpha) = \frac{\tau (\alpha e^{-\theta \ln})}{2 (\alpha e^{-\theta \ln})} \quad (\alpha \in \Omega) \quad \theta \geq 3 \)

\(\gamma_\theta = \{ \gamma_n, \theta \} \) の \(\delta (\Omega, \Omega) \) 極限である。

上にあげたぎり問題1, 3 は commutative normal *-derivations の場合は完全に解答がある。一方, 定理 2 と
commutative normal *-derivations と normal *-derivations の間を結ぶ重要な定理である。この定理を用いて commutative
normal *-derivations の結果を normal *-derivations に
拡張できるのでではないだろうか？

定理 3 をより強力な形にするには、次の問題を研究する
することが重要である

問題 5. \(\delta \in \text{normal *-derivation} \) ならば
何様の条件の下で \(\delta = \delta_1 + \delta_2 \) ここで \(\delta_1 \) は
commutative, \(\delta_2 \) は bounded とかけるだろうか？

問題 6. 上の問題が一旦無条件で成立したりとすると
\(\delta = \delta_1 + \delta_2 \) \(\delta_1 \) は commutative, \(\delta_2 \) は bounded とか
けるいない例をつくる。
一storie, は \(A, \exp t \delta \) と一般は \(C^* \) と dynamics でわかる。

\(\Phi : \exp t \delta \to \) inverse temperature \(\beta \) になす KMS state と \(\psi \), \(\Lambda, \phi \) と \(\Phi \) によって \(U_\delta \) が \(\Lambda, \exp t \delta \) の covariant representation と \(\psi \) である。 \(U_\delta U_\delta = U_\delta \) と Stone 表現が \(\psi \) である。 \(\psi = 1 \) \(U_\delta \psi U_\delta = U_\delta \) は \(\Lambda \) の two-sided ideal に対応する。簡略のため \(\psi = 0 \) と仮定する。このとき, \(\Lambda \psi = 1 \) \(\psi \) から \(\Lambda \psi \Lambda \) と \(\Lambda \) を同一視することができる。

したがって, \(\Lambda = \Lambda \psi \Lambda \subseteq \Lambda \psi \Lambda \) が \(\Lambda \psi \Lambda \) の弱位相に関する閉包である \(W^* \) 代数）。 \(A_2(\delta) \) を \(\delta \) に関
いて geometric な元全体とする。 \(\psi (= \Lambda^*) \in A_2(\delta) \) に対応して

\[
f(z, \phi)(a) = (ae^{iz(H+\delta)} \phi, \phi) \quad (a \in \Lambda, z \in \mathbb{C})
\]

とおくと \(f(z, \phi) \in \Lambda^* \) である。このとき、

\[
f(0, \phi)(a) = (a 1_\phi, 1_\phi) = \phi(a).
\]

\[
f(i\pi, \phi)(a) = (ae^{-\delta(H+\delta)} \phi, \phi) = \gamma \phi(a) \quad \text{と} \quad \gamma
\]

\(\lim_{\delta \to 0} \gamma \phi \) は \(\Lambda \), \(\exp t(\delta + i \pi H) \) と \(\beta \) に従って
3 KMS state である。ここで, \(e^{iz(H+\delta)} e^{-iz H} \phi = e^{iz(H+\delta)} 1_\phi \) であり, \(e^{iz(H+\delta)} e^{-iz H} \) の閉包は \(\Lambda \)
の元である. \(A_2(\delta) \) は \(\Lambda \) と一样位相で稠密であるので, 一般
の \(h (= \Lambda^* \phi) \in \Lambda \) に対して, \(\| h - h \phi \| \to 0 \) \(m \to 0 \) とする
自ら随伴は元の列 \(h_n \) と \(A_2(\delta) \) から選ぶこともできること。
さらに、若干の議論が必要であるが、\(\gamma^h \) は \(M \) の中で、ルールに関して Cauchy 式であることが示される。従ってすべての \((\gamma^h) \in A \) に対して \(\gamma^h \) が定義される。更に、

\(\gamma^h \in A \), \(\text{expt}(\delta + \sigma h) \) の \(\beta \) に対して KMS state であることは容易に示される。著者の中での主要定理の一つは、次の compactness 定理である（ref. [JS] Th. 4.4.7）。

定理 5. \(A \) は unital C*-algebra, \(\{ \gamma^h \} \) \(\in C^* \) dynamics を与え、\(\Phi \) は \(A \), \(\text{expt}(\delta + \sigma h) \) の \(\beta \) に対して KMS state と \(\gamma^h \) を与え、\(\gamma^h \) に対して \(\gamma^h \) は relatively

の \((A^*, A^{**}) \)-compact である（ここで \(A^* \) は \(A \) の双対空間）

\(A^{**} \) は \(A^* \) の双対空間）。

この定理の説明に於ける証明は複素関係論を用いるもので、

かつおよび複雑なものである。以下で著者の証明より若干単純化された証明の概要を述べる。より一層の単純化は興味深い問題がある。

\[f(t, h) (a) = (a e^{it(H + H)} e^{-itH} 1_\Phi, 1_\Phi) \ (t \in \mathbb{R}) \]

\[f(t + i\phi, h) (a) = (a e^{-\phi(H + H)} e^{it(H + H)} e^{-itH} 1_\Phi, 1_\Phi) \]

\[= (e^{it(H + H)} e^{-itH} a e^{-\phi(H + H)} 1_\Phi, 1_\Phi) \]

\((\gamma^h / \Phi) \) は KMS state for \(\{ A, \text{expt}(\delta + \sigma h) \} \) at \(\beta \)。
発展で，

\[f(t, A)(a) = \phi \left(a e^{i(tH+R)} e^{-iH} \right) = f(0, A)(a e^{i(tH+R)} e^{-iH}) \quad (t \in \mathbb{R}; \ A \in A_{2}(\mathbb{R})) \]

\[f(t+i\beta, R)(a) = f(i\beta, R)(e^{i(tH+R)} e^{-iH}) a \quad (t \in \mathbb{R}) \]

\[\exists r \in \mathbb{R}, e^{i(tH+R)} e^{-iH} \in A. \]

\[\varphi(\delta) = (e^{-\delta(H+R)} 1_{\phi}, 1_{\phi}) \quad (\delta \in [0, \beta]) \quad \text{かつ} \quad \exists \beta \]

\[\varphi'(\delta) = - (e^{-\beta(H+R)} (H+R) 1_{\phi}, 1_{\phi}) \]

\[\varphi''(\delta) = (\beta(H+R) e^{\beta(H+R)} (H+R) 1_{\phi}, 1_{\phi}) \geq 0 \]

\[\varphi''(\delta) \quad \text{は单调増加である}.
\]

\[\varphi'(\delta) = - (e^{-\beta(H+R)} (H+R) 1_{\phi}, 1_{\phi}) = - (e^{-\beta(H+R)} R 1_{\phi}, 1_{\phi}) \]

\[= - (e^{-\beta(H+R)} 1_{\phi}, 1_{\phi}) = - \varphi'(\delta). \]

\[\text{いずれも} \quad \varphi(0) \equiv 0 \quad \varphi'(0) \equiv 0. \quad \text{かつ} \quad \varphi'(\beta) \equiv 0 \]

\[\varphi(0) = (1_{\phi}, 1_{\phi}) = \phi(1) = 1. \]

命題 1. \((\beta(H+R) \in A_{2}(\mathbb{R}) \quad \text{かつ} \quad \exists \varphi \quad \text{に対し}
\]

\[(e^{-\beta(H+R)} 1_{\phi}, 1_{\phi}) \leq e^{\beta(H+R)} 1_{\phi}, 1_{\phi} \]

\[\varphi' \text{は} \quad (e^{-\beta(H+R)} 1_{\phi}, 1_{\phi}) = e^{-\beta(H+R)} 1_{\phi}, 1_{\phi} \]

\[(e^{-\beta(H+R)} 1_{\phi}, 1_{\phi}) \leq 1. \quad \text{かつ} \quad (e^{-\beta(H+R)} 1_{\phi}, 1_{\phi}) \leq e^{-\beta(H+R)} 1_{\phi}, 1_{\phi} \]

\[1+i\beta, R)(a) = \phi(a e^{i(tH+R)} e^{-iH}) \leq \phi(a \mathbb{R}) \frac{1}{2} \phi(1) \leq \|a\| \|1\| \]
\[f(t+i \varphi, \lambda)(a) = 1 \mathcal{R} \left(e^{i t (H+\lambda)} e^{-i t H} a \right) \]
\[\leq \| \mathcal{R} \| \left\| e^{i t (H+\lambda)} e^{-i t H} \right\| \| a \| \]
\[\leq \mathcal{R} \| e^{i t H} \| \| a \| \]

\(z \in \mathbb{C} \)
\[f(z, \lambda)(a) = \mathcal{R} \left(z \mathcal{R} \left(e^{i z (H+\lambda)} e^{-i z H} a \right) \right) \]
\[\| f(z, \lambda)(a) \| \leq e^{\mathcal{R} \| H \| \| a \|} \]

\(f(t, \lambda)(a) = \left(e^{i t (H+\lambda)} - e^{-i t H} \right) a \)
\[\frac{d}{dt} f(t, \lambda)(a) = \left(e^{i t (H+\lambda)} - e^{-i t H} \right) a \]

\[\frac{d}{dt} f(t+i \varphi, \lambda)(a) = i \left(e^{i t (H+\lambda)} - e^{-i t H} \right) a \]

\((z \in \mathcal{R}^0) \)

\[\left| \frac{d}{dz} f(z, \lambda)(a) \right| \leq e^{\mathcal{R} \| H \| \| a \|} \]

\[\left| \frac{d}{d\varphi} f(t+i \varphi, \lambda)(a) \right| \leq e^{\mathcal{R} \| H \| \| a \|} \]
\[g(x, h, a) = f_i(x, h) g_i(x, a) \quad x \in \mathbb{R} \]

Ascoli-Arzelaの定理により、\[g(x, h, a) \]は\(H_{\infty} \)に於いて relatively compact である。\[a \in M \]に対して \[\Omega_a = \{ g(x, h, a) \mid \| g \| \leq 1 \} \]

とし、\(\Omega_a \)は\(C[0, \beta] \)に於ける \(\Omega \)の弱縮限とされる。\(\Omega = \bigcap_{a \in M} \Omega_a \)は weakly infinite product とするか \(\Omega \)は compact space である。\[h \rightarrow g(x, h, a) \quad a \in M \]で \(A_2(\delta) \)の自己線型部分 \(A_2(\delta) \)から \(\Omega \)への写像とし、\[P = \{ h \in A_2(\delta) \mid \| h \| \leq 1 \} \]とする。\(\Omega \)は compact である。\[G \in \overline{\Omega(P)} \]に対して \[G = \{ g(x, h, a) \mid a \in M \} \]

(\(G(a) \subseteq C[0, \beta] \))。このとき、有向集合 \(h(x, h, a) \)\(\Omega \)に於いて存在し、

\[\lim_{a \in M} \sup_{a \in \Omega} | g(x, h, a) - G(a)(x) | = 0 \]（\(a \in M \)）

従って、\(G(a+b) = G(a)+G(b) \), \(G(\lambda a) = \lambda G(a) \)
(\(a, b \in M \), \(\lambda \in \mathbb{C} \))。\[a \rightarrow G(a)(x) \]は\(C \)に於ける \(\Omega \)の weak ショルモ関数である。\[a \in M \]に対し、部分列 \(a_n \)が存在して
限定 $n \to 1$ で $P_n(a) - G(a)(0) = 0$ で、「存在する」

他方、f の部分列 f_{h_n} の部分列 f_{h_n} が存在するので、

$\{f(z)_{h_n}\}(a) \to I_0$ 上で「compact subset」上で一致する連続関数 $G(a)(z) = G(a)(z)$ は I_0 上で「解析的である。従って、

$G(a)(z) = G(a)(z)$ ($z \in [0, \beta]$)

また、I_0 上で「有界で連続、I_0 上で解析的の関数 $G(a)(z) \to [0, \beta]$ 上で一致していれば $G(a)(z)$ と一致している。従って、各 $G(a)$ に対しで $G(a)$ は「一意に定まる。

さて、$f(z) = f(\beta, z) \|_{||_1}$ で、$f \in \mathcal{A}(\theta)^+$ ゆえ「Relatively $O(M, M)$-compact であることを示す。これにより、線形混関数 $\alpha \to G(a)(\beta) (a \in M)$ が $O(M, M^*)$-continuous であることを示す。}

ϕ は M に関して「separating generating vector」であるから、M の有限集合上の strong topology は norm で定義される strong topology は $\| a \|_1 \leq \| a \| + \| a^* \|_1$ によって定義された位相と一致する。

$\alpha \to G(a)(\beta)$ が $O(M, M^*)$-continuous で「はるかに」と言うと、点列 $\{f_n\} (a_n \in M)$ が存在して、

$\| a_n \| \leq 1$, $\| a_n \| + \| a^*_n \| \to 0 (n \to \infty)$ かつ $\| G(a_n)(\beta) \| - \| \leq \epsilon > 0 \ (n=1, 2, \ldots)$,
\[
1 \frac{1}{t} \left(\mathbb{R}^2 \right) (a) = I \left(a e^{(H + \Phi)} e^{-i t H} \phi, \phi \right)
\leq \phi \left(a a, \lambda \right)^{1/2} \phi \left(1, \lambda \right)^{1/2}.
\]

したがって，
\[
1 \tilde{\Gamma} (a) (t) \leq \phi \left(a a, \lambda \right)^{1/2} \phi \left(1, \lambda \right)^{1/2}.
\]

よって
\[
1 \tilde{\Gamma} (a) (\lambda t) \leq \phi \left(a a, \lambda \right)^{1/2} \phi \left(1, \lambda \right)^{1/2} \rightarrow 0.
\]

\[\sim \quad \tilde{\Gamma} (a) (2) \leq e^{2 \Phi} \| a \| \leq e^{\Phi}
\]

従って，部分列 \(\tilde{\Gamma} (a_{n}) \) が存在し，\(\lambda > 0 \) 上のすべての compact subset 上でも一様に有限の有界解析関数 \(F \) に収束する。すなわち，
\[
\frac{1}{2} \tilde{\Gamma} (a_{n}) (z) \downarrow 0 \quad (z \in \Omega).
\]

従って，\(\tilde{\Gamma} (a_{n}) (z) \downarrow 0 \) の列も一様に \(0 \) に収束するから，\(F (z) = 0 \) \((z \in \Omega) \)。従って，\(\tilde{\Gamma} (a) \) は relatively compact であるから，部分列 \(\left\{ \tilde{\Gamma} (a_{n}) \right\} \)
が存在し，\([0, \beta] \) 上で連続な関数 \(F \) に一様に収束する
\[
F (z) = F (\beta) \quad \text{あるとき} \quad F (\beta) = 0 \quad (a \in \Omega, \beta) \).
\]

一方，
\[
| \tilde{\Gamma} (a_{n y}) (y) | \leq \varepsilon > 0 \quad (y \geq 1)
\]

これは矛盾である。（証明終）
問題 7. 定理5の簡単な証明があるだろうか？

参考文献