On the integral closures of certain ideals generated by regular sequences

千葉大自然科学研究科 西田 康二 (Koji Nishida)

1 Introduction

The purpose of this report is to introduce a notion of equimultiplicity for filtrations in local rings. We will apply it's theory for computation of the integral closures of certain ideals generated by regular sequences.

Throughout this report A is a d-dimensional local ring with the maximal ideal \mathfrak{m} and a family of ideals $\mathcal{F} = \{F_n\}_{n \in \mathbb{Z}}$ is a filtration in A, which means (i) $F_n \supseteq F_{n+1}$ for all $n \in \mathbb{Z}$, (ii) $F_0 = A$, $F_1 \neq A$ and (iii) $F_m F_n \subseteq F_{m+n}$ for all $m, n \in \mathbb{Z}$. We can define the following graded algebras associated to a filtration \mathcal{F}.

$$\begin{align*}
R(\mathcal{F}) &= \sum_{n \geq 0} F_n t^n \subseteq A[t], \\
R'(\mathcal{F}) &= \sum_{n \in \mathbb{Z}} F_n t^n \subseteq A[t, t^{-1}] \text{ and} \\
G(\mathcal{F}) &= R'(\mathcal{F})/t^{-1} R'(\mathcal{F}) = \oplus_{n \geq 0} F_n / F_{n+1},
\end{align*}$$

where t is an indeterminate. These algebras are respectively called the Rees algebra of \mathcal{F}, the extended Rees algebra of \mathcal{F} and the associated graded ring of \mathcal{F}. We always assume that $R(\mathcal{F})$ is Noetherian and $\dim R(\mathcal{F}) = d + 1$.

2 The analytic spread of a filtration

We set $\ell(\mathcal{F}) = \dim A/\mathfrak{m} \otimes_A R(\mathcal{F})$ and call it the analytic spread of \mathcal{F}. It is easy to see that $\ell(\mathcal{F}) = \dim A/\mathfrak{m} \otimes_A G(\mathcal{F})$. We say that a system of elements a_1, \cdots, a_r in A is a reduction of \mathcal{F}, if the following condition (\ast) is satisfied.

(\ast) There exist $m_i > 0$ for all $1 \leq i \leq r$ such that $a_i \in F_{m_i}$ and $F_n = \sum_{i=1}^r a_i F_{n-m_i}$ for all $n \gg 0$.

This condition is equivalent to saying that we have a module-finite extension

\[A[a_1 t^{m_1}, \ldots, a_r t^{m_r}] \subseteq \mathcal{R}(\mathcal{F}) \]

of rings. If \(a_1, \ldots, a_r \) is a reduction of \(\mathcal{F} \), then obviously we have \(\ell(\mathcal{F}) \leq r \). We say that a reduction \(a_1, \ldots, a_r \) of \(\mathcal{F} \) is minimal, if \(\ell(\mathcal{F}) = r \). We always have a minimal reduction for any filtration \(\mathcal{F} \) (It is not necessary to assume that the residue field is infinite).

By the definition of filtration, we have \(\sqrt{F_n} = \sqrt{F_1} \) for all \(n \geq 1 \), and so \(\text{ht}_A F_n \) is constant for \(n \geq 1 \). We denote this number by \(\text{ht}_A \mathcal{F} \). Then the following inequality always holds:

\[\text{ht}_A \mathcal{F} \leq \ell(\mathcal{F}) \leq \dim A. \]

We say that \(\mathcal{F} \) is equimultiple, if \(\text{ht}_A \mathcal{F} = \ell(\mathcal{F}) \). If \(\mathcal{F} \) is equimultiple and \(a_1, \ldots, a_r \) is a minimal reduction of \(\mathcal{F} \), the number \(m_i \) in (*) must coincide to

\[\deg_{\tau} a_i := \max \{ n \mid a_i \in F_n \} \]

for all \(1 \leq i \leq r \).

Example 2.1 Let \(\mathfrak{p} \) be a prime ideal in \(A \) such that \(\dim A/\mathfrak{p} = 1 \). Let \(F_n = \mathfrak{p}^{(n)} \) for all \(n \in \mathbb{Z} \), where \(\mathfrak{p}^{(n)} \) denotes the \(n \)-th symbolic power of \(\mathfrak{p} \). If \(\mathcal{R}(\mathcal{F}) \) is Noetherian, then \(\mathcal{F} \) is equimultiple.

Proof. Because \(\mathcal{R}(\mathcal{F}) \) is Noetherian, there exists a positive integer \(k \) such that \(\mathfrak{p}^{(kn)} = [\mathfrak{p}^{(k)}]^n \) for all \(n \in \mathbb{Z} \). This means the \(k \)-th Veronesean subring \(\mathcal{R}(\mathcal{F})^{(k)} = \sum_{n \geq 0} \mathfrak{p}^{(kn)} t^{kn} \) is isomorphic to \(\mathcal{R}(\mathfrak{p}^{(k)}) \) and depth \(A/\mathfrak{p}^{(k)} \) is constant for \(n \geq 1 \). Then the extension

\[\mathcal{R}(\mathfrak{p}^{(k)}) \subseteq \mathcal{R}(\mathcal{F}) \]

is module-finite and \(\ell(\mathfrak{p}^{(k)}) = d - 1 \) by Burch's inequality. Let \(a_1, \ldots, a_{d-1} \) be a minimal reduction of \(\mathfrak{p}^{(k)} \). Then the extension

\[A[a_1 t^k, \ldots, a_{d-1} t^k] \subseteq \mathcal{R}(\mathcal{F})^{(k)} \]

is module-finite, and so

\[A[a_1, \ldots, a_{d-1}] \subseteq \mathcal{R}(\mathcal{F}) \]

is also module-finite.

Example 2.2 Let \(J \) be an ideal in \(A \) generated by a subsystem of parameters \(a_1, \ldots, a_s \) for \(A \). Let \(\mathcal{F} \) be a filtration such that \(J^n \subseteq F_n \subseteq \overline{J^n} \) for all \(n \in \mathbb{Z} \). If \(\mathcal{R}(\mathcal{F}) \) is Noetherian, then \(\mathcal{F} \) is equimultiple and \(a_1, \ldots, a_s \) is a minimal reduction of \(\mathcal{F} \).
Proof. Obviously, \(\text{ht}_A \mathcal{F} = s \). As \(J^n \subseteq F_n \) for all \(n \in \mathbb{Z} \), \(R(\mathcal{F}) \) contains \(A[a_1 t, \cdots, a_s t] \). Moreover, as \(F_n \subseteq \overline{J^n} \) for all \(n \in \mathbb{Z} \), \(R(\mathcal{F}) \) is integral over \(A[a_1 t, \cdots, a_s t] \). Because \(R(\mathcal{F}) \) is Noetherian, we see that the extension

\[
A[a_1 t, \cdots, a_s t] \subseteq R(\mathcal{F})
\]

is module-finite.

For a prime ideal \(\mathfrak{p} \) in \(A \) containing \(F_1 \), we set \(\mathcal{F}_\mathfrak{p} = \{ F_n A_\mathfrak{p} \}_{n \in \mathbb{Z}} \), which is a filtration in \(A_\mathfrak{p} \). Obviously, \(\ell(\mathcal{F}_\mathfrak{p}) \leq \ell(\mathcal{F}) \) for any prime ideal \(\mathfrak{p} \) in \(A \) containing \(F_1 \).

3 Cohen-Macaulay property of the graded rings associated to equimultiple filtrations

Theorem 3.1 Let \(A \) be a quasi-unmixed local ring. If \(\mathcal{F} \) is equimultiple, then we have

\[
a(G(\mathcal{F})) = \max\{a(G(\mathcal{F}_\mathfrak{p})) \mid \mathfrak{p} \in \text{Assh}_A A/F_1\}
\]

Theorem 3.2 Let \(A \) be a Cohen-Macaulay ring. Let \(\mathcal{F} \) be an equimultiple filtration. We set \(s = \text{ht}_A \mathcal{F} \). Then the following conditions are equivalent:

1. \(G(\mathcal{F}) \) is a Cohen-Macaulay ring.
2. \(G(\mathcal{F}_\mathfrak{p}) \) is Cohen-Macaulay for all \(\mathfrak{p} \in \text{Assh}_A A/F_1 \) and there exists a minimal reduction \(a_1, \cdots, a_s \) of \(\mathcal{F} \) such that \(A/(a_1, \cdots, a_s) + F_n \) is Cohen-Macaulay for all \(1 \leq n \leq a(G(\mathcal{F})) + \sum_{i=1}^s \deg_\mathcal{F} a_i \).

When this is the case, for any minimal reduction \(b_1, \cdots, b_s \) of \(\mathcal{F} \), \(A/(b_1, \cdots, b_s) + F_n \) is Cohen-Macaulay for all \(n \geq 1 \) and

\[
R(\mathcal{F}) = A[\{b^t \deg_\mathcal{F} b\}_{1 \leq i \leq s}, \{F^t \}_{1 \leq n \leq a(G(\mathcal{F})) + \sum_{i=1}^s \deg_\mathcal{F} b_i}].
\]

Corollary 3.3 Let \(A \) be a Cohen-Macaulay ring. Let \(I \) be an equimultiple ideal. Then the following conditions are equivalent:

1. \(G(I) \) is a Cohen-Macaulay ring.
2. \(G(I_\mathfrak{p}) \) is Cohen-Macaulay for all \(\mathfrak{p} \in \text{Assh}_A A/I \) and there exists a minimal reduction \(J \) of \(I \) such that \(A/J + I^n \) is Cohen-Macaulay for all \(1 \leq n \leq r_J(I) \).
4 Integral closures of certain ideals

Applying the results in section 3, we can prove the following assertions.

Example 4.1 Let \(A = k[[X, Y, Z]] \) be the formal power series ring over a field \(k \). Suppose that the ideal generated by the maximal minors of the matrix

\[
\begin{pmatrix}
X^\alpha & Y^{\beta'} & Z^{\gamma'} \\
Y^\beta & Z^{\gamma} & X^{\alpha'}
\end{pmatrix}
\]

is a prime ideal, where \(\alpha, \beta, \gamma, \alpha', \beta' \) and \(\gamma' \) are all positive integers. We put \(a = Z^{\gamma+\gamma'} - X^\alpha Y^{\beta'} \), \(b = X^{\alpha+\alpha'} - Y^\beta Z^{\gamma'} \) and \(c = Y^{\beta+\beta'} - X^\alpha Z^{\gamma} \). Let \(J = (a, b)A \). Then we have

\[
\overline{J^n} = J^{n-1} \cdot (a, b, \{X^i Z^j c \mid i, j \geq 0 \text{ and } i/\alpha' + j/\gamma' \geq 1\})A
\]

for all \(n \geq 1 \) and \(\overline{R(J)} \) is a Cohen-Macaulay ring.

Example 4.2 Let \(A = k[[X, Y, Z, W]] \) be the formal power series ring over a field \(k \). Let \(\alpha, \beta \) and \(\gamma \) be positive integers such that \(0 < \alpha \leq \beta \leq \gamma \). We set

\[
a = X^{\alpha+\ell} - Y^\beta W, \quad b = Y^{\beta+m} - Z^\gamma W, \quad c = Z^{\gamma+1} - X^\alpha W \quad \text{and} \quad d = W^3 - X^\ell Y^m Z,
\]

where \(\ell = \gamma + \beta - 2\alpha + 1 \) and \(m = 2\gamma - \beta - \alpha + 1 \). It is easy to see that \(a, b, c \) is a regular sequence in \(A \). Let \(J = (a, b, c)A \). Then we have

\[
\overline{J} = J + (\{X^i Y^j Z^k d \mid i/\alpha + j/\beta + k/\gamma \geq 1\})A,
\]
\[
\overline{J^2} = \overline{J}^2 + (\{X^i Y^j Z^k d^2 \mid i/2\alpha + j/2\beta + k/2\gamma \geq 1\})A \quad \text{and}
\]
\[
\overline{J^n} = \overline{J}^{n-2} \cdot \overline{J^2} \quad \text{for } n \geq 3.
\]

Moreover \(\overline{R(J)} \) is a Cohen-Macaulay ring.

参考文献

