<table>
<thead>
<tr>
<th>Title</th>
<th>A note on Hilbert-Kunz multiplicity (Free resolution of defining ideals of projective varieties)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yoshida, Ken-ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1999), 1078: 64-74</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62668</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A note on Hilbert-Kunz multiplicity

名古屋大学大学院多元数理科学研究科　吉田 健一 (Ken-ichi YOSHIDA)

1 Introduction

This is a joint work with Prof. Kei-ichi Watanabe in Nihon University; see [WY].

Throughout this talk, let (A, m, k) be a Noetherian local ring of characteristic $p > 0$. Put $d := \dim A \geq 1$. Let \hat{A} denote the m-adic completion of A, and let $\text{Ass}(A)$ (resp. $\text{Min}(A)$) denote the associated prime ideals (resp. minimal prime ideals) of A. Moreover, unless specified, let I denote an m-primary ideal of A and M a finite A-module.

First, we recall the notion of Hilbert-Kunz multiplicity which was defined by Kunz [Kul]; see also Monsky [Mo], Huneke [Hu].

Definition 1.1 The Hilbert-Kunz multiplicity $e_{HK}(I, M)$ of M with respect to I is defined as follows:

$$e_{HK}(I, M) := \lim_{q \to \infty} \frac{\lambda_A(M/I^qM)}{q^d},$$

where $q = p^e$ and $I^q = (a^q | a \in I)A$. For simplicity, we put $e_{HK}(I) := e_{HK}(I, A)$ and $e_{HK}(A) := e_{HK}(m)$.

The following question is fundamental but still open.

Question 1.2 Is $e_{HK}(I)$ always a rational number?

Known Results.

(1.3.1) Let $e(I)$ be the multiplicity of A with respect to I. Then we have the following inequalities:

$$\frac{e(I)}{d!} \leq e_{HK}(I) \leq e(I).$$

(1.3.2) $e_{HK}(I) \geq e_{HK}(A) \geq 1$.

(1.3.3) Put $\text{Assh}(A) = \{P \in \text{Spec}(A) | \dim A/P = d\}$. Then

$$e_{HK}(I, M) = \sum_{P \in \text{Assh}(A)} e_{HK}(I, A/P) \cdot l_{AP}(M_P).$$

For example, if A is a local domain and B is a torsion free A-module of rank r, then $e_{HK}(I, B) = r \cdot e_{HK}(A)$.
(1.3.4) (Kunz [Ku2]) For any prime ideal $P \in \text{Spec}(A)$ such that height $P + \dim A/P = \dim A$, we have

$$e_{HK}(A_P) \leq e_{HK}(A).$$

(1.3.5) If A is a regular local ring, then $e_{HK}(I) = \lambda_A(A/I)$.

(1.3.6) If I is a parameter ideal, then $e_{HK}(I) = e(I)$.

(1.3.7) We recall the notion of tight closure. An element $x \in A$ is said to be in the tight closure I^* of I if there exists an element $c \in A^0$ such that for all large $q = p^e$, $cx^q \in I^{[q]}$, where $A^0 := A \setminus \cup\{P | P \in \text{Min}(A)\}$.

Let I, J be m-primary ideals such that $I \subseteq J$. Then if $I^* = J^*$, then $e_{HK}(I) = e_{HK}(J)$. Furthermore, if, in addition, \hat{A} is equidimensional and reduced, then the converse is also true.

(1.3.8) ([WY] or [BCP]) Let $(A, m) \subseteq (B, n)$ be a module-finite extension of local domains. Then

$$e_{HK}(I, A) = \frac{[B:n:A/m]}{[Q(B):Q(A)]} \cdot e_{HK}(IB, B),$$

where $Q(A)$ denotes the fraction field of A.

Question 1.4 If $\text{pd}_A A/I < \infty$, then does the same formula as that in (1.3.5) hold?

Background and Questions.

In general, there is an example such that $e_{HK}(I) = e(I)$; for instance, let q be a minimal reduction of m. If $q^* = m$, then we have $e_{HK}(m) = e_{HK}(q) = e(q) = e(m)$. However, we have no example such that $\frac{e(I)}{d!} = e_{HK}(I)$. On the other hand, if $A = k[[X_1, \ldots, X_d]](r)$, then

$$e_{HK}(A) = \frac{1}{r} \left(\begin{array}{c} d + r - 1 \\ r - 1 \end{array} \right) \text{ and } e(A) = r^{d-1}.$$

Thus if we tend r to ∞, then the limit $\frac{e_{HK}(A)}{e(A)}$ tends to $\frac{1}{d!}$. So we consider the following question.

Question 1.5 Is there a constant number $\alpha > 0$ depending on $d = \dim A$ alone such that

$$e_{HK}(I) \geq \frac{e(I)}{d!} + \alpha?$$

On the other hand, in [WY], we proved the following theorem.

Theorem 1.6 [WY, Theorem (1.5)] If A is an unmixed (i.e. $\text{Ass}(\hat{A}) = \text{Assh}(\hat{A})$) local ring with $e_{HK}(A) = 1$, then it is regular.
In the above theorem, we cannot remove the assumption that A is "unmixed". For instance, if $e(A) = 1$, then $e_{HK}(A) = 1$. We now consider the case of Cohen-Macaulay local rings. Then the following question is a natural extension of the above theorem.

Question 1.7 If A is a Cohen-Macaulay local ring with $e_{HK}(A) < 2$, then is it F-regular?

The following conjecture is related to the above questions.

Conjecture 1.8 Let A be a quasi-unmixed (i.e. Min(\hat{A}) = Assh(\hat{A})) local ring. Then $e_{HK}(I) \geq \lambda(A/I^s)$ for any m-primary ideal I.

Further, if A is a Cohen-Macaulay local ring then $e_{HK}(I) \geq \lambda(A/I)$ for any m-primary ideal I.

2 A positive answer to Question 1

Throughout this section, let A be a Noetherian local ring with $\dim A = 2$ and suppose that $k = A/m$ is infinite. The following theorem is a main result in this section.

Theorem 2.1 (cf. [WY, Section 5]) Suppose $\dim A = 2$. Then for any m-primary ideal I, we have

$$e_{HK}(I) \geq \frac{e(I) + 1}{2} \left(> \frac{e(I)}{2} \right).$$

First, we consider the case of Cohen-Macaulay local rings. Now suppose that A is Cohen-Macaulay. Let I be an m-primary ideal and J its minimal reduction, that is, $J = (a, b)$ is a parameter ideal of A and $I^{n+1} = JI^n$ for some $n \geq 1$.

Lemma 2.2 Suppose that A is Cohen-Macaulay, $1 \leq s < 2$ and $q = p^s$. We define $I^x = I^{\lfloor x \rfloor}$ for any positive real number x. Then we have

1. $\lambda_A(A/I^{(s-1)q}) = \frac{e(I)}{2} (s - 1)^2 q^2 + o(q^2)$, where $f(q) = o(q^2)$ means $\lim_{q \to \infty} \frac{f(q)}{q^2} = 0$.
2. $\lambda_A \left(\frac{I^q + J^q}{J^q} \right) = \frac{e(I)}{2} (2 - s)^2 q^2 + o(q^2)$.

Proof. Put $n = [(s - 1)q]$ and $\epsilon = (s - 1)q - n$.

1. $\lambda_A(A/I^{(s-1)q}) = \lambda_A(A/I^n) = \frac{e(I)}{2} n^2 + f(n)$, where $\lim_{n \to \infty} \frac{f(n)}{n^2} = 0$.

Thus we get

$$\lambda_A(A/I^{(s-1)q}) = \frac{e(I)}{2} (s - 1)^2 q^2 + o(q^2) = \frac{e(I)}{2} (s - 1)^2 q^2 + o(q^2).$$

2. $\lambda_A \left(\frac{I^q + J^q}{J^q} \right) \leq \lambda_A \left(\frac{J^q + J^q}{J^q} \right) + \lambda_A \left(\frac{I^q}{J^q} \right).$
First, we estimate the second term. Since $e(I) = e(J)$, we have

$$\lambda_A(I^{sq}/J^{sq}) = \lambda_A(A/J^{sq}) - \lambda_A(A/I^{sq}) = o(q^2).$$

Next, we estimate the first term.

$$\lambda_A\left(\frac{J^{sq} + J^{[q]}}{J^{[q]}}\right) \leq \sum_{l=n}^{2q} \{(x, y) \in \mathbb{Z}^2 | 0 \leq x, y \leq q-1, x+y = l\} \times \lambda_A(A/J) + o(q^2)$$

$$= \frac{1}{2} (2q - sq)^2 \cdot e(I) + o(q^2). \quad \text{Q.E.D.}$$

Lemma 2.3 Suppose that A is Cohen-Macaulay. Let I be an m-primary ideal of A and J a minimal reduction of I. If I/J is generated by r elements (i.e. $r \geq \mu_A(I) - 2$), then we have

$$\lambda_A(I^{[q]}/J^{[q]}) \leq \frac{r}{2(r+1)} e(I) \cdot q^2 + o(q^2).$$

Moreover, if $J^* \subseteq I$ and I/J^* is generated by r elements, the same result holds.

Proof. Let s be any real number such that $1 \leq s < 2$. Then

$$\lambda_A\left(\frac{I^{[q]}}{J^{[q]}}\right) \geq \lambda_A\left(\frac{I^{[q]} + J^{[q]}}{J^{[q]}}\right) + \lambda_A\left(\frac{J^{[q]} + I^{[q]}}{J^{[q]}}\right) =: (E1) + (E2).$$

Since we can write as $I = Au_1 + \cdots Au_r + J$, we get

$$(E1) \leq \sum_{i=1}^{r} \lambda_A\left(\frac{u_i^q A + J^{[q]} + I^{[q]}}{J^{[q]}}\right) = \sum_{i=1}^{r} \lambda_A\left(\frac{A}{(J^{[q]} + I^{[q]}) : u_i^q}\right)$$

$$\leq r \cdot \lambda_A\left(\frac{A}{I^{(s-1)q}}\right) = r \cdot \frac{e(I)}{2} (s-1)^2 q^2 + o(q^2) \quad \text{by (2.2).}$$

On the other hand, by (2.2) again, $(E2) = \frac{e(I)}{2} (2-s)^2 q^2 + o(q^2)$. Thus

$$\lambda_A\left(\frac{J^{[q]}}{J^{[q]}}\right) \leq \frac{e(I)}{2} q^2 \left\{(r+1)s^2 - 2(r+2)s + (r+4)\right\} + o(q^2).$$

Put $s = \frac{r+2}{r+1}$, and we get the required inequality.

Further, the last statement follows from the fact $\lambda_A(A/J^{[q]}) = \lambda_A(A/(J^*)^{[q]}) + o(q^2)$.

Q.E.D.

Next proposition easily follows from the above lemma.

Proposition 2.4 Suppose that A is Cohen-Macaulay. Let I be an m-primary ideal of A and J a minimal reduction of I. If I/J is generated by r elements then we have

$$e_{HK}(I) \geq \frac{r+2}{2(r+1)} \cdot e(I).$$

Moreover, if $J^* \subseteq I$ and I/J^* is generated by r elements (i.e. $r \geq \mu_A(I/J^*) = \lambda_A(I/J^* + Im)$), the same result holds.
We now give a proof of Theorem (2.1). First, we suppose that A is Cohen-Macaulay and let J be a minimal reduction of m. Since

$$e(I) - 1 = \lambda_A(m/J) = \lambda_A(I/J) + \lambda_A(m/I) \geq \lambda_A(I/J + I)m + \lambda_A(m/I),$$

we have $e(I) - 1 \geq \lambda_A(m/I) \geq \mu_A(I/J)$. By virtue of Proposition (2.4), we get

$$e_{HK}(I) \geq \frac{r + 2}{2(r + 1)} \cdot e(I) \geq \frac{e(I) + 1}{2},$$

where $r = e(I) - 1 - \lambda_A(m/I)$.

We remark that Equality $e_{HK}(I) = (e(I) + 1)/2$ implies $I = m$.

Next, we consider about general local rings. Since $e_{HK}(I) = e_{HK}(I\hat{A})$ and $e(I) = e(I\hat{A})$, we may assume that A is complete. Moreover, since

$$e(I) = \sum_{P \in Assh(A)} e(I, A/P) \cdot \lambda_A(A_P),$$

we may assume that A is a complete local domain. Let B be the integral closure of A in its fraction field. Then B is a complete normal local domain and a finite A-module; thus it is a two-dimensional Cohen-Macaulay local ring. Let n be an unique maximal ideal of B and put $t = [B/n : A/m]$. Then we have

$$e_{HK}(I) = t \cdot e_{HK}(IB, B), \quad e(I) = t \cdot e_{HK}(IB, B).$$

Thus by the argument in the Cohen-Macaulay case, we get

$$e_{HK}(I) = t \cdot e_{HK}(IB, B) \geq t \cdot \frac{e_{HK}(IB, B) + 1}{2} \geq \frac{e_{HK}(I) + 1}{2}.$$

Corollary 2.5 If A is a non-Cohen-Macaulay, unmixed local ring (with $\dim A = 2$), then

$$e_{HK}(I, A) > \frac{e(I) + 1}{2}$$

for any m-primary ideal I of A.

Proof. By the above proof, we may assume that A is a complete local domain. With the same notation as in the proof of Theorem, B is a torsion free A-module. If $\mu_A(B) = 1$, then $B \cong A$; this contradicts the assumption that A is not Cohen-Macaulay. Thus $\lambda_A(B/mB) = \mu_A(B) \geq 2$.

When $t := [B/n : A/m] = 1$, since $\lambda_B(B/mB) = \lambda_A(B/mB) \geq 2$, we have $IB \subseteq mB \subseteq n$. Hence

$$e_{HK}(I) = e_{HK}(IB, B) > \frac{e(IB) + 1}{2} = \frac{e(I) + 1}{2}.$$

On the other hand, when $t \geq 2$, we have

$$e_{HK}(I) \geq \frac{e(I) + t}{2} > \frac{e(I) + 1}{2}. \quad \text{Q.E.D.}$$
Corollary 2.6 Let A be a local ring with $\dim A = 2$. Then

(1) When $e(A) = 1$, we have $e_{HK}(A) = 1$.

(2) When $e(A) \geq 2$, we have $e_{HK}(A) \geq \frac{3}{2}$.

3 Local rings with small Hilbert-Kunz multiplicity

In this section, we consider Question (1.7) in case of local rings with $\dim A = 2$. In order to state the main theorem, we recall the notion of F-regular rings. A local ring A is said to be F-regular (resp. F-rational) if $I^* = I$ for every ideal (resp. parameter ideal) I of A. We are now ready to state the main theorem, which is a slight generalization of Theorem (5.4) in [WY].

Theorem 3.1 (cf. [WY, Theorem (5.4)]) Let A be an unmixed local ring with $\dim A = 2$ and suppose $k = \overline{k}$. Then

(1) $1 < e_{HK}(A) < 2$ if and only if \hat{A} is an F-rational double point, that is, $\hat{A} \cong k[[X, Y, Z]]/(f)$, where f is given by the list below (3.2).

(2) $e_{HK}(A) = 2$ if and only if A satisfies either one of the following conditions:

(a) A is not F-regular with $e(A) = 2$.
(b) $\hat{A} \cong k[[X^3, X^2Y, XY^2, Y^3]]$.

Corollary 3.2 Let A be an unmixed local ring with $\dim A = 2$. If $e_{HK}(A) < 2$, then \hat{A} is isomorphic to the completion of the ring $k[X, Y]^G$ where G is a finite subgroup of $SL_2(k)$.

In particular, A is a module-finite subring of $k[[X, Y]]$ and $e_{HK}(A) = 2 - \frac{1}{|G|}$.

In fact, $|G|$ is given by the following table.

| type | f | $|G|$ | n | p |
|-------|--------------------------|---------------|---------|---------|
| (A_n) | $f = xy + z^{n+1}$ | $n + 1$ | $n \geq 1$ |
| (D_n) | $f = x^2 + yz^2 + y^{n-1}$ | $4(n - 2)$ | $n \geq 4$, $p \geq 3$ |
| (E_6) | $f = x^2 + y^3 + z^4$ | 24 | $p \geq 3$ |
| (E_7) | $f = x^2 + y^3 + yz^3$ | 48 | $p \geq 5$ |
| (E_8) | $f = x^2 + y^3 + z^5$ | 120 | $p \geq 7$ |

From now on, let A be an unmixed local ring with $\dim A = 2$. In order to prove the above theorem, we give several lemmas.

Lemma 3.3 If $1 < e_{HK}(A) < 2$, then \hat{A} is an integral domain with $e(\hat{A}) = 2$ and \hat{A}_P is regular for any prime ideal $P \neq m\hat{A}$.
Proof. We may assume that A is complete. First, we observe that $e(A) = 2$. Actually, it follows from Theorem (2.1).

Next, we show that A is a local domain with isolated singularity. For any prime ideal $P \neq \mathfrak{m}$, we have $e_{HK}(A_P) \leq e_{HK}(A) < 2$. Since $e_{HK}(A_P)$ must be a positive integer, we have $e_{HK}(A_P) = 1$. Hence A_P is regular.

On the other hand, $\# \text{Ass}(A) = \# \text{Assh}(A) = 1$. Actually, if $\# \text{Assh}(A) \geq 2$,

$$2 > e_{HK}(A) = \sum_{P \in \text{Assh}(A)} e_{HK}(A_P) \cdot \lambda_{A_P}(A_P) \geq \# \text{Assh}(A) \geq 2,$$

gives a contradiction. Hence $\# \text{Ass}(A) = 1$. Therefore A is a local domain. \quad Q.E.D.

Corollary 3.4 Let A be a Cohen-Macaulay local ring with $e(A) = 2$ and suppose that \hat{A} is reduced. Then

(1) If A is F-regular, then $e_{HK}(A) < 2$.

(2) If A is not F-regular, then $e_{HK}(A) = 2$.

Proof. Let \mathfrak{q} be a minimal reduction of \mathfrak{m}. Since A is Cohen-Macaulay, we have $\lambda_{A}(A/\mathfrak{q}) = e(A) = 2$; thus $\mathfrak{q}^* = \mathfrak{q}$ or $\mathfrak{q}^* = \mathfrak{m}$, because $\mathfrak{q} \subseteq \mathfrak{q}^* \subseteq \mathfrak{m}$.

When $\mathfrak{q}^* = \mathfrak{q}$, since A is Gorenstein, A must be F-regular. Moreover, since $\mathfrak{m} \neq \mathfrak{q}^*$ and \hat{A} is reduced, we get

$$e_{HK}(A) := e_{HK}(\mathfrak{m}) < e_{HK}(\mathfrak{q}^*) = e_{HK}(\mathfrak{q}) = e(\mathfrak{q}) = 2.$$

On the other hand, when $\mathfrak{q}^* = \mathfrak{m}$, A is not F-regular and $e_{HK}(A) = e_{HK}(\mathfrak{q}) = 2$. \quad Q.E.D.

We now give an outline of the proof of Theorem (3.1). Let A be an unmixed local ring with $\dim A = 2$ and suppose $k = \overline{k}$.

Step 1. When A is a complete Cohen-Macaulay local ring with $e_{HK}(A) < 2$, it is an F-rational double point.

Proof. In fact, by Lemma (3.3), A is a complete local domain with $e(A) = 2$. Thus Corollary (3.4) implies that A is F-regular. Then A is given by the list in Corollary (3.2).

Step 2. If A is unmixed local ring with $e_{HK}(A) < 2$, then \hat{A} is F-regular.

Proof. We may assume that A is complete. By Lemma (3.3), A is a complete local domain with $e(A) = 2$. Let B the integral closure of A in its fraction field. Then $\lambda_{A}(B/A) < \infty$ and B is a local domain and is a module-finite extension of A. Let \mathfrak{n} be an unique maximal ideal of B. In order to show that A is F-regular it is enough to show $A = B$, for B is Cohen-Macaulay. As $A/\mathfrak{m} \cong B/\mathfrak{n}$, we get

$$2 > e_{HK}(A) = e_{HK}(\mathfrak{m}, B) \geq e_{HK}(\mathfrak{n}, B) =: e_{HK}(B).$$

According to Step 1, B is F-regular with $e_{HK}(B) = 2 - \frac{1}{|G|}$ and is a module-finite subring of $C = k[[X, Y]]$ such that $|G| = [Q(C) : Q(B)]$. \quad |G|
Now suppose $A \neq B$. Then $H^1_m(A) \cong B/A \neq 0$ and thus A is not Cohen-Macaulay. Further, as $\mu_A(B) \geq 2$, we have $m.B \subseteq n$. Moreover, since both B and C are F-regular rings, we obtain that $I.C \cap B = I$ for any ideal I of B. In particular, we have $m.C \subseteq n$. Hence we get
\[
e_{HK}(A) - e_{HK}(B) = \frac{1}{|G|} \lambda_A(C/m.C) - \frac{1}{|G|} \lambda_A(C/n.C)
= \frac{1}{|G|} \lambda_A(n.C/m.C) \geq \frac{1}{|G|}.
\]

Thus\[
e_{HK}(A) \geq e_{HK}(B) + \frac{1}{|G|} \geq \frac{e(A) + 1}{2}.
\]

Thus we conclude that $A = B$ as required.

Step 3. Let A be a complete Cohen-Macaulay local ring. Then $e_{HK}(A) = 2$ if and only if A is not F-regular with $e(A) = 2$ or $A \cong k[[X^3, X^2Y, XY^2, Y^3]]$.

Proof. If part is easy. But only if part is hard. See [WY, Section5] for details.

Step 4. Suppose that A is unmixed but not Cohen-Macaulay. Then $e_{HK}(A) = 2$ if and only if $e(A) = 2$.

Proof. If part: If $e(A) = 2$, then $e_{HK}(A) \leq 2$. If $e_{HK}(A) < 2$, then A is Cohen-Macaulay by Step 2. However, this contradicts the assumption. Hence $e_{HK}(A) = 2$.

Only if part follows from Corollary (2.5).

Q.E.D.

In the final of this section, we give the following problem.

Problem 3.5 Let A be an unmixed local ring with dim $A = 2$. Characterize the ring A which satisfies $e_{HK}(A) = \frac{e(A) + 1}{2}$.

In fact, if $A = k[[X, Y]](e)$ then $e(A) = e$ and $e_{HK}(A) = \frac{e + 1}{2}$. Further, the proof of the above theorem implies that if $e_{HK}(A) = \frac{e(A) + 1}{2}$ and $e(A) \leq 3$ then $A \cong k[[X, Y]]^{e(A)}$. Moreover, the following proposition gives a partial answer to this problem.

Proposition 3.6 If A is an unmixed local ring with $e_{HK}(A) = \frac{e(A) + 1}{2}$, then it is F-rational.

Proof. By Cor (2.5), A is Cohen-Macaulay. Then we show that A has a minimal multiplicity, that is, $\text{emb}(A) = e(A) + \text{dim } A - 1$. Let q be a minimal reduction of m. Then since\[
e(A) - 1 = \lambda_A(m/q) \geq \lambda_A(m/q + m^2) = \mu_A(m/q).
\]

If $e(A) - 1 > \mu_A(m/q) =: r_0$, then
\[
e_{HK}(A) \geq \frac{r_0 + 2}{2(r_0 + 1)} \cdot e(A) > \frac{e(A) + 1}{2};
\]

If $e(A) - 1 = \mu_A(m/q)$, then
\[
e_{HK}(A) = \frac{e(A) + 1}{2};
\]

If $e(A) - 1 = \mu_A(m/q) - 1$, then
\[
e_{HK}(A) = \frac{e(A) + 1}{2}.
\]
see the proof of Theorem (2.1) for detail. Thus \(e(A) - 1 = \mu_A(m/q) \). It follows that \(m^2 \subseteq q \); thus \(A \) has a minimal multiplicity.

We will show that \(A \) is F-rational. Suppose not. Then \(q^* \neq q \). Since \(m^2 \subseteq q \subseteq q^* \), we have \(r_1 := \mu_A(m/q^*) < \mu_A(m/q) = r_0 \). Thus by virtue of (2.4), we get

\[
e_{HK}(A) \geq \frac{r_1 + 2}{2(r_1 + 1)} \cdot e(A) > \frac{r_0 + 2}{2(r_0 + 1)} \cdot e(A) = \frac{e(A) + 1}{2}.
\]

This contradicts the assumption. Hence we conclude that \(A \) is F-rational. \(Q.E.D. \)

4 Extended Rees Rings.

In this section, we consider the following question.

Question 4.1 Let \(A \) be a local ring and \(F = \{F_n\} \) a filtration of \(A \). Then does \(e_{HK}(A) \leq e_{HK}(G_F(A)) \) always hold? Further, when does equality hold?

In order to state our result, we recall the definition of Rees ring, extended Rees ring and the associated graded ring.

Let \(A \) be a local ring of \(A \) with \(d := \dim A \geq 1 \). Then \(F = \{F_n\}_{n \in \mathbb{Z}} \) is said to be a filtration of \(A \) if the following conditions are satisfied:

(a) \(F_i \) is an ideal of \(A \) such that \(F_i \supseteq F_{i+1} \) for each \(i \).

(b) \(F_i = A \) for each \(i \leq 0 \) and \(m \supseteq F_1 \).

(c) \(F_i F_j \subseteq F_{i+j} \) for each \(i, j \).

For a given filtration \(F = \{F_n\}_{n \in \mathbb{Z}} \) of \(A \), we define

\[
R := R_F(A) := \bigoplus_{n=0}^{\infty} F_n t^n.
\]

\[
S := R'_F(A) := \bigoplus_{n \in \mathbb{Z}} F_n t^n.
\]

\[
G := G_F(A) := \bigoplus_{n=0}^{\infty} F_n/F_{n+1} \cong S/t^{-1} S \cong R/R(1).
\]

\(R_F(A) \) (resp. \(R'_F(A), G_F(A) \)) is said to be the Rees (resp. the extended Rees, the associated graded) ring with respect to a filtration \(F \) of \(A \).

Then our main result in this section is the following theorem.

Theorem 4.2 Let \(A \) be any local ring with \(d := \dim A > 0 \) and let \(F = \{F_n\}_{n \in \mathbb{Z}} \) be a filtration of \(A \). Suppose that \(R_F(A) \) is a Noetherian ring with \(\dim R_F(A) = d + 1 \). Then for any \(m \)-primary ideal \(I \) of \(A \) such that \(F_1 \subseteq I \subseteq m \), we have

(1) \(e_{HK}(I, A) \leq e_{HK}(N, S) \), where \(N = (t^{-1}, I, S_+) \).
(2) If F_1 is an m-primary ideal, then $e_{HK}(N, S) \leq e_{HK}(G)$.

In particular, if F_1 is an m-primary ideal, then

$$e_{HK}(A) \leq e_{HK}(S) \leq e_{HK}(G).$$

Question 4.3 In the above theorem, when does equality hold? How about $e_{HK}(A) \leq e_{HK}(R_F(A))$?

Example 4.4 Let $A = k[[X, Y]]$ and $I = (X^m, Y^n)$, where $m \geq n \geq 1$. Then

1. $e(R(I)) = n + 1$.
2. $e_{HK}(R(I)) = n + 1 - \frac{n(3m - 1)}{3m^2}$.
3. $e(R'(I)) = n + 2$ (if $n \geq 2$), $= 2$ (otherwise).
4. $e_{HK}(R'(I)) = n + 2 - \frac{n}{m} - \frac{1}{n}$.

References

Ken-ichi YOSHIDA
Graduate School of Mathematics, Nagoya University
Chikusa-ku, Nagoya 464-8602, Japan
e-mail: yoshida@math.nagoya-u.ac.jp