Title
Sequences of Fuzzy Sets on \mathbb{R}^n (Decision Theory in Mathematical Modelling)

Author(s)
Kurano, Masami; Yasuda, Masami; Nakagami, Jun-ichi; Yoshida, Yuji

Citation
数理解析研究所講究録 (1999), 1079: 233-237

Issue Date
1999-02

URL
http://hdl.handle.net/2433/62675

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Sequences of Fuzzy Sets on \mathbb{R}^n

千葉大学教育学部 藤野正美 (Masami KURANO)
千葉大学理学部 安田正寛 (Masami YASUDA)
千葉大学理学部 中神潤一 (Jun-ichi NAKAGAMI)
北九州大学経済学部 吉田祐治 (Yuji YOSHIDA)

Abstract

In this paper, we study the convergence of a sequence of fuzzy sets on \mathbb{R}^n which in monotone w.r.t. a pseudo order \preceq_K induced by a closed convex cone K. Our study is carried out by restricting the class of fuzzy sets into the subclass in which \preceq_K becomes a partial order and a monotone convergence theorem is approved. This restricted subclass of fuzzy sets is created and characterized in the concept of a determining class.

Keywords: Pseudo-order, fuzzy max order, multidimensional fuzzy sets, monotone convergence theorem, determining class, rectangle-type fuzzy sets.

1. Introduction and notations

In our previous paper [3], we have introduced a pseudo order, \preceq_K, in the class of fuzzy sets, which is natural extension of fuzzy max order (cf. [2], [6]) in fuzzy numbers on \mathbb{R} and induced by a closed convex cone K in \mathbb{R}^n. For a lattice-structure of the fuzzy max order, see [1], [10]. Here, we study the convergence of a sequence of fuzzy sets on \mathbb{R}^n which is monotone w.r.t. a pseudo order \preceq_K. Our study is done by restricting the class of fuzzy sets into the subclass in which \preceq_K becomes a partial order and a monotone convergence theorem is approved. This restricted subclass of fuzzy sets is created and characterized in the concept of a determining class.

In the remainder of this section, we will give some notations and review a vector ordering of \mathbb{R}^n by a convex cone. In Section 2, a pseudo order of fuzzy sets on \mathbb{R}^n is reviewed referring to our previous paper [3]. In Section 3, we introduce a concept determining class and give a convergence theorem for convex compact subclass \mathbb{R}^n. These results are applied to obtain a monotone convergence theorem for fuzzy sets on \mathbb{R}^n in Section 4.

Let \mathbb{R} be the set of all real numbers and \mathbb{R}^n an n-dimensional Euclidean space. We write fuzzy sets on \mathbb{R}^n by their membership functions $\tilde{s}: \mathbb{R}^n \rightarrow [0,1]$ (see Novák [5] and Zadeh [9]). The α-cut ($\alpha \in [0,1]$) of the fuzzy set \tilde{s} on \mathbb{R}^n is defined as

$$\tilde{s}_\alpha := \{x \in \mathbb{R}^n | \tilde{s}(x) \geq \alpha \} \ (\alpha > 0) \quad \text{and} \quad \tilde{s}_0 := \text{cl}\{x \in \mathbb{R}^n | \tilde{s}(x) > 0\},$$

where cl denotes the closure of the set. A fuzzy set \tilde{s} is called convex if

$$\tilde{s}(\lambda x + (1 - \lambda)y) \geq \tilde{s}(x) \land \tilde{s}(y) \quad x, y \in \mathbb{R}^n, \ \lambda \in [0,1],$$

where \land denotes the "and" operator in the sense of fuzzy logic.
where $a \wedge b = \min\{a, b\}$. Note that \tilde{s} is convex iff the α-cut \tilde{s}_α is a convex set for all $\alpha \in [0, 1]$. Let $\mathcal{F}(\mathbb{R}^n)$ be the set of all convex fuzzy sets whose membership functions $\tilde{s} : \mathbb{R}^n \to [0, 1]$ are upper-semicontinuous and normal ($\sup_{x \in \mathbb{R}^n} \tilde{s}(x) = 1$) and have a compact support. When the one-dimensional case $n = 1$, the fuzzy sets are called fuzzy numbers and $\mathcal{F}(\mathbb{R})$ denotes the set of all fuzzy numbers.

Let $C(\mathbb{R}^n)$ be the set of all compact convex subsets of \mathbb{R}^n, and $C_r(\mathbb{R}^n)$ be the set of all rectangles in \mathbb{R}^n. For $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$, we have $\tilde{s}_\alpha \in C(\mathbb{R}^n)$ ($\alpha \in [0, 1]$). We write a rectangle in $C_r(\mathbb{R}^n)$ by

$$[x, y] = [x_1, y_1] \times [x_2, y_2] \times \cdots \times [x_n, y_n]$$

for $x = (x_1, x_2, \ldots, x_n), y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$ with $x_i \leq y_i$ ($i = 1, 2, \ldots, n$). For the case of $n = 1$, $C(\mathbb{R}) = C_r(\mathbb{R})$ and it denotes the set of all bounded closed intervals. When $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$ satisfies $\tilde{s}_\alpha \in C_r(\mathbb{R}^n)$ for all $\alpha \in [0, 1]$, \tilde{s} is called a rectangle-type. We denote by $\mathcal{F}_r(\mathbb{R}^n)$ the set of all rectangle-type fuzzy sets on \mathbb{R}^n. Obviously $\mathcal{F}_r(\mathbb{R}) = \mathcal{F}(\mathbb{R})$.

The definitions of addition and scalar multiplication on $\mathcal{F}(\mathbb{R}^n)$ are as follows: For $\bar{m}, \bar{n} \in \mathcal{F}(\mathbb{R}^n)$ and $\lambda \geq 0$,

$$(1.1) \quad (\bar{m} + \bar{n})(x) := \sup_{x_1, x_2 \in \mathbb{R}^n; x_1 + x_2 = x} \{\bar{m}(x_1) \land \bar{n}(x_2)\},$$

$$(1.2) \quad (\lambda \bar{m})(x) := \begin{cases} \bar{m}(x/\lambda) & \text{if } \lambda > 0 \\ I_{\{0\}}(x) & \text{if } \lambda = 0 \end{cases} \quad (x \in \mathbb{R}^n),$$

where $I_{\{1\}}(\cdot)$ is an indicator. By using set operations $A + B := \{x + y \mid x \in A, y \in B\}$ and $\lambda A := \{\lambda x \mid x \in A\}$ for any non-empty sets $A, B \subseteq \mathbb{R}^n$, the following holds immediately.

$$(1.3) \quad (\bar{m} + \bar{n})_\alpha := \bar{m}_\alpha + \bar{n}_\alpha \quad \text{and} \quad (\lambda \bar{m})_\alpha = \lambda \bar{m}_\alpha \quad (\alpha \in [0, 1]).$$

Let K be a non-empty cone of \mathbb{R}^n. Using this K, we can define a pseudo-order relation \preceq_K on \mathbb{R}^n by $x \preceq_K y$ iff $y - x \in K$. Let \mathbb{R}^n_+ be the subset of entrywise non-negative elements in \mathbb{R}^n. When $K = \mathbb{R}^n_+$, the order \preceq_K will be denoted by \preceq_n and $x \preceq_n y$ means that $x_i \leq y_i$ for all $i = 1, 2, \ldots, n$, where $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$.

2. A pseudo-order on $\mathcal{F}(\mathbb{R}^n)$

In this section, we review a pseudo order introduced by [3]. Henceforth we assume that the convex cone $K \subseteq \mathbb{R}^n$ is given. A pseudo order \preceq_K on $C(\mathbb{R}^n)$ is defined, whose idea is based on set-relation treated in [4], as follows.

For $A, B \subseteq C(\mathbb{R}^n)$, $A \preceq_K B$ means the following (C.a) and (C.b):

(C.a) For any $x \in A$, there exists $y \in B$ such that $x \preceq_K y$.

(C.b) For any $y \in B$, there exists $x \in A$ such that $x \preceq_K y$.

When $K = \mathbb{R}^n_+$, the relation \preceq_K on $C(\mathbb{R}^n)$ will be written simply by \preceq_n and for $[x, y], [x', y'] \in C_r(\mathbb{R}^n)$, $[x, y] \preceq_n [x', y']$ means $x \preceq_n x'$ and $y \preceq_n y'$.

Using a pseudo order \preceq_K on $C(\mathbb{R}^n)$, a pseudo order \preceq_K on $\mathcal{F}(\mathbb{R}^n)$ is defined as follows. For $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n)$, $\tilde{s} \preceq_K \tilde{r}$ means the following (F.a) and (F.b):

(F.a) For any $x \in \mathbb{R}^n$, there exists $y \in \mathbb{R}^n$ such that $x \preceq_K y$.

(F.b) For any $y \in \mathbb{R}^n$, there exists $x \in \mathbb{R}^n$ such that $x \preceq_K y$.
(F.a) For any \(x \in \mathbb{R}^n \), there exists \(y \in \mathbb{R}^n \) such that \(x \preceq_K y \) and \(\bar{s}(x) \leq \bar{r}(y) \).

(F.b) For any \(y \in \mathbb{R}^n \), there exists \(x \in \mathbb{R}^n \) such that \(x \preceq_K y \) and \(\bar{s}(x) \geq \bar{r}(y) \).

In [3], for \(\bar{s}, \bar{r} \in \mathcal{F}(\mathbb{R}^n) \), it is shown that \(\bar{s} \preceq_K \bar{r} \) if and only if \(\bar{s}_\alpha \preceq_K \bar{r}_\alpha \) on \(C(\mathbb{R}^n) \) for all \(\alpha \in [0, 1] \). Define the dual cone of a cone \(K \) by

\[
K^+ := \{ a \in \mathbb{R}^n \mid a \cdot x \geq 0 \text{ for all } x \in K \},
\]

where \(a \cdot y \) denotes the inner product on \(\mathbb{R}^n \) for \(x, y \in \mathbb{R}^n \). For a subset \(A \subset \mathbb{R}^n \) and \(a \in \mathbb{R}^n \), we define

\[
a \cdot A := \{ a \cdot x \mid x \in A \} \subset \mathbb{R}.
\]

(2.1)

The equation (2.1) means the projection of \(A \) on the extended line of the vector \(a \) if \(a \cdot a = 1 \). It is trivial that \(a \cdot A \in C(\mathbb{R}) \) if \(A \in C(\mathbb{R}^n) \) and \(a \in \mathbb{R}^n \).

Lemma 2.1 ([3]). Let \(A, B \in C(\mathbb{R}^n) \). \(A \preceq_K B \) on \(C(\mathbb{R}^n) \) if and only if \(a \cdot A \preceq_1 a \cdot B \) on \(C(\mathbb{R}) \) for all \(a \in K^+ \), where \(\preceq_1 \) is the natural order on \(C(\mathbb{R}) \).

For \(a \in \mathbb{R}^n \) and \(\bar{s} \in \mathcal{F}(\mathbb{R}^n) \), we define a fuzzy number \(a \cdot \bar{s} \in \mathcal{F}(\mathbb{R}) \) by

\[
a \cdot \bar{s}(x) := \sup_{\alpha \in [0, 1]} \min \{\alpha, 1_{a \cdot \bar{s}_\alpha}(x)\}, \quad x \in \mathbb{R}.
\]

where \(1_D(\cdot) \) is the classical indicator function of a closed interval \(D \in C(\mathbb{R}) \).

We define a partial relation \(\preceq_M \) on \(\mathcal{F}(\mathbb{R}) \) as follows ([6]): For \(\bar{s}, \bar{r} \in \mathcal{F}(\mathbb{R}) \), \(\bar{s} \preceq_M \bar{r} \) means that \(\bar{s}_\alpha \preceq \bar{r}_\alpha \) for all \(\alpha \in [0, 1] \).

The following theorem gives the correspondence between the pseudo-order \(\preceq_K \) on \(\mathcal{F}(\mathbb{R}^n) \) and the fuzzy max order \(\preceq_M \) on \(\mathcal{F}(\mathbb{R}) \).

Lemma 2.2 ([3]). For \(\bar{s}, \bar{r} \in \mathcal{F}(\mathbb{R}^n) \), \(\bar{s} \preceq_K \bar{r} \) if and only if \(a \cdot \bar{s} \preceq_M a \cdot \bar{r} \) for all \(a \in K^+ \).

Let \(\rho_n \) be the Hausdorff metric on \(C(\mathbb{R}^n) \), that is, for \(A, B \in C(\mathbb{R}^n) \), \(\rho_n(A, B) = \max_{a \in A} d(a, B) \vee \max_{b \in B} d(b, A) \), where \(d \) is a metric in \(\mathbb{R}^n \) and \(d(x, Y) = \min_{y \in Y} d(x, y) \) for \(x \in \mathbb{R}^n \) and \(Y \in \mathcal{F}(\mathbb{R}^n) \). It is well-known that \((C(\mathbb{R}^n), \rho_n) \) is a complete separable metric space. A sequence \(\{D_\ell\}_{\ell=1}^\infty \subset C(\mathbb{R}^n) \) converges to \(D \in C(\mathbb{R}^n) \) w.r.t. \(\rho_n \) if \(\rho_n(D_\ell, D) \to 0 \) as \(\ell \to \infty \).

Definition (Convergence of fuzzy set, [8]).

For \(\{\bar{s}_\ell\}_{\ell=1}^\infty \subset \mathcal{F}(\mathbb{R}^n) \) and \(\bar{r} \in \mathcal{F}(\mathbb{R}^n) \), \(\bar{s}_\ell \) converges to \(\bar{r} \) w.r.t. \(\rho_n \) if \(\rho_n(\bar{s}_\ell, \bar{r}) \to 0 \) as \(\ell \to \infty \) except at most countable \(\alpha \in [0, 1] \).

In the sequel, the monotone convergence theorems for fuzzy sets are given under the concept of the above convergence.
3. Sequences in \(C(\mathbb{R}^n) \)

In this section, restricting \(C(\mathbb{R}^n) \) into the subclass by use of the concept of determining class, we prove the monotone convergence theorem for \(C(\mathbb{R}^n) \).

Let \(\mathcal{L} \subset C(\mathbb{R}^n) \) and \(A \subset \mathbb{R}^n \). Then we say that \(\mathcal{L} \) is determined by \(A \) if \(a \cdot D = a \cdot F \) for \(a \in A \) and \(D, F \in \mathcal{L} \) implies \(D = F \).

Note that \(\mathcal{L} \) determined by some \(A \subset \mathbb{R}^n \) is closed w.r.t. \(\rho_n \). Obviously, \(\mathcal{C}_r(\mathbb{R}^n) \) is determined by \(\{e_1, e_2, \ldots, e_n\} \). Also, by the separation theorem, \(C(\mathbb{R}^n) \) is determined \(\mathbb{R}^n \).

Theorem 3.1. Let \(K \) be a closed convex cone of \(\mathbb{R}^n \). Suppose that \(\mathcal{L} \subset C(\mathbb{R}^n) \) is determined by \(K^+ \). Then, the pseudo order \(\preceq_K \) is a partial one in the restricted class \(\mathcal{L} \).

Proof. It suffices to show that \(\preceq_K \) is antisymmetric in \(\mathcal{L} \). Let \(D, F \in \mathcal{L} \) satisfy that \(D \preceq_K F \) and \(F \preceq_K D \). By Lemma 2.1, \(aD \preceq_K aF \) and \(aF \preceq_K aD \) for all \(a \in K^+ \). Since \(\preceq_1 \) is a partial order, \(aF = aD \) for all \(a \in K^+ \), which implies \(F = D \) from the determining property of \(K^+ \). Q.E.D.

The sequence \(\{D_\ell\}_{\ell=1}^\infty \subset C(\mathbb{R}^n) \) is said to be bounded w.r.t. \(\preceq_K \) if there exists \(F, D \in C(\mathbb{R}^n) \) such that \(F \preceq_K D_\ell \preceq_K D \) for all \(\ell \geq 1 \) and said to be monotone w.r.t. \(\preceq_K \) if \(D_1 \preceq_K D_2 \preceq_K \cdots \). Then, as an application of Theorem 3.1, we have the following, whose proof is omitted.

Theorem 3.2. Let \(K \) be a closed convex cone of \(\mathbb{R}^n \) with \(K^+ \cap (\mathbb{R}^n)^o \neq \emptyset \). Suppose that \(\mathcal{L} \subset C(\mathbb{R}^n) \) is determined by \(K^+ \). Then, any sequence \(\{D_\ell\}_{\ell=1}^\infty \subset \mathcal{L} \) which is monotone and bounded w.r.t. \(\preceq_K \) converges w.r.t. \(\rho_n \), where \(A^o \) is a set of inner points in \(A \).

The following results are concerned with the scalarization method.

Corollary 3.1. Let \(K = \{\lambda a \mid \lambda \geq 0\} \) for some \(a \in \mathbb{R}_+^n \). Then, any sequence in \(C(\mathbb{R}^n) \) with monotonicity and boundedness w.r.t. \(\preceq_K \) converges w.r.t. \(\rho_n \).

Corollary 3.2. Any sequence in \(\mathcal{C}_r(\mathbb{R}^n) \) with monotonicity and boundedness w.r.t. \(\preceq_n \) converges w.r.t. \(\rho_n \).

4. Sequences in \(\mathcal{F}(\mathbb{R}^n) \)

In this section, applying the results in Section 3, we give the monotone convergence theorem in \(\mathcal{F}(\mathbb{R}^n) \). Let \(\tilde{\mathcal{L}} \subset \mathcal{F}(\mathbb{R}^n) \) and \(A \subset \mathbb{R}^n \). Then we say that \(\tilde{\mathcal{L}} \) is determined by \(A \) if \(a\tilde{s} = a\tilde{r} \) for all \(a \in A \) and \(\tilde{s}, \tilde{r} \in \tilde{\mathcal{L}} \) implies \(\tilde{s} = \tilde{r} \).

Note that \(\tilde{\mathcal{L}} \) determined by some \(A \subset \mathbb{R}^n \) is closed in the convergence given in Definition 1. Applying Lemma 2.2, the same proof as Theorem 3.1 is useful in proving the following.

Theorem 4.1. Let \(K \) be a closed convex cone of \(\mathbb{R}^n \). Suppose that \(\tilde{\mathcal{L}} \subset \mathcal{F}(\mathbb{R}^n) \) is
determined by K^+. Then, a pseudo order \preceq_K is a partial order in the restricted class \mathcal{L}.

In order to get the convergence theorem, we need the concept of directionality given in [8]. Put the surface of the unit ball by $U := \{ x \in \mathbb{R}^n \mid \|x\| = 1 \}$. Let $V \subset U$. Then, for $D, D' \in C(\mathbb{R}^n)$ with $D \subseteq D'$, we call D' V-directional to D (written by $D' \supseteq_V D$) if there exists a real $\lambda > 0$, $y \in D$ and $z \in D'$ such that

(i) $d(z, y) = \rho_n(D', D)$ and

(ii) $z - y = \lambda v$ for some $v \in V$.

Definition 2. Let $V \subset U \subset \mathbb{R}^n$. For $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$, \tilde{s} is called V-directional if $\tilde{s}_\alpha \supseteq_V \tilde{s}_{\alpha'}$ for $0 \leq \alpha \leq \alpha' \leq 1$.

Theorem 4.2. Let K be a closed convex cone of \mathbb{R}^n with $K^+ \cap (\mathbb{R}^n)^+ \neq \emptyset$. Suppose that $\mathcal{L} \subset \mathcal{F}(\mathbb{R}^n)$ is determined by K^+. Then, any monotone and bounded sequence $\{\tilde{s}_\ell\}_{\ell=1}^\infty \subset \mathcal{L}$ with \tilde{s}_ℓ ($\ell \geq 1$) is V-directional for a finite set V converges w.r.t. ρ_n.

Corollary 4.1. Let $K = \{ \lambda a \mid \lambda \geq 0 \}$ for some $a \in \mathbb{R}^n_+$. Then, any sequence $\{\tilde{s}_\ell\} \subset \mathcal{F}(\mathbb{R}^n)$ satisfying that it is monotone and bounded w.r.t. \preceq_K and \tilde{s}_ℓ ($\ell \geq 1$) is V-directional for a finite set V converges w.r.t. ρ_n.

Corollary 4.2. Any sequence in $\mathcal{F}_r(\mathbb{R}^n)$ with monotonicity and boundedness w.r.t. \preceq_n converges w.r.t. ρ_n.

References

