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AN OPTIMAL STOPPING PROBLEM
FOR A GEOMETRIC BROWNIAN MOTION
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SUMMARY

This paper examines an optimal stopping problem for a geometric Brownian motion with random jumps. It is
assumed that jumps occur according to a time-homogeneous Poisson process and the proportions of these sizes
are independent and identically distributed. The objective is to find an optimal stopping time of maximizing the
expected discounted terminal reward which is defined as a power function of the stopped state. By applying what
is called the smooth pasting technique (Dixit [2], and Dixit and Pindyck [3]) and taking a martingale approach,
we derive almost explicitly an optimal stopping rule of a threshold type and the optimal value function of the
initial state. That is, we express the critical state of the optimal stopping region and the optimal value function
by formulae which include only given problem parameters except an unknown to be uniquely determined by a

nonlinear equation.
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1. INTRODUCTION

Dixit [2], Dixit and Pindyck [3], and their papers cited therein formulate various investment problems under
uncertainty as optimal stopping problems and apply what is called the smooth pasting technique to derive
optimal value functions and optimal stopping rules. Although they emphasize its power and easiness, it seems
that its mathematical validity and scope are not sufficiently discussed.

This paper examines an optimal stopping problem for a geometric Brownian motion with random jumps.
It is assumed that jumps occur according to a time~homogeneous Poisson process and the relative amplitudes
of these sizes are independent and identically distributed. The objective is to find an optimal stopping time of
maximizing the expected discounted terminal reward which is defined as a power function of the stopped state.
By applying the smooth pasting technique, we derive almost explicitly an optimal stopping rule of a threshold
type and the optimal value function of the initial state. That is, we express the critical state of the optimal
stopping region and the optimal value function by formulae which include only given problem parameters except
an unknown to be uniquely determined by a solution of a nonlinear equation. ‘

Although Dixit [2], Dixit and Pindyck [3], and their papers cited therein formulate various investment prob-
lems under uncertainty as optimal stopping problems similar to this paper and derive optimal value functions
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and optimal investment policies by applying the smooth pasting technique, it seems that its mathematical va-
lidity is not sufficiently discussed. In this paper, by taking a martingale approach, we shows that it is indeed

mathematically valid under a set of some mild conditions on the parameters of the problem.
2. DESCRIPTION OF PROBLEM

Let (2, F, P) denote the underlying probability space, and consider the following random elements which

are defined on this space:
W= (W,;; t € R,;): astandard Brownian motion.
N = (N;; t € Ry): a time-homogeneous (right—continuous) Poisson counting process with intensity A > 0.

U= (U i€ Zy4): asequence of independent and identically distributed (—1, 400)~valued random variables.
Their generic random variable is denoted by U and their common cumulative distribution function is
denoted by Fy. It is assumed that it has a finite mean my. That is, we assume that

+0o0
Fy(-1)=0;. my =E[U]= / udFy(u) < +00. (2.1)

-1

Furthermore, we assume these random elements are mutually independent.

Now, we let
T =(T;; i € Z.) : the sequence of the event times of the Poisson counting process N (0 =Tp < T7 < --)
and consider a right-continuous R4 —valued stochastic process X = (X;; t € Ry) described as follows.

(D1) On the time interval [T}, Tj41) (i € £4), for some constants y and o > 0, it follows the following stochastic

differential equation:

(D2) At every event time T; (i € Z4.4) of the Poisson counting process A, X jumps in a random size whose

proportion, i.e., relative amplitude to the state just before the jump is given by U;, that is,

XT,' = XT‘_(l + U,) (23)

Then, since the state X; at time instant ¢ € [T}, Ti41) (1 € Z4) is represented by
: 1,
Xi = Xp,exps (1 — 50’ t+oW; p, (2.4)

we can show, by induction in i € Z,, for any time instant £ € R,

Ny

X, = Xy exp { (/J. - %a?’) t+ aWt} [H(l +Ui)

i=1

(2.5)

(see, e.g., Lamberton and Lapeyre [5]). In the sequel, we denote the X; of eq. (2.5) when the initial state is
Xo =12 (€ R4+4+) by X7¥ for notational convenience.
For this state process X, let p > 0, ¢ > 0, and 8 > 0 be constants, and define the terminal reward function
by
R(z) == pf —q, ze€ Ryt (2.6)
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Now, let us consider the optimal stopping problem whose objective is to find an optimal stopping time 7 of

attaining the following supremum of the expected discounted terminal reward:
v*(z) ;= sup E [e"*"R(X7) 1{1<+°o}] , TER44, (2.7
T

where a > 0 is a discount rate, and the sup of the right hand side of eq. (2.7) is taken over the set of all stopping

times with respect to the state process X'.

Remark 2.1
(1 When 8 = 0, the above optimal stopping problem has the following trivial optimal stopping times.

(+) If R(z) = p— ¢ > 0 then 7* = 0, a.s. is an optimal stopping time, and the optimal value function is
given by v*(z) = p—¢; ’
(=) If R(z) = p— ¢ < 0 then 7 = +00, a.s. is an optimal stopping time, and the optimal value function

is given by v*(x) = 0.

(2) Assuming that, at each time instant until the stopping time 7, a cost (rate per unit of time) is incurred

dependently on the state process X, we consider a seemingly more general criterion:
T
E [_/ e—o“’(X‘:)’ads 40T {pl(Xf)ﬁ —_ q/} 1{T<+00}] , TER44. (2.8)
0
Under a set of some mild integrability conditions, however, this could be reduced to a equi\}alent criterion

of the form of eq. (2.7).

(3) As it will be seen later, only the positive part of the terminal reward function is relevant, so that we could

take it as ,
R(z) = [pe —q],, = €Ry4s, (2.9)

where, for a real number a, we define its positive part by [a]; := max{a, 0}. 0

3. ANALYSIS

We first introduce the infinitesimal generater L of the Markovian state process X as follows: for twice

continuously differentiable function w: R4 = R,

""" B [w(X})] - w(z)

[Lw](z) = Aim - , TER4y. (3.1)

Then, by Ité formula and properties of Poisson process, we have

1 +oo
[Lw](z) = -2—0'2x2w”(:c) + pzw'(z) — aw(c) + A (/ w((1 + u)zx)dFy (u) — w(z)) (3.2)
-1
provided that
+00
/ w((1+ we)dFy(w) (= Efw((1+U)2)) (33)
-1

is well defined.
Now, let us consider a functional equation

[Lul(z) =0, z€Ryy, , (3.4)
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where w : R44 — R is an unknown function to be determined. In order to solve this functional equation, for

two real numbers a and b, we apply a trial solution function of the form

w(z) = az’, T E€Ryy. (3.5)
Substituting it into the functional equation (3.4), we have
+oo
[Lw)(z) = %azxz (ab(b — 1)2°~2) + pz (abz®"') — a (az®) + A (/ (a{(1 + w)z}*) dFy (u) - (aa:b)>
-1
= az’g(bh)
= w(z)g(b)
= 0, z€R4y4, (36)
where the function g : R — R is defined by
L 99 L o oo b
g(b)::—iab + b= 30 b—a+ A (1+u)’dFy(u)—1), beR (3.7)
-1
provided that
+00
/ (1+w)dFy(w) (= E[(1+0)]) (3.8)
-1
is well defined. )
By using this notation, we have
1 i
E [(Xf)b] = 2E [exp { (u - 502) bt + abWtH B[+ Uz-)"]
i=1
= 2Pexp{(g(b) + o)1}, (3.9)
where we use the formulae:
E [exp { (u - :}2—0‘2) bt + U‘bVVt}] = exp { (%a’sz + (p — %0‘2) b) t} , (3.10)
and
Ny +o0 n
E[Ja+uvyt| = Y E|[Ja+U)"| P(N:=n)
=1 n=0 i=1
+o0 n _
n=0 _ n
= exp{ANE[1+U)] -1)¢}. (3.11)
We assume the followings.
Assumption 3.1
(A1)
g(1) = p— a4+ dmy < 0. (3.12)
=]
Under this assumption, we see from eq. (3.9) that the discounted state process
Y= (X7 teRy) (3.13)

becomes a super-martingale. In particular, if (1) = g— o+ Amy = 0 then the process X becomes a martingale.
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Lemma 3.1 Let us assume (Al). Then, the nonlinear equation g(b) = 0 has two distinct real roots, the larger

one, by of which satisfies
by > 1. ' (3.14)

Proof. The function g(b) is decomposed into the sum of two functions:

1 1
(b)) = -2—02b2 + (u - ~2-0'2) b—a, (3.15)

a(b) = /\(f:w(1+u)bdFU(u)w1). | (3.16)

Since the former gp is a (strictly) convex quadratic function and the latter gp consists of a mixture of (strictly)
convex exponential functions (1+u)?, u € (—1,+00), we assure that g(b) is a strictly convex function. Further-

more, we have .
9(0) = —a<0; ¢g(1)=p—a+Imy <0. _ (3.17)

Therefore, the nonlinear equation g(b) = 0 has two distinct real roots b_ and b, such that b_ < 0 and 1 < b4
respectively. |

We also assume the followings.

Assumption 3.2

(A2)
0< B <by. (3.18)

Now, let us define a function w* : R4 — R by

— * b . *
w* (z) ‘_{ w(z) =a*z™, 0O0<z<az*, (3.19)

T R(z)=pzf —-q, z*<uz,

where a* > 0 and 2* > 0 are constants which are uniquely determined by the following simultaneous equations
(see Dixit [2], Dixit and Pindyck [3]):

Value Matching Condition:
w(z*) = R(z"); (3.20)

Smooth Pasting Condition:

~w'(z*) = R/ (z%). (3.21)
That is,
1

o) et (e) () ) em

The next assumption assumes that the sizes of Poissonian jumps are always nonpositive.

23
~B

Assumption 3.3

(A3)
’ FU(O) = 0. (323)
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Further we assume the followings:
Assumption 3.4

(A4)
1 1
50‘2ﬂ+ (/l— 50‘2“%> SO (324)

O

Remark 3.2 Although the physical and/or economical meaning of the condition (A4) is not clear, when 8 =1,

that is, the terminal reward function R(z) is an affine function, (A4) becomes a more simple condition:

p—2 <o (3.25)
by

Under the condition (A2), we could say that the above condition is slightly stronger than the condition:

p—a<0. , (3.26)
Furthermore, since the assumption (A3) implies |
my <0, _ (3.27)
ineq. (3.26) implies the condition (Al)‘:
: p—oa+imy <0 . : (3.28)
That is, when 8 =1, (A2), (A3), and (A4) imply (A1). ' a0

Lemma 3.2 Let us assume (Al), (A2), (A3), and (A4). Then, the function w* : R4y —> R satisfies the
following properties (P1), (P2), (P4), (P5), and (P3):

(P1) Forany z € R4+ and t € R,
t
Eflw(X)] < 4+o00; FE [] e~ I[Lw*](X:)Ids] < o0, (3.29)
, 0

(P2) For any € R4y,
w*(z) > R(z). (3.30)

(P3) w*(x) is strictly increasing in z.

(P4) For any z € R4+ (z # %),
: [Lw*](z) < 0. ©(3.31)

(P5) For any x € R4, either of inegs. (3.30) or (3.31) holds with equality.

Proof.
(P1) Straightforward from eq. (3.9).

(P2) Define a function h : R44 — R by the difference of the two functions w and R, that is,

h(z) = w(z) — R(x) = a*z®* — (pz” —‘q) . (3.32)
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Then, differentiating h{z) with respect to z, we have

k'(z) = w'(z)- R'(z)
— a*b+mb+-—1 —pﬁfﬂﬂ-l
= 2P (a"bypat+ P —pg). (3.33)

Since, by the assumption (A2), a*b;z%+~# — pB strictly increases from —pf to +0o as z moves from 0 to
+00, and its unique zero point is 2™, the sign of the derivative h’(z) changes from — to + as & moves from
0 to 400, and its unique zero point is *. Therefore, h(z) first strictly decreases from ¢ to 0 as  moves

from 0 to z*, and it then strictly increases from 0 to 400 as  moves from z* to +oo. That is,

w(x){ i }R(r), a:{ ; }a: (3.34)

Accordingly,
w(z) > R(x), 0<z<a*,
=w
<w

(z), z=2z", (3.35)
(), z*<z.

(P3) Obvious from the definition (3.19) of the function w*.

(P4) (a) For 0 < z < z*, since w"(z) = w(x) from the proof of (P2), we have

+ o0
[Lw*](z) = %azxzw*"(m) + prw™’ (z) — aw* (2) + A (/_1 w* (1 4+ u)x)dFy(u) — w*(m))
= %azxzw”(a:) + prw' (z) — aw(z) + A ([1 w*((1 4+ v)z)dFy(u) — w(z))
0
= %a’zmzw”(x) + pew'(2) — aw(z) + A (/-1 w((1 + v)z)dFy(u) — 'w(ar:))
= [Luw](e)
= 0, (3.36)

where the second equality follows from (A3}, and the third equality holds because 0 < z < z* and
~1<u<0imply 0 < (1+u)z <z < z* which in turn implies

w ((1+u)z) = w((l+uwz), 0<e <2 (3.37)

{(b) For z* < z, since w*(z) = R(z) from the proof of (P2), we have

+ o0

[Lw*](z) = %a"zmzw""(x) + pzw*' () — aw® (2) +.A (/ w* (1 + w)z)dFy(u) — w"‘(:c))

0 -1
= %angR”(m) + pe R/ (z) ~ aR(z) + X (f

-1

w*((1 + u)z)dFy (u) — R(:c))
0
< %U‘szR"(m) + pzR (z) — aR(z) + A (f_l R(z)dFy(u) — R(a:))

= %UZHR”(a:) + pazR'(z) — aR(z), (3.38)

where the second equality follows from (A3), and the third equality holds because 0 < z and —1 <
u < 0imply 0 < (1 + u)x < z which, together with (P3), implies

w*((1+u)z) < w(z) = R(z), 2" <. ' (3.39)
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Therefore, it suffices to show that

1
r(z) = 5021-2}%"(:0) + pzR (z) — aR(z) <0, z" <= (3.40)

By substituting R(z) = pz® — ¢ into the right hand side of eq. (3.40), we have

r(z) = %0%2 (pB(B8 — 1)2?=?) + pz (pB2°~!) — a (pe” — g)
= pa’ {%Uzﬁ(ﬂ 1)+ puf- a’} + aq
= pz’gp(B) + og. (3.41)

Since (A4) implies

]

_ 1o L, 2
= 2aﬂ+(p 20)6 ab+
by, —
= gp(B)+ a—*b——ﬁ, (3.42)
+
it holds that
go(B) <0. (3.43)
Therefore, for £* < z, we have
r(z) = pz’gn(B) +oq
< pr*Pgp(B) + g
— by by — ﬂ)
< 0, z°<z (3.44)
where the last inequality holds by ineq. (3.42).
(P5) Obvious from the proofs of (P2) and (P4). 0

Theorem 3.1 Let us assume (Al), (A2), (A3), and (A4). The function w* : R4y — R is the optimal value
function, that 1s,
v*(z) = w'(z), =€ Riqt. (3.45)

Moreover, the optimal stopping region S* (C R4 ) and the optimal stopping time 7 are given by the followings:
S*={z €Ryy 0 (z) = R(z)} =[2",4+00); 7" :=inf{teR;: X €5}, (3.46)

Proof. Using the function w* : R4+ — R, we define a new stochastic process M = (M;; t € Ry) by
My = e~ “w* (X7) — w*(X§) — /Ot e [Lw*(XT)ds, teRy: (3.47)

Then, the process M becomes a 0-mean martingale (see, e.g., Davis {1]). Therefore, applying the optional
sampling theorem for martingales, we have, for any stopping time 7 for the process A and any t € Ry, the

following so called Dynkin formula:

E [e““(”‘”)w"(XfM)] =w*(z)+ E [ fo ™ e““[Lw*](Xf)d.s] . (3.48)
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Thus, the property (P4) of function w* implies
B [ 0Mur (X5,,)] < w*(2). » (3.49)
Taking lim inf;, 4 of the both hand sides of eq. (3.49), we have, by Fatou lemma,
E[e™*w" (X])1{r< poo}] < w™(2), (3.50)
Moreover, since the function w* has the property (P2), it holds that
E[e7 R(XD) 1 resoo}] < B [e7 (XD 1 hon}] < 0 (2). (3.51)
On the other hand, for the stopping time 7 defined by egs. (3.46), we have
E [e‘o‘(f‘At)w*(Xf.M)} =w*(z). (3.52)

By the properties (P2), (P4), and (P5) of the function w* we assure that the stopping region $* coincides with
the interval [z*, +00). Furthermore, by the assumption (A3) and the property (P3) of the function w*, it holds
that

0 < w*(XFpy) <w*(2¥), as. (3.53)

Taking lim;_, 4 o of the both hand sides of eq. (3.52), we have, by the bounded convergence theorem of Lebesgue,
w'(e) = B [em T w (X5 o]
= E [e-aT'R(X:.n{T.(m}} , (3.54)
where the second quality follows from the fact that, on the event {r* < +o0},
w*(X7.) = R(X7.). (3.55)
By ineq. (3.51) and eq. (3.54), we conclude that

v (2) = v*(z) = E [e~ar'R(Xf.)1{f-<+oo}} . (3.56)
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