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Repeated Game of Criminal vs Police ---—-Incomplete-Information Case

Minora SAKAGUCHI® (217 &)

Abstract. In this paper a conflict between a potential criminal ‘offender and a law-
enforcoment authorities is investigated. Continueing the previous work [10] the
model we study is a non-zero-sum two-period game under incomplete information,
where each player doesnt know whether the opponent is unable to act, or can act at most
two times during the two periods. We study the game in the Bayesian approach and
derive Bayesian equilibria of three one-period games and one two-period game under
various information structures, each in an explicit form depending on the parameter
values of the game. It is shown that, just as our common sense suggests, the
equilibrium goes to *“act-act’’ choice -pair, (f_.'_iucriminal commits crime, when police
places an alert against him) as offendefs illeagal income, comming from an unpunished

crime, increases. Also /»y_ga\numerical example which corroborates the theoretical
. Tive
analysis. v

_L. The Game of Criminal v Police under Incomplete Information. .
The game is played as a repeated game overn periods between a potenti al criminal
offender ( hercafter called a criminal, or player 1) and a law-cnforcement authorities
(hereafter called police, or player 11) Bcing a rcpeated game implics that the
fundamentals of the game arc the same in each period. There are two purc stratcgics
available in cach period to playcr I: to commit a crime {C)and to act honestly (H) .
Similarly, player II has two pure strategies: to enforce the law ( E)or to do nothing
(N), If playcr I chooses H he carns his Icagal income r >0 ( dollars) ~ If he chooscs

C, illegal income in amount of T>0 , in addition to his lcgal income r, may be
camed. However if I's crime is detected and arrested by I, I is punished by having to
pay a fine in amount of f >© , and inprisoned until the end of the game. When
caught in prison, I earns no income at all, of course. .

If player H chooscs E, witha costof ¢ >0 (dollars), he can (cannot ) catch I’s crime
with probability p(P=/-p) In case that | commits cname that goes unpunished, a loss
of 1 Y0 is inflicted upon socicty. )

So a singlc stage of this gamc has the game tree as shown by Figure 1, and is

represented by a bimatrix game with payoff bimatrix(1),

ne that €< 2, ie.the strategy E for player Il has a positive merit of
ct?ggs?rf;l."’rhis conditiofis very important as is seen in the proofs of the subsequent
the\g\)fl:gasall disacuss the n-stage game, where pla);cr_l wants to commit cnm;: ata ;nost‘_lé
of n periods, and player 1l attempts to prevent I’s illegal act by takmﬁ e_nu?:; ﬂ;’c\el?l
action at most m times during n periods. After each period is over, the Cc’:riods eI
that period becomes known to both players. The total payoff during n'gformation e
sum of the payoffs on each period. We assume that all of the above 1

known to both players.
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Let f}‘.m {n) denote the game described above. (m, &,m) denotes the state of
the system in which players I and II possess k and m times to take actions,
respectively, and they have n periods to go as their“mission time” Let (Ugm™), VEmin)
represent the equilibrium values of this non-zero-sum n-stage game Cgm(n> - Then
theOptimality Equation of dynamic programming gives a system of cquations

l(uﬁ,mth\),vﬁml“)>=‘- Fg.Val.

E N
) _pf +‘f;{ T, O D7, T+l (ne),
(2) ~(CHFI - F Vg, ey (171) —EVe )
H Huﬁ' m (N=1), —cH,, MUSI R PRCED) Vem(™1)
(if the equilibrium values exist uniquély), with the boundary conditions :
(22) (UomM),Vym(n)) =(nr, 0  for ISmgn,
(2b) (Hﬁ,o(“), Vi o) )= (nr ks, —AY ), for ISR,
(2¢) (Uoolm), Voo[n))= (01, 0), for 21,
(2d) U @)= Vanm(0)=0, V&m0,
and ! !

(@) (Ugmn), Vi )] = (g g 00} Ve (0)), with K=RAD m=tmAm,

The four conditions (2a)~ (2d)  imply that; (a)If 1 has m times of law-
enforcement and his opponent has none of the opportunity of vielation, then the
decision-pair H-N is repeated throughout the whole period, (b} If I has k times of
violating law and his opponent cannot do anything becaause of lack of budget, then
Ichooses Cand H k and h—# times, respectively, during the n periods, (¢ If both

ne .
playersirave any law-violation and law-enforcement intentions, the decision -pair H-
N is repeated throulghout +the whole period, and (dY) The problem with n=1}
reduces to the bimatrix game with payoff matrix (1°).

If release from prison and a second offense are not taken into account, we need
not consider large n, and the optimality equation (2), with (Za)~ (2¢), can be, in
principle solved by backward induction. The two-period games [ (), T ,00), Mn(n).
and 1, (), all for n=2, are explicitly solved in the previous werks U, 073,



In the present paper we shall investigate the incomplete-information version of the
above game.  Each player may not know his opponenfs anc%)r his own allowed number
of actions, and is able to estimate only by some probability dis tribution Suppose that

(k, m) is a bivariate random variable with independent Bernoulli marginal distributions
with parameters and B ( See Table l)_ This distribution is assumed to be a
common knowledge for each player.

Table I Bivariate type distribution

(I
_ m=m’ m=m”" )
(3) (T>{ﬁ=ﬁ" zF @&
A=K AB (3 o

. . @ o F
We consider the information structure { IS ) of our game model that is described by a
statement as to “who knows what ?”
e ’
Let 1"""be the IS such that

’

{2}: | (0)7 if player%i}joes( doesn’t) know his“type” {ﬁ } .

{ "}{ } =1 (D)’ if playerfi}does\( doesr?t) know his opponents&typé”{rgﬁ .

Amon’g the possible 2 /6 1Ss we shall focus our attention to the following four ISs.
(®)Y 1t 7§ e. complete information 3 Both players know both of k and m.

(y1:¢h i e, symmetric Cor privateY information % Each player knows his owntype, but
not the opponents.

(32)1*F "and ['9* 11 j e. asymmetric information ; One player knows both players’ types
whereas the other can know his own type only. ,

In each case of (1°)~(3) the information structure is known to both players. The
complete information case (1%) was solved in{l Jand (107] and cases ( 2%)and (3°) will
be solved in subsequent sections. In Section 2, one-period games with incomplete
information where k’=m’=0 and K"=m"=l are solved. In Section 3, two-period game
with symmetric information, where k*%=m"=0 and k’=m"%2 is solved.

Aplications of two-person games under incomplete information to real economic or social
world have not-a-small library of references, among which are, for example, Karlin [4;
Chapter 9} and Sakaguchi [ 8,9 Jin poker,Sakaguchi U7 Jin noisy duels, Engelbrecht-
Wiggans [ 3] in auction and bidding ,Chatterjee and Samuelson [[27 in bargaining,

Lipnowski and Shilony L5] in traffic dontrol by city-police, and Milgrom and Roberts [ 6 ]

in limit pricing and entry to monopolistic market. The common feature shared by these
examples is that each player, while certain of his own situation in the game, has only
probabilistic information concerning the true situation of his opponent.

2  _One-Period Games under Inconplete Information. '

" The first model we shall investigate is a one-period game in the case where k=m’=0 and
k"=m'=1in (3 ) Thatis, players are uncertain whether they can perform their action or
not. ,

2a. Symmetric information J©*#!

“Player 1’s strategy is denoted by X=(@, 1>, %) with the meaning that I chooses H
(adopts the mixed strategy {x, > ) when he knows that k = Q(i ).

Similarly Player 11I’s strategy is denoted by Y=(<0,!),<},7 ) meaning that Il chooses N
(adopts the mixed strategy (3 3 when he knows that m="of 1) C
Let K,(X,Y ) &) and .( x;%h«) be the expected payoffs to I and II. respect ively,

under each of the two possible'types ‘of information they have, and when strategies X for [
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anth for I are adopted.  If there exist strategies X™=(¢, 13§ £%)and Y=o PACH ™)
such that ’ : ?
(4) K, (XS Y*)ﬁ)ék,(x,vlf\), ®=0,1, VX
| szxtvi‘”’)%.}(z(xtﬂ”’) m=0(, VY,
then (X’: Y}) is a Bayesian equilibriam, and Bayesian equilibrium values are y
(8) KOG 1 4=0) r <k (XY 1A=1) and BRLOCY [m=0)+ 6K, (X Y m=1)

forlandI], respectively .
We first prove

Theorem 1. _Assu me that C<0<p)2 and let ‘n;/":.:_—[’—- (f—»r) Then the solution to the
game_GqPU) under the [S [1%:01 s - I=Bp

Case . 0<Tr< T T
Bayesian P with _ XEY* w:f/a

eq. pla *. € S | S L=y =

S it v b v (e 4=
Bayesian U= r - U= Yo (1= P {T=T)
9. values V==—qp V=—{pc+ail-pp)l {

Note, Hereafter we shall omit considerations about the bordering cases (e, g = u/
in Theorem l) where a continuum of equilibria in the first period and correspondingly in
the whole game exist.© Direct calculations show that the game value for the offender is
continuous, non-decreasing in 7 , and the game value for the defender involves the
mixing parameter z &[0, ] chosen arbitrarily by the offender.

Proot is omjtied .

2b. Asymmetric Information l”: el

' 29 QSIZmEJiii { I fo ' t IIOC-”

Theorems 2 and 3 s{:iﬂs their Pr‘aofs are Dmiﬂ”—epl,

Summarizing the results obtained by Theorems 1~3, we ob§ewe the ﬁ:llowipg fact§ :

12 For any fixed « and (® Bayesian eq. value U, as a function of >0 s continuous
and non-decreasing, whereas V is piece-wise constant and has a Jump at a particular one
oint of T, - o L
p2? Bayesian eq. value U, as a function of ¢ 1] is Increasing in™ , and V, as a
function of B¢[p, )], is also increasing in (3.  That is,"type 1° gives more benefit
than “type 0 for both players. ‘

3® Inyfhe special case X=@ =], all of Theorems 1~3 reduce to Theorem 1 of the
previous paper [10 J, 1. e the one“period i_r_l‘complete—inforrnauon games G,,, (1) reduce
to the one-period perfect-information game | (1), _ ‘
31? Let Up")' ¢ f‘*’-?( VYideY be the Bayesian eq. value for player I ( I1") of the game G,

under the IS 1" ““', ~ Assume the:tD Cl <{pd, | Then we have the inequalities *
ety . 1 n:e
U< oo ,

and v“.’” S_V,C:Gl S"V-/D:jl

A player who obtains his rivals information privately makes a profit, and a player who leaks
his information to his rival makes a loss. _



3. Two-Period Game under Symmetric Information.

~ The second model we shall discuss is a two-period game in the case where k'=m=0and K=
n=2in (3) Thatis, players are uncertain whether they can perform their action at most
two times or nione in a given two periods. We consider the IS J19-¢l only, ie.symmetric
information that is the same as 1163 ¢i | with K'= m’= 1 replaced by K'=m"=2.

Player 1%s strayegy is denoted by X(2) =((0,|),(x,'17;0pt. Cont.) meaning that: In
the first period I chooses H ( adopts the mixed strategy { X ) when he knows that k =
0(2Y). And in the second period,if either he chose H ‘or chose C but remained
unpunished, he uses his one-period equilibrium strategy starting from the outcome resulted
by the strategy-pair used in the first eriod. .

Similarly player II’s strategy is de?}oted by Y ( 2)'—'—(@,1\7}{3, 4 ); Opt. Cont) meaning that 2
In the first period, II chooses N ((adopts the mixed strategy (4, y ) when he knows
that m=0 {2 ). And in the second period, he uses his one-period eq. strategy starting
from the outcome resulted in the first period. .

« First we note that in the second period of the game, posterior knowledge of the true
“type-pair? is

m=0 in —_-2 ‘ R . —
t=o| O 0 o O o * L@ Xf
. ) , — N an U{ — 3
=210 i @ & O *E A3
after the choice-pairs C-E, C-N, H-E, and H-N, respectively, were played in the first period.
Here C' means commiting crime without being punished. Hence, by the bou ndary
condition (2e7) corresponding to these four choice-pairs the second-period games are Gi)(1),
G 4, &, (D) and Gy (1 ), under the IS 110:21respectively. Let K,(X(2)Y@)| & )and
» o)

3 e bé the same as in Section 2a, with X and Y replaced by X ( DA (2).
< (X Y@l m) 2 IA2)

Let the Bayesian equilibrium values for the game Go(p(') be U,

for I, and V
forll. Also let =T ¢ .
~ T : -
U = ‘\ P l,! U!)‘g QnA %: P-‘V;JI v’/?
Uy U VL '
then we h ave ! u’@ %1 -V;P

(13)  K(XQY@| A=0)=(0 NM+TNF[° )+ 3
() Ka{XEYE m=0) ={F0, ) a2 %)) (147 2)

(1 6) Kz&fb.) Y('z_)\ M:Z) ':.<( E(O, l)+@(;:‘: ‘,‘L“)} (Hz*'fi; ) [ .\.’.x]
. 7

where e [—’Phﬂrﬂf)., Y’c-‘IT} o Mgg{*@:ﬁ;ﬂ.) -—lX |

Y T - o

H

are the same as in Sectign 2.\& If there exist X*('z) and f‘(z), such that
am K, (Xi:),‘( @] £) 2K (x@Y[0), k=02, VX@),
K, (X OREN \'M) 2k, (X*KI)X'UJ\ ™) m=D, 2 YY)

; >
then K)QZ),YQZ ))is a Bayesian equilibrium-strategy-pair.

¢

93



94

Theorem4. Assume that parameters satiisfy
(@< Y < Pmin(s MED |
(18 { B 2B~ <o,
and f('5) given by (21),is negative (1 €. p is not so smatl )
Let T[' = (f+r) and

-@ﬁ_ Bp(F+2r)+dp5% (£3)(-8p) rwpAplTy
I =

Then we have ¢ (“n' < Ty @md the soluuor)lg l%g gam @CE&P(?‘) under the IS ylosel
ds ¢

_ Case o< </ -r-.<1-<1“ ‘ﬂ'>'ﬂ'z
Bayesian eq-play X‘—Y'{wi{;’/’\ ' X \’ with ' —-\( w.ﬂ,
in the Ist period Y= CU-F/b) (A
In the Ist perio X C(’*@/P)*-ﬂf‘f*EC )‘/ﬂ‘-a@ ﬂp) . "'1 =]

% {Ven
I =7\GP[{+U+T“) hﬁ(zg (A;i)gre;p ( )'
" Bayesian eq-values 2y 0_ . x-) 2.4
) 2r+«(1~pp-ppap 3 J [ ‘J
(7 [“‘-(C/P +,@.2f)} [ [(35‘*0‘('-("?751'*'(31("*“("(3?))") (25

" Proof. We have from Theorem 1

Case 0 <TT w>m
S Vi el B -, ~(erpl)
U),p V;,@ 1”, —c/p v+(UBp) (-, —-ipc«-(:-gp)lj
Uu( Y . —¢p Y+op(w—m), — (c+xFL)
chfs Vap Y, —c¢/p T4 oc(l—p‘p)(w‘-nrl) ~é(jc+o{(l—(3p)ﬂ}
(Weprev;ously noted in Secuoan that T~ i> 0 if °<@<| k )

* Computing (13)\;@6) and substltut_mo the above values i mto theran we gét
(137 -~ k(X Yo|k= o)~ r+T>;p tB(T41-Ts )y

of ocweTy”

¥ KeYE| %)= ﬁ”df‘f“m('—@P pEPS™) if wom

+aol © - f’(f"”)*‘FWfU.)} "‘“"fU/,[a—D;,@ +
: +§ITTUJ(3) ~Uap -

("’( "‘Ua. 0 +*
% 2Y+ (% ’L){q (”F)TT—-(&p(f-»l\) ‘ﬁ'}[‘f it ocmen”
= o JLg¥i »
"""““‘f‘f’“”"*‘*'*)["’ﬁiézi;’:za?@m_wmfwrm]{ 1
— B pp(r-y 0 o
(157 Ko (X, Yl m=0) = Vo + B (=04 W 5~ o) X" ‘ ’T>7Tu
{“‘C/P prx> , it o<~

“{PC-MU ﬁr)f} ﬁ[lm(l—@,;)jﬂx if ™
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and
14) KXY m=2)= Voo + [0y (T g=pF -5 14T, R NI
e (= (Ferppy gy ST T o P ][?J
* A2 3 N
g [ —cl=-6/p) o H"ﬁJ ’ tocmen
= Beralippn Y+ )
~(Br-eneREPEN-EFFIL (g (8]
~Cragy . 0 ]['3"], if T?“:/.

Therefore x%ys'satisfying (17

games
(9 | O=emm=Ppltren), —(Fetept) | w, -l
: 0, ~c (-8 0,5 D

will be derived as the eq. strategy-pair of the bimatrix

if . 0<T<1\“’; and

T=Bp(Femear)ele Foe (TpY-ap))tmrty (P ()
20) | ~(@ri-ep)e 2 (FpoR) -8t F O | —Bl(+Tep |;7)
| ~*@Bpm—1> - ctuzl o, 0
it T, | |

We consider the followjng threecases. Assume that d6< C/(Z < pmin(d, @/(3‘ .
Casel. 0<TW< T .

Since we have, from (187, C/I’.ﬂ <0(A(%)and B>p  the equilibrium for the bimatrix
(19) is obtained in the same way as followed in [ 10 ] with the result
.« 1=6/h) el ™
(i-Fp)+epl—gc ’ = gp(facew)

and eq. values 0, for I, and —@ ¢, forIl. Itisevident that X" and y*el0, 1].
The eq. values for the game G, 4(2) are

% KX, Y1) f<=o)+;@\g(x‘tz),\(‘fl)\ f=2) = X2riad(2rvo)= 27

forl, and
Bhe 63 Y2 m=0) + e ko (X12) YEo)  m=2)
=~ B (Bl )+ B (—A-pA) = {7+ (L),
Case2, T, <<~ . '
Conside; the bimatrix game (20) . Wehave ~—-C+°‘”(§Q < 0 & 0{5<% N and
“(Bri-pp)e+ (e Frap-BFF Y > a3} &
(21) P )= B F-(Tp-30-43-B NP+ T B4 2B(2)— | <O,
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with
f(o)= ?(31+ 2 Za"(%).mo (by the assumption (18)) ,
f=0+g)(72) >0,
implying that f (F )( 0 except for some small p>0.,
Moreover
@D T+ P I-pep) (v < ~kp B p (7T
& w< BB {pF (X-pUpPratpBp it
P+ (TP TpBP °

i

- Here ws note that
'rr;_—Tr.’ = (positive facter) X { @P('F—i- ZT)"‘(I'{-%P)‘“}(}
= (positive facter) X (3 Fr >0,

- Combinimg these inequalities, we assertain that the equilibrium for the bimatrix (19)
for 'H'(<T\‘ <, is obtained in the same way as in {107 ,with the result

3 P Y-am e T (P T=1)
- | /1-aG~HF) T L () (51040 g5 HFp )R BB Y
*(w=m)
and eq. values ~%B@p(n-r){for I, and —(‘QQ(I-\-I(I-@p))f for I It is evident
that x* and yX ¢ o, 1] )
Thus we find from (13)J[16% that for T, < < Ty ,
KX Y0 #) = orex(=w) (1~8p —aBpy*), k=02
Ky 00, Y@ | m) =~ pers(i-ppl+BR([+a0-pp) 2], m=0, 2.
and these common values are equal to the Bayesian eq. values for the game G,(J(g(z),
Case3. T 7“11'{ .
Since the bimatrix game (20) has the eq. point at C-E element, we have from(13’), (l4§,
and (22), :
K (XK@, Y2 #=0) = 2r+ x(-p-pf P (-,
K (X0, Yo\ #=2)= 2r+ a( =P p-@Bp *7)
T S (T ) (P A@Ep ) (T ),

Also from (15, (16")and1) we get
K;L(X’(z.)“f‘(z.)\ m:o? = ~[(|1‘C/2)('3t(1—97"'(§)(l—(5 P)]»@ .
K (X, Y1 [ m=2)=~[(ix¢/,)p F(=26) (Hpp - 1.

Thus the Bayesian eq. values are

@ Tre) Y k=0) +k, (K) YD) £=2) N
| = (pp-p BN T=)+{ g% (T3 BY-pp g PP T (T2 |

@5) XN m=0)+8k(A)ro|n=D

' =[rgD B (=28 pp) ) A- P, |

forI and II, respectively.
This completes the proof of Theorem 4. D
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From Theorem 4, we remark the following facts ¢
‘ 1° When « and @ tend to 1, the game reduces to [ ,(2) in the previous paper
[10]. In fact we can find that mﬁ%)(+ﬂjiﬂiﬁﬂm+(vp?>rg"ﬁz and {(—f")ﬁ-i;zi—%ﬂ:-l
so that f{p)< O, for all p&( Po,1),where po':—_{}/,_)i?_*-%*_m-}’_ The solution to ’
the game G, (_,L-z_)’ stated in Theoremd4, becomes Theorem 2 in [10] ‘
2"J For any fixed ¢ and (3 , Bayesian eq. value U(2) as a function of >0 is

continuous and is conjectured to be non-decreasing (note that y* involes v in a
complicate manner)) whereas V(2) is piecewise-constant (since f(F) doesit involve 'rr')’
and has jumps at two particular points TI‘,’ and Tl‘-: .

3% Itis not sure that U[2) (V(2)) is non-decreasing ino (@) since x* and y¥
involve ®kand (3 in a complicate manner. This fact is largely different from the
corresponding statement 2 at the end of Section 2, for one-period games.

4° Combining Theorems 4 and 1 we find the two-period eq. play under the IS 710/
as follows '

If 0¢T<T, theeq. playis X2) -Y*(2), with

(i) = (=07 and ()= Pi’r

i
| = ph+fpl-Be frzreTr)
in the firtst period, and X(1)-Y'U1 ) with '
), “ (ﬁl)} , Choice-pair resulted by zi’(z}ii_g_
</ph 7 plfrprt) C-E
ol | B R(ferem C-N
cfApl) T (e v H-E
Uep) |_eplfsrrmy | H-N

in the second period.

If W<w<T, the eq. play is )dz) -‘i‘(Z) with _
(o) =— /; ‘f;,’_:‘_f*{_ ‘;ﬁ; and (f(z))l given by (22)

in the first period, and C-E is chdsen in the second period.
If Wy, the eq. play is to choose C-E in both periods.

Table 2 gives a numerical example of the solutions to the games G,,, (1) and G, (2) under
symmetric information for the parameters r:—_\z—7 p%’c:.\,f:l—_-.z. andé(:(s_—_t;t/_;-. All
conditions (18"),stated in the begining of Theorem 4 are satisfied, since p, .—_“}',:(S'-Jﬁ ) =0219<
P=73 (in remark 10) and f(f;): fQ_/; )=- '5’—31_ We obtain W = 2'%7 and T = '}3-’-/203 .
For comparison we reproduced here the solutions to the complete-information games \’," I( )

and[} (2)from (107,




Table 2. Solutions to the games under symmetric information
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Game|{ Case| Eq.play @.(1))'—&{(17)‘ Bayesian eq. payoffs Based on
in the first per;d / %3/ ) — ,
1 3/ ~(3m/ : 2 i :l
ITISRL Mc-@xs_ ) (V)(lﬂ—rl) (=513) miol
L Y- sy | 163909 Th2
r,_’l(l\ 2 (,}/22 - qTT/g(_n-+[) (y‘;) ("[r_.l)- ﬁ—s%g) n [ID]
2" CE &) zw="0-2%)
.| ® {57;@-[5‘15/4{2n+s) V- ("3/2)_1_ Th.i
B CE (D |(Er-5h-C &)
| e | e |
oy | Y 265 1\ 4Tl 2 .5\ T
G0 | * | o3 U gt | i) im0
o CE in(20) | (S 300)(— 18 |

(

Cases a, b, b,b.’mean 0<1T<
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