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A Multiple Choice Secretary Problem
With a Random Number of Objects

PHMAFEEFE EEXS (Mitsushi Tamaki)

1. Introduction «

We consider here a multiple choice secretary problem, that can be stated as follows. A set
of N rankable objects appear one at a time in random order with all N! permutations equally
likely. As each object appears, we decide either to select or reject it based on the relative
ranks of the objects. For the m choice problem, we are allowed to choose at most m bbjects
and win if either of the chosen objects is the best overall. Obviously only relatively best
object, sometimes referred to as a candidate, can be chosen. The objective is to find a
strategy that will maximize the probability of win. For the m choice problem, we consider a
class of strategies which, whenever there remain k choices yet to be made, selects a candidate
if it appears after or on time si, 1sksm. We call this strategy a multi-valued threshold rule
with decision sequence s = (si, $2, ..., Sm) or simply a multi-valued threshold rule if sy is
non-increasing ink, i.e., silzszz...zsm.

Gilbert and Mosteller(1966) solved the above problem when the value of N is known
exactly in advance and showed that its optimal strategy is a multi-valued threshold rule. In
this paper, we allow N to be a bounded random variable having probability distribution
pi = P(N=1i),i=1,2,...,n with p,>0 and derive a simple sufficient condition on {p;}i_; for a
multi-valued threshold rule to be optimal.

Presman and Sonin(1972) are the first to consider a problem with a random number of
objects, though their research interest is restricted to the study of the one choice problem.
Presman and Sonin give a sufficient condition for a threshold rule to be optimal. Define the

sequence {d;}i; as

n N
di=pi- z & .
j=it1 J

Then this condition can be stated as "d; changes sign from negative to positive only once (as i
increases)". As will be seen, this condition remains a sufficient condition for a multi-valued
threshold rule to be optimal. See also Irle(1980), Petruccelli(1983), Lehtinen(1993), Mori(1985)
and Tamaki(1979) for the secretary problem with a random number of objects.

2. Optimal Strategy
The following theorem summarizes the main result of this note.
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Theorem 2.1
Let

n .. n n
GV = > P > —11—2 Pé‘— ,  lsisn. 21
im 1 e s

Then the optimal strategy is a multi-valued threshold rule with decision sequence
S = (81, 82, ..., Sp) if Gi(l) satisfies the following two conditions :

@ G{" is non-decreasing in i where G=0.
(®) If Gi(l)zO, then Gi(i)@o for 1=i<n.

Moreover, sy is determined by
sic=mini: G = 0, 22)
where Gi(k), Isi=n, lsk<m, is defined recursively as

. |
¢P=cP+ 5  Lgkvb, k=2 | (23)

j=max(i+1, se.1) 1

starting from Gi(l).
Proof. See Appendix.
We immediately have the following corollary from this theorem.

Corollary 2.2
If Gi(l) is a unimodal function of i, then the optimal strategy is a multi-valued threshold
rule.

We have from (2.1)

n
1 @ _ Pil}_ .
G; ‘Gi+1—li“(Pi - Z Tj)“%dl'
=1+l 4 .
Hence, the unimodality of Gi(l) with G,(})>0 assures that if d;=0 then d;,;=0. Thus Presman

and Sonin condition remains a sufficient condition for a 'multi—\)alued'threshold rule to be
optimal.
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3 Asymptotic results

It is of interest to investigate the asymptotic behaviors of sy, 1<k=<m, as n tends to
infinity. To do this, we here employ an intuitive approach of approximating the infinite sum
by the cormresponding integral. We examine in detail four distributions for which the
corresponding Gi(l) 1s unimodal.

3.1. Arithmetic distribution 1 : p; = 2i/n(n+1), lsi=n.
Let Fi(k) =n Gi(k). For k=1, we easily see that

n

i1
M _ 2 | (41 - 1
F; —HH{(n i+1)- ) Y J

j=i+l t=i

is a Riemann approximation, if one lets i/n—>x as n—> , to the integral

FD(x) = {(l-x) [ dyf dz% = 22(1-x) + log x| .

Thus, from (2.2), s]= lim_ _,OO%L= 0.2032 1s a unique root x€(0, 1) of the equation
FO(x) = 0, that i,

2(1-x) + logx = 0.

Define in general s = lim_ _)Oo%. Then, in a similar way, we can obtain sy for k=2

successively as a unique root x&(0, si_;) of the equation
F®(x) =0 3.1

if FO(x), 0<x<1, is defined recursively as
1
Fo(x) = F)(x) + [ Jyn F&Dy)dy, k=2 (3.2)
max(x, ‘1:—1)

starting with F()(x) (note that F,.(k) is a Riemann approximation to F®)(x) if one lets i/n—>x as
n—>),

From (3.1) and (3.2), sy is a root of the equation
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1
F(x) = - f LFEDy) ay.

*

%-1

In other words, if we denote by g(a), a>0, the unique root x&(0, 1) of the equation

2(1-x) + log x = - % , (3.3)
then
Sk = g(Ak-1) » | (3.4
where
1
Ap1= [ ;1{ Fle(x) dx. ' (3.5
%1

To calculate Ag.1, we can invoke the following recursive formula(see Lemmas 2.1 and 2.2 of
Tamaki et al.(1998)) '

k k-i+1
Z{akkl i log s} A,
(k-1)! (k-1+1)!

1:

where
1 k-i
A ki = [ (logf) FD(x) dx .
s
If we let
1
I,(s) = ] (log x)~dx

we have

A ki 2(10g s; i A (log s*i)k 42 I (s )}
kD! '2[ it i) T ! |

Applying this to (3.5) yields
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22 (log s?) k"'+2 T ie1(8i)

(k-1+2)! (k-i+1)!

where we have used from (3.3) and (3.4)
App=-41-57)+210gs]].
Consequently we can calculate sy recursively through
k i+1 *
I-i(s; )\
2 +2 4 .
g( Z{ TR

For numerical calculation of I,,(s), we can use the identity

Ih(s) = n{ _Sz nkIOgS },

which can be obtained by repeated use of integration by parts.

Table 1 presents some numerical values of s.

Table 1
k Sy
1 0.2032
2 0.1259
3 0.0810
4 0.0529
5 0.0350

3. 2. Arithmetic distribution 2 : p; = 2(n+1-i)/n(n+1), l<i<n.
Since the derivation is quite similar to that for arithmetic distribution 1, we omit the detail.
Let g(a), a>0, be the unique root x&(0, 1) of the equation
log x = - (2 + V4x + a).

Then sy, can be calculated revcrsively through
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Sk = (k-l)v (k—1+1)! (k-i+2)!

g( & { Leis) (log s +(k—i+1)(log s;‘)k‘i"z})

|=?

3.3. Uniform distribution : p;=1/n, l=i=<n.
sy can be calculated revcrsively by

SI*c _ ex;{ {1 + ,\/ 1- 2 (k—1+2)+(k—1+1)10g S; ] (log Si*)k_m \:! ‘

(k-i+2)! |

See Tamaki et.al(1998) in detail.

3.5. Geometric distribution : p; = p(1-p)'l, 1si.

For this distribution, N is not a bounded random variable, but it is not difficult to show
that the optimal strategy becomes a multi-valued threshould rule in a similar manner as
developed in Presman and Sonin(1972). Let A=E(N)=1/p and y; = lim, _, si/A. Then
Y1, Y2 and y3 are calculated from the following system of equations :

o

gl\S“—S(l—logs)dszo

=
J;

em (1-1log s)ds+%] e—';‘{Elogs(%log s)ds=0

ey et 1
f (1 logs)ds+f " jogs(1 2!logs)ds
1 1

A

)4

1-log logs - ilog s}ds =0

+ eYlSlo sllo
[ B %y,

Remarks

1. Though we only derive the limiting values of the decision numbers, we can also denve
the limiting values of the probability of win.

2. Recently the author has come to know Mori(1985), which also considers the multiple
choice problems Mori obtained the recursive formula for the decision numbers, but it is not
appropriate to the real calculation. I think this paper could be a counterpart of Mori.
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Appendix
Proof of Theorem 2.1

We consider our problem as a Markovian decision process. Since serious decision of
either selection or rejection takes place only when a candidate appears, we describe the state
of the process as (i,k), Isisn, 1sk<m if the i th object is a candidate and there remain k more
choices to be made. For the above process to be a Markov chain, we must further introduce
additional absorbing state (n+1,k) denoting the situation where the process comes to an end
with k choices left, 1sk=sm.

Let Wi(k) be the probability of win under an optimal strategy starting from state (ik),
1=<i=n, 1<k<m, and also let Ufk)(Vi(k)) be the probability of win when we select(reject) the i th
object and then continues search in an optimal manner. Then the principle of optimality
yields, for 1<k=m,

WO = mad U, V), 1gizn, @
where
(k) _ bj i % (k D '
U 1 + (AZ)
z]“l JIZ_,,lJ(] 1) m;
and
v _ i i T gl (A3)
: j=irl jG-1) = ) . ' .

Define G, k=1, as

oM =g 4 i

k-1) (k-1
2 ){w‘ - VD) ka2 (A4)

starting with Gi(l). We will naturally find in the course of the proof that this definition in fact
agrees with that given in (2.3). Suppose that we are in state (i,k). If we select a current
candidate we receive U,-(k). If instead, we continue and select the next candidate if any, we

R | I
expect to receive V;( ) defined as

W i Ty
jeiz1 10-1)
S i mfiep, ykn| |
=y i T + Vi (A.5)
) jG-1) m; | mj = t l



The one-stage look-ahead rule immediately calls for selection if Ui(k) = vfk’

specified by (2.1) - (2.3) is in fact the one-stage look-ahead rule, because Gi(k) can be written,
from (A.2) and (A.5), as

. Then the strategy

G “(E,l”){ U - 90} (A.6)

Since the horizon is finite, the one-stage look-ahead rule is optimal if the problem is monotone.
To prove that the problem is monotone and that sy is non-increasing in k, it suffices to show

that, for each k, Gi(k) has the following properties

(Pl 1 G® >0, then G, = 0 for 1si<n
P2 ¥ =G for 1sisn.

(P1)x implies that the k choice problem is monotone and (P2)y, combined with the definition
(2.2), guarantees Si,1ssx. We show (Pl)x and (P2)x simultaneously by induction on k.
(P1) holds from the condition (a). (P2); is immediate since, from (A.4),

n .
GOy 3 T (w® vyl
l L Em J(J’l){ b

Assume now that (P_l)j and (P2); hold for j=1,2,...k. Then, considering that the one-stage

look-ahead rule of the k choice problem is optimal from the induction hypothesis (P1)i, we
have that, for sy = min{i : Gi(k) > O} as defined in (2.2),

A '\

(k)-’ 5o

KRy
Uj ,  J=Sk |

and
k =k .
Vf ) = V; ), j=sk-1.

These are combined to yield, from (A.6),

| 0, j<5k\ |
w}‘”-V}k):I ,
J g0 e
J'IZ‘ e J=8k . f

and then applying this to (A.6)(with k replaced by k+1) gives

75
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n
ctVoghs  y  Lo® (A7)
. & -1
j=max(i+1, sx)
Itis easy to see Gi(k+1) = O for i=sy from the induction hypotheses (P1)x and (P2)x. Thus, to
prove (P1)y, 1, it suffices to show that Gi(k”)is non-decreasing in i for i=sg. This is immediate
from (A.7) and the conditions (a) and (b) since Gi(l) is non-dereasing in i for issy=s; through
the induction hypotheses (P2); for j=1,2,...k-1.

-Now we turn to (P2),1. Since the one-stage look-ahead rule of the k+1 choice problem is

optimal from (P1)y,1, we come to have, for sg,; = min{ i: Gi(k”) = 0},

n
Gi(k+2) - Ggl) + z 1 gk+D) (A.8)

= ; s
j=max(i+1, sk.1) J 1

in a similar way as (A.7) was derived.
Therefore from (A.7) and (A.8)

(k+2) (k+1)

n n
- 1 gk 1 a®
- z i Gj z j-1 Gj

j=max{i+1, sg.1) J~1 j=max(i+1, sy)
4]
2 z jif {G}kﬂ) - G}k)} (use sg.1sSk from the induction hypothesis (P2)x)

j=max(i+1, sy

=0, (again from the induction hypothesis (P2)y)

which proves (P2)k,; and hence completes the induction.
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