<table>
<thead>
<tr>
<th>Title</th>
<th>AN APPLICATION OF ALUTHGE TRANSFORM TO PUTNAM INEQUALITY FOR LOG-HYPONORMAL OPERATORS (Operator Inequalities and related topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fujii, Masatoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1999), 1080: 156-159</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62702</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
AN APPLICATION OF ALUTHGE TRANSFORM TO PUTNAM INEQUALITY FOR LOG-HYPONORMAL OPERATORS

MASATOSHI FUJII 藤井 正俊

ABSTRACT. In this note, we give a short proof to the Putnam inequality for log-hyponormal operators due to Tanahashi: If T is invertible and log-hyponormal, i.e., $\log T^*T \geq \log TT^*$, then

$$\|\log T^*T - \log TT^*\| \leq \frac{1}{\pi} \int_{\sigma(T)} r^{-1} dr d\theta,$$

where $\sigma(T)$ is the spectrum of T. It is based on his original idea that the log-hyponormality is regarded as 0-hyponormality.

1. Introduction. After the Furuta inequality was originated by Furuta [12], see also [5,13,16,18], we initiated to study it under the chaotic order $A \gg B$, i.e., $\log A \geq \log B$, for positive invertible operators A and B [11]. We finally characterized $A \gg B$ by a Furuta-type inequality [6] and [7,8]: For $A,B > 0$, $A \gg B$ if and only if

$$(1) \quad (A^r B^p A^*)^{\frac{2r}{p+2r}} \leq A^{2r}$$

holds for all $p,r \geq 0$.

Furthermore we interpolated between the Furuta inequality and Theorem A as follows [9,10]:

Theorem A. For a fixed $\delta > 0$, $A^\delta \geq B^\delta$ for $A,B \geq 0$ if and only if for each $r \geq 0$

$$(2) \quad A^{\frac{r+2r}{\delta}} \geq (A^r B^p A^*)^{\frac{1}{\delta}}$$

holds for $p \geq 0$ and $q \geq 1$ with

$$(3) \quad (\delta + 2r)q \geq p + 2r.$$

We note that (1) is equivalent to the case $\delta = 0$ in Theorem A and the Furuta inequality is just the case $\delta = 1$. The domain given by (3) is explained by the figure below:
From the viewpoint of this, Tanahashi [19] defined the log-hyponormality for invertible operators by $|T| \gg |T^*|$, where $|X|$ is the square root of X^*X, and constructed the Putnam inequality for log-hyponormal operators:

Theorem T. If T is an invertible log-hyponormal operator, i.e., $\log T^* - \log TT^* \geq 0$, then

$$\| \log T^* - \log TT^* \| \leq \frac{1}{\pi} \int_{\sigma(T)} r^{-1} \, dr \, d\theta,$$

where $\sigma(T)$ is the spectrum of T.

It was conjectured from the Putnam inequality for p-hyponormal operators by Cho and Itoh [3]:

If T is a p-hyponormal operator, i.e., $(T^*T)^p - (TT^*)^p \geq 0$, then

$$\left\| (T^*T)^p - (TT^*)^p \right\| \leq \frac{p}{\pi} \int_{\sigma(T)} r^{2p-1} \, dr \, d\theta.$$

As a matter of fact, he understood (5) as follows:

$$\left\| \frac{(T^*T)^p - (TT^*)^p}{p} \right\| \leq \frac{1}{\pi} \int_{\sigma(T)} r^{2p-1} \, dr \, d\theta.$$

By taking $p \to \infty$, he constructed Theorem T and proved it by the idea developed in (5).

The purpose of this note is to continue his consideration directly. That is, we here propose a straight and simple proof of Theorem T which might be along with his intention; Tanahashi might regards the log-hyponormality as the 0-hyponormality. Our tool in this note is the Aluthge transform which is grown up the p-hyponormality, see [1,2,4,14,15,20].

2. Preliminary.

For the sake of convenience, we cite the following characterization of chaotic order which implies (1) by the help of the Furuta inequality [7], see also [8] and [9].

Theorem B. For $A, B > 0, A \gg B$, i.e., $\log A \geq \log B$, if and only if for any $\delta \in (0, 1]$ there exists an $\alpha = \alpha_\delta > 0$ such that

$$(e^\delta A)^\alpha > B^\alpha.$$

The essential part of Theorem B is as follows: If A and B are selfadjoint and $A > B$, then there exists an $\alpha \in (0, 1]$ such that

$$e^{\alpha A} > e^{\alpha B}. (*)$$

It has the following simple proof: The assumption $A > B$ means that $A - B \geq \epsilon > 0$ for some ϵ. We here take $0 < \alpha < \epsilon/(\|A\| + \|B\|)$ and $\alpha \leq 1$. Then we have

$$e^{\alpha A} - e^{\alpha B} = \alpha (A - B) + \sum_{n=2}^{\infty} \frac{\alpha^n}{n!} (A^n - B^n)$$

$$\geq \alpha \epsilon + \alpha^2 \sum_{n=2}^{\infty} \frac{\alpha^{n-2}}{n!} (A^n - B^n)$$

$$\geq \alpha \epsilon - \alpha^2 || \sum_{n=2}^{\infty} \frac{\alpha^{n-2}}{n!} (A^n - B^n)||$$

$$\geq \alpha \epsilon - \alpha^2 \sum_{n=2}^{\infty} \frac{1}{n!} (\|A\|^n + \|B\|^n)$$

$$\geq \alpha (\epsilon - \alpha (\|A\| + \|B\|)) > 0.$$
Here we should note an interesting characterization of chaotic order recently obtained by Yamazaki and Yanagida [22], which is associated with Kantorovich inequality and consequently Specht's ratio, see [23].

3. Proof.

We begin with the Putnam inequality for p-hyponormal operators; we turn it into the following lemma via the Löwner-Heinz inequality:

Lemma 1. If T is a q-hyponormal operator, then T satisfies (6) for all $0 < p \leq q$. Consequently (4) holds for any q-hyponormal operators T.

The second half is ensured by the fact that $\lim_{t \to 0} \frac{A^t - 1}{t} = \log A$ for a positive invertible operator A.

Thus Lemma 1 suggests us to find a family $\{T_q; q > 0\}$ of q-hyponormal operators such that $\|T_q - T\| \to 0$ as $q \to 0$ for a given log-hyponormal operator T. In this situation, the Aluthge transform completely responds to our demand. As a matter of fact, Tanahashi prepared the following result in [20]:

Lemma 2. If T is an invertible log-hyponormal operator with the polar decomposition $T = U|T|$, then the Aluthge transform $\tilde{T} = |T|^q U |T|^{1-q}$ is q-hyponormal for $0 < q \leq \frac{1}{2}$.

To prove Theorem T, we take $T_q = |T|^q U |T|^{1-q}$ for $0 < q < \frac{1}{2}$. Since $\sigma(T_q) = \sigma(T)$ for all q, it is complete.

We finally give a short proof to Lemma 2 via Theorem A.

Putting $p = 2q$ and $r = 1 - q$ in (1), we have

$$
(T_q T_q^*)^{1-q} = (|T|^{1-q} U^* |T|^{2q} U |T|^{1-q})^{1-q}
$$

$$
= U^* (U |T|^{1-q} U^* |T|^{2q} U |T|^{1-q} U^*)^{1-q} U
$$

$$
= U^* |T^*|^{2(1-q)} U
$$

$$
= |T|^{2(1-q)},
$$

so that $(T_q T_q^*)^{2q} \geq |T|^{2q}$ via the Löwner-Heinz inequality by $1 - q \geq q$. On the other hand, we have also

$$
(T_q T_q^*)^q = (|T|^q U |T|^{2(1-q)} U^* |T|^q)^q
$$

$$
= (|T|^q |T^*|^{2(1-q)} |T|^q)^q
$$

$$
\leq |T|^{2q},
$$

Therefore it follows that

$$
(T_q T_q^*)^q \geq |T|^{2q} \geq (T_q T_q^*)^q,
$$

as desired.

Remark. (1) (5) is obtained by Putnam [17] for $p = 1$, Xia [21] for $\frac{1}{2} \leq p < 1$ and Cho-Itoh [3] for $0 < p < \frac{1}{2}$.

(2) The proof of Lemma 2 is available to show Tanahashi's result [20; Theorem 4].

Acknowledgement. The authors would like to express their thanks to Prof. K.Tanahashi for his fascinating talk in the meeting of the Japan Mathematical Society at March 26, 1998. He also thanks to Prof. E.Kamei for his critical discussion.
REFERENCES

12. T. Furuta, *$A \geq B \geq 0$ assures $\left(B^r A^p B^r\right)^{1/q} \geq B^{(p+2r)/q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2r)q \geq p+2r$*, Proc. Amer. Math. Soc., 101 (1987), 85-88.

DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, KASHIWARA, OSAKA 582-8582, JAPAN